文档库 最新最全的文档下载
当前位置:文档库 › 功能陶瓷材料总复习

功能陶瓷材料总复习

功能陶瓷材料总复习
功能陶瓷材料总复习

功能陶瓷材料总复习

绪论

什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。

1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。

2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。

3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等

4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。

介电陶瓷

以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质

各种极化机制以及频率范围。

极化机制:电子极化、离子极化、偶极子极化、空间电荷极化

频率范围:

松弛极化

铁电体,

晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。

电畴:铁电体中自发极化方向一致的微小区域

铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。

电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度

T>Tc 顺电相T

居里点附近的临界特性:介电常数随温度的变化显示明显的非线性,室温介电常数一般为3000~5000,在居里温度处(120℃)发生突变,可达10000以上。

驰豫铁电体:

复合钙钛矿(Complex Perovskite):晶胞中某一个或几个晶格位置被2种以上离子所占据。

弥散相变(Diffuse Phase Transition DPT):顺电——铁电为渐变:介电峰宽化,T>Tc 存在Ps和电滞回线。

频率色散(Frequency Dispersion)

高介电常数,大的应变

复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

介电陶瓷的改性机理。

1、居里区与相变扩张: 热起伏相变扩张、应力起伏相变扩张、成分起伏相变扩散、结构

起伏相变扩张

2、铁电陶瓷居里峰的展宽效应:

展宽效应是指铁陶瓷的ε与温度关系中的峰值扩张的尽可能的宽旷,平坦,即不仅使居里峰压低,而且要使峰的肩部上举,从而使材料具有较小的温度系数α,又具有较大的ε值。固溶缓冲型展宽效应和粒界缓冲型展宽效应。

3、铁电陶瓷居里峰移动效应:铁电体居里点及其他转折点,随着组成成分的变化,作有规律地移动现象。

移动效应仅仅指Tc及其它转变点位置移动,而ε-T曲线形状不变。对BaTiO3来说,主要指Tc的移动(居里峰的移动)。

4、铁电陶瓷重叠效应:重叠效应表象上是转变点的重合,ε峰值的重叠,而本质上

是结构上的相互重叠。

半导体介质:按其结构、工艺可分为三类:表面阻挡层型,表面还原再氧化和电价补偿型晶界层型

反铁电体:反铁电体是这样一些晶体,晶体结构与同型铁电体相近,但相邻离子沿反平行方向产生自发极化,净自发极化强度为零,不存在类似于铁电中的电滞回线。

MLCC:多层片式陶瓷元器件,MLCC的主要趋势是发展微型化、大容量的以贱金属镍为内电极的BME、MLCC, 介质层。

微波介质陶瓷

定义:是指应用于微波频段(主要是UHF、SHF频段)电路中作为介质材料并完成一种或多种功能的陶瓷

主要性能要求:1、高的介电常数,以利于器件的小型化、

2、高的品质因子,保证优良的选频特性、

3、尽可能低小的谐振频率温度系数,以确保搞定频率稳定性。

微波介质陶瓷大致可以分为以下三大类:

低介电常数类、中介电常数类、高介电常数类

1、低介电常数类微波介质陶瓷的介电常数为25~30,Q=(1~3)×104 (在f≥10GHz下),τ?=0。主要应用于厘米、毫米波段使用的卫星通讯以及军事应用等通讯系统。如钡基复合钙钛矿陶瓷Ba(B'1/3B"2/3)O3

2、中等介电常数类是指其介电常数介于30-70之间的微波介质陶瓷,主要应用于4GHz~8GHz 频率范围内的卫星通信及移动通讯基站。这类材料主要有BaTi4O9、

3、高介电常数类指其介电常数大于80的微波介质陶瓷,主要用于工作在f<2GHz的低频波段的民用移动通讯系统中作为介质谐振器件。这类材料主要包括简称为BLT的BaO-Ln2O3-nTiO2 系列、CaO-Li2O-Ln2O3-TiO2系列和铅基钙钛矿系列。

压电陶瓷:压电陶瓷是指经直流高压极化后,具有压电效应的铁电陶瓷材料

压电效应:当给晶体施加应力则电荷发生位移,如果电荷分布不在保持对称就会出现净极化,并将伴随产生一个电场,这个电场就表现为压电效应。

正压电效应:晶体受到机械力的作用时,表面产生束缚电荷,其电荷密度大小与施加外力大小成线性关系,这种由机械效应转换成电效应的过程称为正压电效应。力→形变→电压逆压电效应:晶体在受到外电场激励下产生形变,且二者之间呈线性关系,这种由电效应转换成机械效应的过程称为逆压电效应。电压→形变

极化工艺是指在压电陶瓷上加一个强直流电场,使陶瓷中的电畴沿电场方向取向排列。只有经过极化工艺处理的陶瓷,才能够显示压电效应

压电陶瓷材料应用:振子方面、换能器方面

准同型相界:四方铁电相与三方铁电相的交界,并不是一个明确的成分分界线,而是具有一定的成分范围,在此区域内,陶瓷体内三方相和四方相共存

掺杂改性:为了满足不同的使用目的,我们需要具有各种性能的PZT压电陶瓷,为此我们可以添加不同的离子来取代A位的Pb2+离子或B位的Zr4+,Ti4+离子,从而改进材料的性能。

等价取代:等价取代是指用Ca2+、Sr2+、Mg2+ 等半径较Pb2+ 离子小的二价离子取代Pb2+ 离子,结果使PZT陶瓷的介电常数ε增大↑,机电耦合系数KP增大↑,压电常数d增大↑,从而提高PZT瓷的压电性能。

异价取代

软性取代改性:所谓“软性取代改性”是指加入这些添加物后能使矫顽场强EC 减小↓,极化容易,因而在电场或应力作用下,材料性质变“软”。

经软性取代改性后的PZT瓷性能有如下变化:

