文档库 最新最全的文档下载
当前位置:文档库 › 汽车变速箱噪声源识别及噪声控制

汽车变速箱噪声源识别及噪声控制

汽车变速箱噪声源识别及噪声控制
汽车变速箱噪声源识别及噪声控制

文章编号:1006-1355

(2006)03-0067-03

汽车变速箱噪声源识别及噪声控制

梁 杰1,王登峰1,姜永顺2,李冬妮2

(1.吉林大学测试科学实验中心,长春市130025;2.一汽集团公司技术中心,长春市130011)

摘 要:应用振动、噪声谱分析和相干函数分析技术,从理论上说明变速箱噪声源识别的依据。对一台重型卡

车的16档变速箱进行了振动噪声测试分析,找出该台变速箱产生强烈冲击噪声的主要原因在于其一轴弯曲,经过采取相应的降噪措施,最终整机噪声降低3dB (A )。

关键词:声学;变速箱;噪声源;噪声控制中图分类号:U46;TB535 文献标识码:A

TheNoiseSourceIdentificationandNoiseControlofAutomobileGearbox

LIANG Jie ,WANG Den g 2fen g ,JIANG

Yon g 2sun ,LI Don g 2ni

(1.JilinUniversit yTestCenter,Chan gchun130025,China;

2.FAWR&DCenter,Chan gchun130011,China )

Abstract:Thetheor yofcoherencefunctionands pectrumofvibrationandnoisesi gnalsisa pplied

in gearboxnoiseanal ysisinthe paper.Thebasisofnoisesourceidentificationof gearboxistheoretical 2lyintroduced.Vibrationandnoiseanal ysisforaheav ydut ytruckwitha162speed gearbox.Afterfind 2ingthecauseofstron gstrikenoiseofthe gearboxisthebendof1stshaft,noisesu ppressionmeasure 2mentisado pted,Sound pressurelevelofthemachineisreducedb y3dB (A ).

Ke ywords:acoustics;gearbox;noisesource;noisecontrol 收稿日期:2005207215

作者简介:梁杰(1965-),男,山东省肥城县人,博士,副教授,主要从事车辆振动与噪声的研究工作。

变速箱的变速、储能、增加扭矩等作用,使它成为动力机械中应用十分广泛的通用部件之一。它的工作是否正常涉及到整台机械或机组的工作性能。变速箱的噪声水平可以从客观上反映变速箱的工作状态,而成为其质量检测的指标之一。在设计变速箱时,就规定了其噪声标准。变速箱在工作中,内部构件,如齿轮、轴承等,不断产生振动冲击,当有故障存在时,其振动强度增大,噪声水平超标。本文根据所测变速箱的振动噪声谱,及其相关函数分析,找出了该变速箱产生冲击噪声的原因,采取了相应的降噪措施,使该机的振动和噪声都达到满意的效果。

1 振动、噪声测试及数据分析

1.1 试验装置与测量仪器

本试验是针对16挡变速器进行噪声测试和分

析,将16挡变速箱安装在半消声室内的弹性基础上,试验时,加速度传感器的安装参照国标GB8543-87《验收试验中齿轮装置机械振动的测定》中的相关规定,本文将传感器安装在Ⅱ轴轴承座孔处,以获得在径向水平、径向垂直和轴间三个方向的振动信号。噪声测点布置和测量工况参照国标GB6404《齿轮装置噪声声功率级测定方法》中相关规定。试验装置及噪声测点布置如图1所示

图1 试验装置及测点布置框图

振动噪声测试分析仪器用丹麦B&K 公司生产的B&K3560C 多功能振动噪声分析系统,它可以将振动、噪声信号同时记录下来,然后进行数据处理。所检测变速箱有16个变速档,模拟实际工况,我们测量其在各档下的振动、噪声信号。1.2 变速箱特征频率分析 特征频率也就是轴频、齿轮的啮合频率以及轴承的内外圈和滚动体的频率。它们和谐频、边频相结合,成为对故障判定的依据,表1列出轴和齿轮啮合的特征频率,其中在这里只对输入轴的最高转速2300r/min,最大扭矩工况的各档进行分析评定。1.3 振动、噪声谱及相干函数分析 分析对象为某型16挡(低速8挡、高速8挡)变速箱,设计噪声指标各档不超过92dB (A )。本文所

76

汽车变速箱噪声源识别及噪声控制

检测的变速箱噪声明显超标,各档总噪声级都超过95dB (A ),特别是高速倒档R2时,噪声达到100dB (A ),该机工作不正常。故需对在各挡下测得的振

动和噪声信号进行谱分析以及相干函数分析,寻找故障原因。

表1 轴频与齿轮的啮合频率(Hz)