矫顽场强EC 减小↓,机械品质因数Qm减小↓;

介电常数ε增加↑,介电损耗tanδ增加↑,机电耦合系数KP增加↑, 抗老化性增加,绝缘电阻率ρ增加↑。

硬性取代改性:所谓“硬性取代改性”是指加入这些添加物后能使矫顽场强EC 增加↑,极化变难,因而在电场或应力作用下,材料性质变“硬”。

经硬性取代改性后的PZT瓷性能有如下变化:

矫顽场强EC增加↑,机械品质因数Qm增加↑;

介电常数ε减小↓,介电损耗tanδ减小↓,机电耦合系数KP减小↓, 抗老化性降低,绝缘电阻率ρ减小↓

其它取代改性:非软非硬添加剂如Ce4+、Cr3+和Si4+等,兼具软性和硬性的特征。

无铅压电陶瓷材料体系

迄今为止,可被考虑的无铅压电陶瓷体系有:BaTiO3基无铅压电陶瓷;Bi1/2Na1/2TiO3(BNT)基无铅压电陶瓷;铌酸盐NaNbO3系无铅压电陶瓷;铋层状结构压电陶瓷;钨青铜结构无铅压电陶瓷。具体为:

敏感陶瓷:敏感陶瓷是根据某些陶瓷的电阻率、电动势等物理量对热、湿、光、电压及某种气体、某种离子的变化特别敏感的特性而制得的

敏感陶瓷分类:

1、物理敏感陶瓷:

光敏陶瓷、热敏陶瓷、磁敏陶瓷、声敏陶瓷、压敏陶瓷、力敏陶瓷

2、化学敏感陶瓷

氧敏陶瓷

湿敏陶瓷

生物敏感陶瓷也在积极开发之中,也获得了不少骄人的成绩。

敏感陶瓷的结构与性能:

陶瓷是由晶粒、晶界、气孔组成的多相系统,通过人为的掺杂,可以造成晶粒表面的组分偏离,在晶粒表层产生固溶、偏析及晶格缺陷等。

另外,在晶界处也会产生异质相的析出、杂质的聚集、晶格缺陷及晶格各向异性等。

这些晶粒边界层的组成、结构变化,显著改变了晶界的电性能,从而导致整个陶瓷电学性能的显著变化。

***热敏陶瓷:热敏陶瓷是一类电阻率、磁性、介电性等性质随温度发生明显变化的材料,主要用于制造温度传感器、线路温度补偿及稳频的元件--热敏电阻(thermistor)。

PTC

热敏电阻的温度曲线

半导化:由于在常温下是绝缘体,要使它们变成半导体,需要一个半导化。所谓半导化,是指在禁带中形成附加能级:施主能级或受主能级。在室温下,就可以受到热激发产生导电载流子,从而形成半导体。

PTC电阻温度特性及电压-电流特性与电流-时间特性

电流-时间特性是指PTC热敏电阻在施加电压的过程中,电流随时间变化的特性。开始加电瞬间的电流称为起始电流,达到热平衡时的电流称为残余电流

PTC的应用:柜机空调用PTC器件、分体挂机空调PTC器件、暖风机用PTC器件

PTC效应机理:PTC热敏电阻器有两大系列:一类是采用BaTiO3为基材料制作的;另一类是以氧化钒为基的材料。

1、BaTiO3系PTC热敏电阻陶瓷

(1)BaTiO3陶瓷产生PTC效应的条件

当BaTiO3陶瓷材料中的晶粒充分半导化,而

晶界具有适当绝缘性时,才具有PTC效应。

PTC效应完全是由其晶粒和晶界的电性能决定,

没有晶界的单晶不具有PTC效应

NTC:是Negative Temperature coefficient (负温度系数)的缩写,是以尖晶石结构为主的半导体功能陶瓷,具有电阻值随着温度升高而减小的特性.

导电机理:(1)化学计量比偏离

采用氧化或还原气氛烧结,分别产生p型和n型半导体,形成电子或空穴导电。

(2)掺杂

在主成分中引入少量与主成分金属离子种类不同、电价不等的金属离子,产生不等价置换,从而产生产生p型和n型半导体,实现电子或空穴导电。

跳跃导电模型理论可以解释大部分关于尖晶石结构的NTC热敏电阻材料的性质和现象。NTC热敏电阻的电压电流特性

NTC热敏电阻的应用

1)温度补偿:用于石英振荡器(2~3个NTC)

2)抑制浪涌电流:用于控制开关电源、电机、变压器等在接通瞬时产生的大电流。

3)温度检测:用于热水器、空调、厨房设备、办公用品、汽车电控等。

气敏陶瓷:是一种对气体敏感的陶瓷材料,陶瓷气敏元件(或称陶瓷气敏传感器)由于其具有灵敏度高、性能稳定、结构简单、体积小、价格低廉、使用方便等优点,得到迅速发展。

分类:气敏陶瓷大致可分为半导体式、固体电解质式及接触燃烧式三种

气敏陶瓷的性能:半导体表面吸附气体分子时,半导体的电导率将随半导体类型和气体分子种类的不同而变化。

***压敏陶瓷压敏陶瓷是指电阻值随着外加电压变化有一显著的非线性变化的半导体陶瓷压敏陶瓷的基本特性

压敏电阻陶瓷具有非线性伏-- 安特性,对电压变化非常敏感。

在某一临界电压以下,压敏电阻陶瓷电阻值非常高,几乎没有电流;但当超过这一临界电压时,电阻将急剧变化,并且有电流通过。随着电压的少许增加,电流会很快增大。

压敏电阻陶瓷的这种电流-电压特性曲线如图所示。

1.齐钠二极管;

2.SiC压敏电阻;

3.ZnO压敏电阻;

4.线性电阻;

5.ZnO压敏电阻

压敏机理:晶界高阻态,晶粒导电。外加电压达到压敏电压时,晶界发生隧道击穿,阻值由晶粒电阻决定。

应用:①过压保护

②稳定电压

磁性陶瓷:磁性瓷也叫铁氧体。它是由铁的氧化物与其它某些金属氧化物用制造陶瓷的工艺方法制成的非金属磁性材料。它的主要成分是Fe2O3,

磁性陶瓷的类型与应用

按晶体结构可以把它的分成三大类:

(1)尖晶石:AB2O4,主要有NiZn和MnZn。A:四面体位置;

B:八面体位置。

(2)磁铅石:MFe12O19,M2+:二价金属离子。主要有BaFe12O19 和SrFe12O19

压敏电阻的I-U特性曲线

(3)石榴石:R3Fe5O12,R3+:三价稀土金属离子

按铁氧体的性质及用途又可分为

软磁、硬磁、旋磁、矩磁、压磁、磁泡等铁氧体

1、软磁材料:特点:磁导率大,矫顽力小,磁滞回线窄。软磁铁氧体主要用于制作各种电感元件,如天线磁芯、变压器磁芯、滤波器磁芯以及录音机和录像机磁头和磁芯等磁记录元件。

2、硬磁材料:是指磁化后不易退磁而能长期保留磁性的一种铁氧体材料,也称为永磁材料或恒磁材料。特点:剩余磁感应强度大,矫顽力大,磁滞回线宽。硬磁铁氧体的晶体结构大致是六角晶系磁铅石型,其典型代表是钡铁氧体BaFe12O19。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而已在医学、生物和印刷显示等方面也得到了应用。

3、矩磁材料:特点:剩余磁感应强度大,接近饱和磁感应强度,矫顽力小,磁滞回线接近于矩形。重要的矩磁材料有锰锌铁氧体和温度特性稳定的Li-Ni-Zn 铁氧体、Li-Mn-Zn铁氧体。矩磁材料具有辨别物理状态的特性,如电子计算机的“1”和“0”两种状态,各种开关和控制系统的“开”和“关”两种状态及逻辑系统的“是”和“否”两种状态等。几乎所有的电子计算机都使用矩磁铁氧体组成高速存贮器。

4、旋磁铁氧体:又称微波铁氧体。在高频磁场作用下,平面偏振的电磁波在铁氧体中按一定方向传播时,偏振面会不断绕传播方向旋转的铁氧体材料。具有铁磁共振线宽小、自旋波共振线宽大、在低频段,饱和磁化强度低和磁晶各向异性常数小、介质损耗低、稳定性高等性能。采用电子陶瓷工艺,热压烧结或氧气氛中烧结制造而成。主要用于制作毫米波铁氧体器件。

铁氧体的性能与用途

磁电效应:磁电阻效应(MR)、巨磁电阻效应(GMR)、庞磁电阻效应(CMR)、磁电极化效应

磁电效应与多铁性:外加电场可以改变介质的磁学性质,或者外加磁场能够改变介质的电极化性质,这种效应被称作磁电效应

巨磁电阻效应(GMR)原理:电阻来自散射,散射越厉害,电阻越大

超导陶瓷:超导电现象某些材料在温度低于某一温度时,电阻突然降到零的现象。具有导电性的材料称为超导体,电阻降为零的温度称为转变温度或临界温度。

迈斯纳效应:通过实验发现当物体处于超导态时,超导体内部的磁场实际上为零,具有完全的抗磁性. 这种现象叫做迈斯纳效应。

同位素效应:汞的超导转变温度与其同位素质量有关,同位素质量越小,转变温度就越高

约瑟夫森隧道电流效应:约瑟夫逊在研究电子对通过超导金属间的绝缘层时指出,当两块超导体之间的绝缘层薄至接近原子尺寸(10-20A)时,超导电子可以穿过绝缘层产生隧道效应,即超导体--绝缘体--超导体这样的超导结(约瑟夫逊结或SIS结) 具有超导性。

应用:强磁场、大电流的强电应用和电子学(弱电)应用两个方面。

Eg1:2000A超导电缆、磁悬浮列车、核磁共振设备

Eg2:无源微波器件、超导量子干涉仪(SQUID)、超导高速逻辑运算元件(超导计算机)、超导红外探测器等。

多孔陶瓷

定义:多孔陶瓷是一种经高温烧成、体内具有大量彼此相通并与材料表面也相贯通的孔道结构的陶瓷材料。

多孔陶瓷材料的特性:

①化学稳定性好;通过材质的选择和工艺控制,可制成适用于各种腐蚀环境的多孔陶瓷;

②具有良好的机械强度和刚度;在气压、液压或其他应力负载下,多孔陶瓷的孔道形状和尺寸不会发生变化

③耐热性好,用耐高温陶瓷制成的多孔陶瓷可过滤熔融钢水或高温燃气;

④具有高度开口、内连的气孔;

⑤几何表面积与体积比高;

⑥孔道分布较均匀,气孔尺寸可控,在孔径为0.05 ~ 600 um范围内,可以制出所选定孔道尺寸的多孔陶瓷制品。

多孔陶瓷的制备与应用

制备

3.1 粒状陶瓷的制备:粒状陶瓷一般是将粒状陶瓷骨料和玻璃质、粘土质粘结剂与成孔剂混合、成型、干燥、烧成。其中,骨料包括Al2O3、SiC和玻璃等

3.2 蜂窝陶瓷的制备:蜂窝陶瓷是采用机械加工方法制成许多平行直线开孔,孔径1~10mm 的薄壁多孔结构。

3.3 泡沫陶瓷的制备:泡沫陶瓷的结构是在三维空间重复的十二面体复杂图形。泡沫陶瓷气孔尺寸范围可从1.2孔/cm的最大孔到39.37孔/cm的极细孔。它采用特别严密的软质泡沫塑料(如聚氨酯)为载体,进而加工成所需形状、尺寸等。