 位12345678R 速比

低速

13.2989.366 6.396 4.423 3.006 2.117 1.446113.024高速11.122

7.834

5.35

3.699

2.514

1.771

1.209

0.836

10.893

1档2档3档4档5档6档7档8档9档10档11档12档13档14档15档16档R1

R2

轴转动

频率(Hz )轴138.338.338.338.338.338.338.338.338.338.338.338.338.338.338.338.338.338.3轴2

2833.928

33.9

28

33.9

28

33.9

28

33.928

33.9

28

33.9

28

33.9

28

33.9

啮合频率(Hz )

fz 1130314561303145613031456130314561303145613031456130314561303145613031456

fz 2510610

652778.9821.798213031456510

610

652778.9821.798213031456481.7575.7

fz 3

331

396470.6560

689823.7997

997

图2 变速箱1档振动噪声频谱图

本文以1挡的振动、噪声谱和相干函数分析为例,将实验测得的变速箱振动、噪声信号在B&K3560C 上进行数据处理,得到测试点振动频谱图(本文以径向垂直振动谱说明)图2b 、噪声信号的频谱图(本文以变速箱左侧点3数据说明)图2a 和相干函数图图2c 。图2b 中,纵坐标为加速度线性坐标,单位为m/s 2,为了使谱图看得比较清楚,各图横坐标都采用1/3倍频程坐标。由于理论上的电机转速与实际值总有差别,以及其它不可避免的测试和计算误差,使得谱图上的特征频率与相应的理论值并不能精确吻合。在图2b 所示的振动频谱图上,轴频及Z46/34啮合频率分别为34Hz (理论值为38.3Hz )和1.312KHz (理论值为1.303KHz )。从图2a 所示噪声谱图中看到,中高频噪声能量较强,尤以1.286KHz 及其边频处的幅值最为突出,声压级达87dB (A ),在频谱成分中声级最高。说明其齿轮啮合基频1.286KHz 频率分量在总噪声中贡献较大,为主要噪声源,其原因需结合声源(变速箱)具体结构特点进行分析。

由图2c 所示振动噪声之间所做的相干函数表明,在1.286KHz 处相干系数为0.594,噪声中的这个主要成分是由Z46/34这对齿轮的啮合引起的,而这对啮合齿轮引发强烈噪声的原因,可以通过对振动频谱图的分析得到。实际上从1档到16档的噪声、振动、相干谱图上可以看出,各挡频谱变化趋势基本一样,声压级在97dB (A )左右,而且基频都与Ⅰ轴的啮合齿轮有关,表明主要噪声源与该轴有关,也就是Ⅰ轴上齿轮副的啮合频率噪声为主要噪声源,只要将与Ⅰ轴有关的主要频率噪声降下来,变速箱噪声就得以改善。可断言Ⅰ轴的不对中或第1副齿轮出现损伤可引起上述故障。

谱图上轴承的特征频率并不突出,说明轴承的振动对噪声贡献不大,亦即故障并不来自轴承。本

文检测后经有关人员对测试对象开箱检验,发现Ⅰ轴弯曲,导致齿轮装配公差严重超差,至此产生很大的冲击噪声。需采取相应降噪措施才能改善变速箱噪声水平。

2 振动噪声的控制措施

2.1 提高加工、装配精度

齿轮的齿形、齿面精确加工精心装配,减小齿面缺陷可以大大减小齿轮啮合时的振动冲击。本文对Ⅰ轴进行重新精确加工,对各齿轮副精心加工精心

2006年6月 噪 声 与 振 动 控 制 第3期

装配和调整调试后,再进行噪声检定,结果消除了原先严重的冲击噪声,振动噪声谱较平滑,使整机噪声降低3dBA,工作噪声和振动得到很好的改善,变速箱改进前后的降噪效果如图3所示

图3 变速箱改进前后各档位降噪效果图

2.2 采用隔振及阻尼减振装置

对振动和噪声的控制除了在设计与制造时优化

齿轮结构参数,如齿形、重合系数、压力角等外,还可以在齿轮轮体以及支承系统采用隔振措施,如在齿轮端面附加一个阻尼环或镶嵌高阻尼材料,以便吸收齿轮的啮合振动能量,以减少齿轮辐射声。与此同时,可以齿轮轴系端部及轴承部位安装适当的减