应用:

1 在金属熔体过滤净化技术中的应用

2 精过滤技术在其他领域的应用

3 作催化剂载体

4 作敏感元件

5 作为隔膜材料

6 降低噪声

7 用于布气

纳米陶瓷

定义:纳米陶瓷是指在陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都处于纳米水平的一类陶瓷材料。

纳米陶瓷的制备:纳米陶瓷的制备包括纳米粉体、纳米薄膜及纳米块体材料的制备。其中主要是纳米块体陶瓷材料的制备。

块体纳米晶材料的制备方法主要有以下两种方式:

第一种是由小变大(纳米微粒烧结成块体纳米晶材料)。即先由惰性气体冷凝法、沉淀法、溶胶--凝胶法、机械球磨法等工艺制成纳米粉,然后通过原位加压、热等静压,激光压缩、微波放电等离子等方法烧结成大块纳米晶材料。

第二种方式是由大变小,即非晶晶化法,使大块非晶变成大块纳米晶材料,或利用各种沉积技术(PVD、CVD等)获得大块纳米晶材料。

纳米陶瓷的结构与性能

结构:①具有长程有序、不同晶相的晶粒组元;②晶粒间的界面组元。纳米陶瓷的结构也一样包含纳米量级的晶粒、晶界和缺陷。

在界面组元中,其特点是:①原始密度降低;②最邻近原子配位数变化;③晶界结构在纳米材料中占的比例较高。

陶瓷是由晶粒和晶界组成的一种多晶烧结体

性能:纳米材料的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于无定形态、普通多晶和单晶的特异性能。

1.扩散和烧结性能:纳米晶体材料具有较高的扩散率,较高的扩散率对蠕变、超塑性、离子导电性等力学和电学性能有显著的影响。扩散能力的增强产生的另一个结果是可以使纳米材料的烧结温度大大降低。

2.力学性能:纳米陶瓷的基本特征是晶粒尺寸非常小,晶界占有相当大的比例,并且纯度高,可使陶瓷材料的力学性能大为提高。

3超塑性:纳米陶瓷晶粒细化,晶界数量大幅度增加,扩散性高,可提高陶瓷材料的韧性和产生超塑性。

4、电学性质

5、光学性质

生物陶瓷

何谓生物陶瓷,生物陶瓷:用于人体器官替换、修补以及外科矫形的陶瓷材料。生物陶瓷具有的功能:具有良好的力学性能,在体内难于溶解,不易氧化,不易腐蚀变质,热稳定性好,耐磨且有一定的润滑性,和人体组织亲和性好,组成范围宽,易于成型等。1、生物惰性陶瓷,具有优异的生物相容性,能与骨形形成结合面,结合强度高,稳定性好,参与代谢。2、生物活性陶瓷,物理、化学性能稳定,在生物体内完全呈惰性状态。

生物陶瓷按用途分类

①人工骨或人造关节

②运动系统的人工脏器(如心脏辩膜)材料

③形态修复和整形外科材料

④人造牙根和假牙

⑤人工肝脏内的吸附材料(活性碳);

⑥固定酶载体(多孔玻璃)

⑦诊断仪器的温度、气体、离子传感器等材料

生物陶瓷按功能要求分类

根据生物陶瓷材料与生物体组织的关系,把它们可以分为三类:

惰性生物陶瓷。这种生物陶瓷在生物体内与组织几乎不发生反应或反应很小,例如氧化铝陶瓷和蓝宝石、碳、氧化锆陶瓷、氮化硅陶瓷等;

活性生物陶瓷。在生理环境下与组织界面发生作用,形成化学键结合,系骨性结合。如羟基磷灰石等陶瓷及生物活性玻璃,生物活性微晶玻璃;

可被吸收的生物降解陶瓷,这类陶瓷在生物体内可被逐渐降解,被骨组织吸收,是一种骨的重建材料,例如磷酸三钙等。

生物陶瓷的特性与不足

硬度高、耐磨性好、化学性能稳定、广泛应用、生物性能好、着色性能好

脆性材料,抗冲击性能差,易断裂。

如何解决这些不足?

采用多孔氧化铝则可较好的解决氧化铝陶瓷与骨头结合不好而使植入体固定,保证了植入物与骨头的良好结合。但这样会降低陶瓷的机械强度,多孔氧化铝陶瓷的强度随空隙率的啬而急剧降低。因此,只能用于不负重或负重轻的部位;

为改善多孔氧化铝陶瓷植入体的强度,可采用将金属与氧化铝复合的方法,在金属表面形成多孔性氧化铝薄层,这种复合材料既能保证强度、又能形成多孔性;

空隙大小对骨长入十分重要,孔径为10~40μm时,只有组织长入,而没有骨质长入。当孔径在75~100 μm时,则连接组织长入。骨质完全长入的孔径为100~200 μm。

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发展现状与趋势

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发 展现状与趋势 电子陶瓷材料的发展现状与趋势 材料学院 080201班李金霖 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为 [1]主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 2.1.1高导热、电绝缘陶瓷的研究现状 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 [2] AlN于1862年首次合成,20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN陶瓷的研究热点是提高热传导性能,应用对象是电路基板和

封装材料。最新研究通过采用有效的烧结助剂如CaO和Y0生产出了高纯度、高热导率的AlN。 23 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出 [3]了巨大的贡献,但因其有剧毒,已逐渐被停止使用。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 [4]2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO;另一方面,独立开发新材料, ,[56]正在开发中的有氮氧化硅(SiON)、SiC纤维、氮化硅系列纤维等。 22 (2) 除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 2.1.2高导热、电绝缘陶瓷的应用前景 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗

[精品]陶瓷制备与技术复习.doc

1.对特种陶瓷用超细粉的基本要求有哪些? 对先进陶瓷用超细粉的基木要求随材料体系、制备T艺及材料用途的不同,对粉料的要求不完全相同。但其共性可归纳如下: 仃)超细由于表面活性大及烧结时扩散路径短,用超细粉可在较低的温度下烧结将会获得高密度、高性能的陶瓷材料。目前先进陶瓷所采用的超细粉多为亚微米级?lum)o但实践表明,当陶瓷材料的晶粒由微米级减小到纳米级时,其性能将大幅度提高。 ⑵高纯粉料的化学组成及杂质对由其制得的材料的性能影响很大。如非氧化物陶瓷粉料的含氧最将严重地影响材料的高温力学性能,氯离了的存在将影响粉料的可烧结性及材料的高温性能,功能陶瓷屮某些微星杂质将大大改善或恶化其性能。为此要求先进陶瓷用粉料的有害杂质含量在几卜个ppm以下,甚至更低。 (3)粉料的形态形貌要求粉料粒子尽可能为等轴状或球形,且粒径分布范围窄,采用这种粉料成型时可获得均匀紧密的颗粒扌非列,并避免烧结时由于粒径相斧很大而造成的品粒异常长大及其它缺陷。 ⑷无严重的团聚由于比表面积的增加,一次粒了的团聚成为超细粉料的严重问题。为此, 粉料制备时必须采取一定的措施减少一次粒了的团聚或减小其团聚强度,以获得密度均匀的粉料成型体及克服烧结时团聚颗粒先于其它颗粒致密化的现象。 ⑸ 粉料的结晶形态对于存在多种结晶形态的粉料由于烧结时致密化行为不同,或其它原因,往往要求粉料为某种特定的结晶形态。如对Si3N4粉料就要求a相含量越高越好。 2.特种陶瓷的特点是什么。 特种陶瓷定义:采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制的制造方法进行制造加工的,具有优异特性的陶瓷。 (1)产品原料全都是在原子、分子水平上分离、精制的高纯度的人造原料 (2)在制备工艺上,精细陶瓷要有精密的成型T艺,制品的成型与烧结等加工过程均需精确的控制 (3)产品具有完全可控制的显微结构,以确保产品应用于高技术领域 特种陶瓷,由于不同的化学组分和显微结构而决定其具的不同的特殊性质和功能,如高强度、高硬度、耐腐蚀,同时在电磁热声光和生物T程等各方面的特性,广泛应用在高温、机械、电了、宇航、医学工程等方曲。 3.试比较A12O3和MgO的熔点,并请分析原因。 氧化镁的熔点2852°C,氧化铝的熔点:2050°Co即氧化铝的熔点低于氧化镁的熔点。 它们都是离了键,而通常所说的离了键并非纯粹的离了键,成键原子总是有电子云重叠的情况,也即离子性和共价性各占一定的比例。根据电负性数据:镁 1.31铝 1.61 <3.44,电负性差:氧-镁(3.44-1.31=2. 13) >氧-铝(3. 44-1. 61=1. 83) 0电负性是以一组数值的相对大小表示元素原了在分了屮对成键电了的吸引能力,电负性差越大,键的极性越强。 由AS/=—,知Tm与AH/成正比。提高键的共价特性,可以稳定熔体中的离散单元, 减少了在融化过稈中需要打断的键数,降低了从而降低了Tm。A1-0的共价特性大于 Mg-O键,大的共价键性稳定液态屮的离散相,降低熔点。 4.简述溶胶-凝胶法制备陶瓷粉体的原理。 用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液屮形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发展现状与趋势

电子陶瓷材料的发展现状与趋势 材料学院080201班李金霖 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 2.1.1高导热、电绝缘陶瓷的研究现状 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 2.1.2高导热、电绝缘陶瓷的应用前景 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。

陶瓷工艺学复习重点

原料分类 按原料的工艺特性分为:可塑性原料;非可塑性原料(也称瘠性原料);熔剂性原料。 粘土:凡粒径多数小于2卩m,主要由粘土矿物组成的土状岩石均称为粘土,为细而分散的含多种含水铝硅酸盐矿物的混合体,其主要化学组成为SiO2、AI2O3和结晶水。 母岩:粘土是由富含长石等铝硅酸盐矿物的岩石经过风化作用或热液蚀变作用而形成的。这类经风化或蚀变作用而生成粘土的岩石统称为粘土的母岩。 成因:风化残积型;热液蚀变型;沉积型粘土矿床。 粘土的分类:1、按成因分类:原生粘土、次生粘土2、按可塑性分类:高可塑性粘土、低 可塑性粘土 粘土的主要矿物类型:高岭石类、蒙脱石类、伊利石类 高岭石的化学式:AI2O3 ?2SiO2?2H2O (地(迪)开石、珍珠陶土和多水高岭石) 蒙脱石:AI2O3-4SiO2 nH2O、特性:1)吸湿膨胀性:吸水后体积可膨胀20-30倍;2)离子交换性:在水中呈悬浮和凝胶状,具有良好的阳离子交换特性。 问题:描述粘土的组成(1)矿物组成;(2)化学组成;(3)颗粒组成。 为什么粘土中的细颗粒愈多愈好?由于细颗粒的比表面积大,其表面能也大,因此粘土中 的细颗粒愈多时,则其可塑性愈强,干燥收缩大,干后强度高,在烧成时也易于烧结,烧后的气孔率也小,有利于成品的力学强度、白度和半透明度的提高。 可塑性概念:可塑性是指粘土与适量的水结合后所形成的泥团,在外力作用下产生变形但不 开裂。当外力去掉后仍保持其形状不变的能力 提高坯料可塑性的措施:1)将坯料原矿进行淘洗,除去所夹杂的非可塑性物料,或进行长 期风化。2)将浸润了的粘土或坯料长期陈腐。3)将泥料进行真空处理,并多次练泥。4)掺用少量的强可塑性粘土。5)添加糊精、胶体SiO2、羧甲基纤维素等胶体物质。 降低措施1)加入非可塑性粘土,如石英、瘠性粘土、熟瓷粉等。 2 )将部分粘土预先煅烧。 结合性::指粘土能粘结一定细度的瘠性物料,形成可塑泥团并有一定干燥强度的性能。 触变性:粘土泥浆或可塑泥团受到振动或搅拌时,粘度会降低而流动性增加,静置后逐渐恢 复原状。此外,泥料放置一段时间后,在维持原有水分的情况下也会出现变稠和固化现象,这种性质统称为触变性 干燥收缩和烧成收缩:粘土泥料干燥时,因包围在粘土颗粒间的水分蒸发,颗粒相互靠拢引 起体积收缩,称为干燥收缩。粘土泥料在煅烧时,由于发生一系列的物理化学变化(如脱水作用、分解作用、莫来石的生成、易熔杂质的熔化,以及这些熔化物充满质点间空隙等等),引起粘土再度收缩,称为烧成收缩。 烧结温度:开始烧结温度、烧结温度(T2)、软化温度 耐火度:是指材料在高温作用下达到特定软化程度时的温度。它反映了材料抵抗高温作用的 性能。 粘土烧成温度变化:脱水阶段、脱水后产物继续转化阶段 ★粘土在陶瓷生产中的作用1)粘土的可塑性是陶瓷坯泥赖以成形的基础。2)粘土使注浆 泥料与釉料具有悬浮性与稳定性。 3 )粘土一般呈细分散颗粒,同时具有结合性。4)粘土是陶瓷坯体烧结时的主体。5)粘土是形成陶器主体结构和瓷器中莫来石晶体的主要来源。 石英晶型转化的特点:高温型的缓慢转化、低温型的快速转化 石英在陶瓷生产中的作用:①在烧成前是瘠性原料,可对泥料的可塑性起调节作用,能降低坯体的干燥收缩,缩短干燥时间并防止坯体变形。②在烧成时,石英的加热膨胀可部分地抵 消坯体收缩的影响,当玻璃质大量出现时,在高温下石英能部分熔解于液相中,增加熔体的 粘度,而未熔解的石英颗粒,则构成坯体的骨架,可防止坯体发生软化变形等缺陷。

陶瓷材料论文

湖南科技大学专业课程论文 论文题目:对介电功能陶瓷性能的研究 学生姓名:付国良 学院:机电工程学院 专业班级:09级金属材料工程二班 学号:0903050201 指导教师:徐红梅 2011年12月20日

对介电功能陶瓷性能的研究 付国良 (09级金属材料工程二班学号:093050201) 【摘要】随着材料科学技术的飞速发展,电功能陶瓷材料的低位变得日益重要,其特性方面发挥的优越性是其他材料不可代替的。电功能材料作为一种精细陶瓷,采用高度精选的原料,通过精密调配的化学组成和严格控制的制造工艺合成的陶瓷材料。近年来,电子元件随科技发展和市场需求不断向片式化、小型化、多功能化等趋势发展,其中,片式化是小型化、多功能化发展的基础。因此,片式化材料和器件的研究成为热点。在片式化多层结构中,为了使用银、铜内电极,降低元件制作成本,低温共烧陶瓷技术成为近年来兴起的一种令人瞩目的多学科交叉的整合组件技术。从介电材料的低温烧结和掺杂改性入手,通过调节成型压力,成型方式,叠层结构,以及采用零收缩技术,零收缩差技术,加入中间层等工艺技术和结构的改变,来研究层状共烧体的收缩率匹配,界面反应,界面扩散和介电性能,最终解决两种材料之间的共烧兼容问题,获得可低温烧结的无翘曲变形,无开裂等缺陷且界面结合良好的叠层共烧体。介电陶瓷和绝缘陶瓷在本质上属于同一类陶瓷,但是与绝缘陶瓷不同的是,主要利用介电性能的陶瓷称为介电陶瓷或者说,介电陶瓷是通过控制陶瓷的介电性质,使之具有较高的介电常数、较低的介质损耗和适当的介电常数温度系数的一类陶瓷。 【关键词】陶瓷功能系数介电 【引言】介电陶瓷对人类的生活影响涉及方方面面,但是人类对功能陶瓷的利用在一些方面的利用还是个空白,我设想如果我们把介电陶瓷用在谐振器、耦合器、滤波器、电容器、半导体、变压器等生活电器中时,这些电器将在工作效率和工作寿命上有很大的提高。为了加强对介电功能陶瓷的功能的广泛利用,我对介电功能陶瓷材料的介电特性做了深入研究。通过对材料性质的分析,我采用实验分析法,设计了周密的实验方案,同时我对介电功能陶瓷的理论基础做了研究设想,设计了研究方法和实验设计。如果电功能陶瓷得到很好的利用,我们的电器和各种电子设备间的工作效率将大大提高,设备制造成本也将大大降低。所以,研究介电功能陶瓷有很深远的意义。 【正文】 一、节电功能陶瓷的定义。 陶瓷材料特有的高强度、耐热性、稳定性等特点,被人们普遍看好用作集成电路板的制造材料。目前作为集成电路基板的陶瓷材料主要有氧化铝、氧化铍、碳化硅及氮化铝等,其中以氧化铝应用最为普遍。

先进陶瓷材料与工艺复习题

一、名词解释 先进陶瓷材料、抗菌陶瓷、生物陶瓷、热敏陶瓷、逆压电效应、铁氧体、气敏陶瓷、光敏陶瓷、电致伸缩、独石电容器、颗粒尺寸效应、受主掺杂、压敏陶瓷、压磁铁氧体、软团聚体、铁磁体、红外陶瓷、颗粒尺寸效应、磁畴、正压电效应、剩余极化、导电陶瓷、迈斯纳效应、微波陶瓷、机电耦合系数、磁致伸缩、矩磁铁氧体、全辐射率. 二、问答题 1.表征压电陶瓷的关键参数有哪些,请解释每一个参数所表示的物理意义? ①介电常数:反映材料的介电性质、极化性质,ε=C d/A; ②介电损耗:在交流电压作用下,在单位时间内因发热而损耗的电能; ③弹性柔顺常数:任何物体在外力作用下,都要发生不同程度的弹性形变,弹性常数就 是反映材料弹性性质的参数,压电材料中最常用的弹性常数是弹性柔顺常数s,是应变S与应力T之比; ④机械品质因子Q m:压电陶瓷在振动时,为了克服内摩擦需要消耗能量,Q m是反映能 量消耗大小的一个参数。Q m越大,能量消耗越小。; ⑤压电常数d:反映力学量(应力T或应变S)与电学量(电位移D或电场E)间相互 耦合的线性响应系数,常用的压电常数为d33当沿压电陶瓷的极化方向(z轴)施加压应力T3时,在电极面上产生电荷,则有以下关系式:d33=D3/T3; ⑥机电耦合系数K:机电耦合系数K是一个综合反映压电陶瓷的机械能与电能之间耦合 关系的物理量,是压电材料进行机—电能量转换能力的反映。机电耦合系数的定义是:K2=通过正压电效应转换所得的电能/转换时输入的总机械能,或K2=通过逆压电效应转换所得的机械能/转换时输入的总电能; ⑦频率常数N:对某一压电振子,其谐振频率和振子振动方向长度的乘积为一个常数, 即频率常数。 2.表征多孔陶瓷的关键参数有哪些,请解释每一个参数所表示的物理意义,以及这些参数的测量方法? 3.什么是P T C R,影响它的因素有哪些? 4.怎样理解压电陶瓷的改性添加物中“软性”和“硬性”? 5.生物陶瓷是一类具有特殊生理行为要求的陶瓷材料,根据其在生物体内的功能要求,生物陶瓷材料分为那几类?生物陶瓷材料应满足那些生物学要求或条件? 6.根据基本性能和应用状况,铁氧体材料分为哪几类?并简单说明他们的性能特点和应用情况? 7.超导陶瓷有哪些电学和磁学性质?有哪些应用? 9.常见的绝缘陶瓷有哪些?请说明绝缘陶瓷的性能要求和应用? 10.请说明介电、铁电、压电陶瓷、热释电介质的关系? 半导体陶瓷半导化的途径和机理及影响因素? 11.请说明B a T i O 3

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

陶瓷材料的力学性能检测方法

陶瓷材料力学性能的检测方法 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My = σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P max max 21σ???? ?圆形截面 16矩形截面 332D Pa bh Pa π

其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P l max max 4σ???? ?圆形截面 8矩形截面 2332D Pl bh Pl π 式中l 为两个支点之间的距离(也称为试样的跨度)。 上述的应力计算公式仅适用于线弹性变形阶段。脆性材料一般塑性变形非常小,同弹性变形比较可以忽略不计,因此在断裂前都遵循上述公式。断裂载荷所对应的应力即为试样的弯曲强度。 需要注意的是,一般我们要求试样的长度和直径比约为10,并且在支点的外伸部分留足够的长度,否则可能影响测试精度。另外,弯曲试样下表面的光洁度对结果可能也会产生显著的影响。粗糙表面可能成为应力集中源而产生早期断裂。所以一般要求表面要进行磨抛处理。当采用矩形试样时,也必须注意试样的放置方向,避免使计算中b 、h 换位得到错误的结果。 2.断裂韧性 应力集中是导致材料脆性断裂的主要原因之一,而反映材料抵抗应力集中而发生断裂的指标是断裂韧性,用应力强度因子(K )表示。尖端呈张开型(I 型)的裂纹最危险,其应力强度因子用K I 表示,恰好使材料产生脆性断裂的K I 称为临界应力强度因子,用K IC 表示。金属材料的K IC 一般用带边裂纹的三点弯曲实验测定,但在陶瓷材料中由于试样中预制裂纹比较困难,因此人们通常用维氏硬度法来测量陶瓷材料的断裂韧性。 陶瓷等脆性材料在断裂前几乎不产生塑性变形,因此当外界的压力达到断裂应力时,就会产生裂纹。以维氏硬度压头压入这些材料时,在足够大的外力下,压痕的对角线的方向上就会产生裂纹,如图2-1所示。裂纹的扩展长度与材料的断裂韧性K IC 存在一定的关系,因此可以通过测量裂纹的长度来测定K IC 。其突出的优点在于快速、简单、可使用非常小的试样。如果以P C 作为可使压痕产生雷文的临界负荷,那么图中显示了不同负荷下的裂纹情况。 由于硬度法突出的优点,人们对它进行了大量的理论和实验研究。推导出了各种半经

陶瓷基复合材料论文 (1)

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种 纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的

材料工程基础复习思考题

《材料工程基础》复习思考题 第一章绪论 1、材料科学与材料工程研究的对象有何异同? 2、为什么材料是人类赖以生存和发展的物质基础? 3、为什么材料是科学技术进步的先导? 4、材料的制备技术或方法主要有哪些? 5、材料的加工技术主要包括哪些内容? 6、进行材料设计时应考虑哪些因素? 7、在材料选择和应用时,应考虑哪些因素? 8、简述金属、陶瓷和高分子材料的主要加工方法。 9、材料设计包括哪几个层次?进行材料设计时应遵循哪些原则? 10、如何区分传统材料与先进材料? 11、工业1.0、2.0、3.0和4.0分别以什么为特征? 12、钢铁材料是如何分类的?其主要发展趋势? 13、有色金属材料分为哪些类别?各有何特点? 14、化工材料主要有哪些? 15、建筑材料有何特点? 16、电子信息材料主要有哪些?其发展特点? 17、航空航天材料的性能特点如何? 18、先进陶瓷材料如何分类?各有何特点? 19、什么是复合材料?如何设计和制备复合材料?

20、新能源材料有哪些?各有何特点? 21、超导材料的三个临界参数是什么?如何区分低温超导与高温超导? 22、纳米材料与纳米技术的异同?它们对科技发展的作用? 22、生物医用材料有哪些?应具备什么特性? 23、什么是生态环境材料?如何对其生命周期进行评价?

1、铸造具有哪些优缺点?适用范围如何?发展方向? 2、金属的铸造性能主要包括哪些? 3、影响液态金属充型能力的因素有哪些?如何提高充型能力? 4、铸件的凝固方式有哪些?其主要的影响因素? 5、什么金属倾向于逐层凝固?如何改变铸件的凝固形式? 6、什么是缩松和缩孔?其形成的基本条件和原因是什么? 7、试分析铸造合金的收缩特性对铸件质量影响的基本规律。 8、铸造应力是怎么产生的?对铸件质量有何影响? 9、试述铸件产生变形和开裂的原因及其防止措施。 10、铸件中的气体和非金属夹杂物对铸件质量有何影响?如何消除? 11、常用的造型材料有哪些?对其性能有何要求? 12、什么是冒口?其作用和设计原则? 13、常见的特种铸造方法有哪些?各有何特点? 14、陶瓷的液态成形方法有哪些?各有何特点? 15、聚合物的液态成形方法有哪些?各有何特点?

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

lv功能陶瓷材料论文

功能陶瓷材料研究论文 苏州科技学院 化学生物与材料工程学院 材料学专业 题目:锰锌铁氧体材料的性能研究与制备 姓名:吕岩 学号: 1411093004 指导老师:钱君超

锰锌铁氧体材料的性能研究与制备 摘要:铁氧体材料是当今一种重要的磁性材料。二十世纪三十年代以来,由于该种材料固有的特性,人们对这种材料产生了浓厚的兴趣,并开展了广泛的研究。本文主要从锰锌铁氧体入手,介绍了高磁导率锰锌铁氧体的研究历史及其在信息产业发展过程中的意义和作用,同时从配方优化、烧结工艺、测试方法等方面综述了国内外的研究与发展现状。 关键词:锰锌铁氧体;高磁导率;配方;烧结工艺 Abstract:Ferrite materials is a very important magnetic materials at present.For the inherent characteristics of this materials,people had a strong interesting in it and extensive research carried out since the 1930s.This article is mainly about MnZn ferrite,introducing the background,the significance and current state of manufacturing high permeability MnZn ferrite was summed up and at the same time the investigation status about composition,sintering process and methods of analysis was reviewed. Key words:MnZn ferrite;high permeability;composition;sintering process

陶瓷材料复习题

1、分别以Al2O3、ZrO 2、Si3N4为例,从结合键的角度分析这上述陶材料的切削加工性。 2、分别根据鲍林第一、第二、第三规则,分析CsCl、NaCl、CaF2、TiO2晶体结构的稳定性。 3、分别分析纤锌矿结构(wurtzite型,ZnS型)、β-方石英结构的特点。 4、分析刚玉型结构的特点。 5、硅酸盐晶体结构有哪些特点 6、分析绿宝石Be3A12(Si6O18)结构的归类、结构特点,标出六节环结构。 7、分析透辉石的结构特点,标出链状结构。 8分析蒙脱石的结构特点,讨论其插层原理。 9根据XRD原理,解释晶态、非晶态XRD谱线的区别。 10根据TEM原理,分析非晶、晶态结构衍射花样差异的原因。 11非晶态材料有何结构特点可采用哪些方法进行表征论述其表征机理。 12 (1) 绘出典型非晶材料的示差扫描量热(DSC)曲线, 标出玻璃转变温度(Tg)、晶化温度(Tx)及过冷液态区(ΔTx)。(2) 阐述非晶材料在Tg,Tx温度点所发生的物理性质变化规律。(3) 非晶态材料在过冷液态区有哪些特殊性质,利用该性质可以作哪些应用,举例说明。 13 根据下图,选择适于制备耐火材料的成分,并据此成分,分析其冷却析晶过程。

14 根据上图,分析30% Al2O3含量组分的冷却析晶过程。 15 分析下图中,M1,M2,M3的冷却析晶过程。 16 根据下图: 1)分析图中不同成分熔体冷却时的析晶图。 2)为什么水泥烧成后总是采用急速冷却的办法

CS—CaO·SiO2(偏硅酸钙或硅灰石) C3S2—3CaO·2SiO2(二硅酸三钙) C2S—2CaO·SiO2(硅酸二钙) C3S—3CaO·SiO2(硅酸三钙) 17 分别分析以下系列相图中,M点的冷却析晶过程。

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

陶瓷基复合材料论文精编WORD版

陶瓷基复合材料论文精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种1.1纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 1.2颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 1.3晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 1.4金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 1.5片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 2.1界面的粘结形式 (1)机械结合(2)化学结合

陶瓷材料论文:电子陶瓷材料的发展现状与趋势

陶瓷材料论文:电子陶瓷材料的发展现状与趋势 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。 2.2 介电陶瓷 钛酸钡陶瓷由于具有高介电常数、良好的铁电、介电及绝缘性能,主要用于制备电容器、多层基片、各种传感器等。钛酸钡粉体的制备方法很多,其中液相合成法因具有高纯、超细、均匀等优点而倍受青睐。美国主要以草酸盐法和其它化学合成法为主[8~10];日本则主要采用350℃以下的水热法来合成[11];朱启安用氢氧化钡和偏钛酸为原料,制备了纯度高、粒径小的钛酸钡粉体,能满足电子工业对高质量钛酸钡粉体的需求。此外,以偏钛酸、氯化钡、碳

相关文档