振装置,如套在轴头部位的阻尼减振套(垫)。若采用高阻尼铝合金的齿轮箱总振动级比普通铝合金箱体下降3~4dB 。

3 结语

本文以噪声作为故障症状,通过相干函数分析确定相关的振动信号,从而由振动信号的频谱特征找出主要噪声源,进一步采取一些降噪措施,问题得以解决,总噪声级降低了3dBA 。振动和噪声的谱分析作为一种传统的分析手段,基于相干理论的针对性实验研究,对于变速箱噪声源识别是一种便捷和行之有效的方法。

变速箱的振动噪声主要来源于齿轮的缺陷、磨损以及安装、偏差、加工误差等,因此提高加工、安装精度,选用适当齿形可降低噪声。参考文献:

[1] 北春夫.齿车装置の骚音と振动[J].骚音制御,1993,

117(1).[2] 史密斯JD 著,吴佩江译.齿轮振动与噪声[M].北京:

中国计量出版社,1989.[3] 何韫如,等.齿轮与齿轮箱振动噪声机理分析及控制

[J].振动、测试与诊断,1998,18(3):221-226.[4] 何青.用振动信号分析诊断齿轮齿根疲劳裂纹[J].机

械工程学报,1989,25(4):68-74.

(上接第43页)二者的差异,用不同颜色的彩色图可

以看出一些细微差别。 根据拟合函数识别的移动荷载如图3所示。 采用三阶多项式,分段取最小长度4拟合曲线与实测曲线重合的也非常好。

拟合长度取为200(时间长度0.1s )以上时,采用多项式拟合的曲线除滤掉了原曲线上的毛刺外,其它部分包括小的波动吻合的很好,采用有理分式拟合时,原曲线上的小毛刺仍然能部分保留。

5 结语

将移动荷载引起的梁的振动响应分为很多段,

以某种函数对其第一段进行拟合,并以同样的函数对其各段进行向后滑动拟合。分段长度较小时,有理分式函数和多项式函数都能很好的拟合梁振动响应曲线。分段长度较大时有理分式拟合效果优于多项式。有理分式的系数识别方程是非线性方程,多

项式系数识别方程为线性方程,因此多项式函数拟合计算速度较快。在分段点处,由于数据覆盖,两段拟合函数采用的拟合数据是一样的,拟合曲线保持了原始曲线的连续特性。模型实验表明滑动拟合方法可以较精确地拟合梁振动响应曲线,根据拟合结果识别梁上移动荷载的效果也较好。参考文献:

[1] 余岭,ChanTHT.

桥梁时变移动车载的间接识别[J].

振动工程学报,2005,(1):99-102.

[2] 黄林.桥上移动荷载识别[D].学位论文,四川:西南交

通大学土木工程学院,1998.

[3] 袁向荣,卜建清,满洪高,高勇利.移动荷载识别的函数

逼近法[J].振动与冲击,2000,(1):58-60.

[4] 黄林,袁向荣.小波分析在桥上移动荷载识别中的应用

[J].铁道学报,2003,(4):97-101.

[5] 陈锋.移动荷载识别的样条函数逼近法研究[D].学位

论文,石家庄:石家庄铁道学院土木工程分院,2003.

96

汽车变速箱噪声源识别及噪声控制

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

噪声测量噪声源识别与定位的方法简析

噪声测量:噪声源识别与定位的方法简析噪声测量的一项重要内容就是估计和寻找产生噪声的声源。 确定噪声源位置是实施控制噪声措施的先决条件。从声源上控制噪声可以大大减轻噪声治理的工作量,而且对促进生产低噪声产品研制,提高产品质量和寿命有直接效果,同时噪声源识别技术是声学测量技术的综合运用,具有很强的技术性。因此,噪声源识别有很大的现实意义。 噪声源识别的本质在于正确地判断作为主要噪声源的具体发声零部件,主要辐射部分。有时还要求对噪声源的特点及其变化规律有所了解。噪声源识别的要求有以下两个主要方面: ?确定噪声源的特性,包括声源类别,频率特性,变化规律和传播通道等。在复杂的机械中,用一种测量方法要明确区分声源的主次及其特性实际上往往是比较困难的。因此经常需要综合应用多种测量方法和信号处理技术,以便最终达到明确识别的目的。 ?确定噪声产生的部位、主要的发声部件等以及各噪声源在总声级中的比重。对多声源噪声,控制噪声的主要方法之一是找到

发声部件中占噪声总声级中比重最大的声源噪声,采取措施进行降噪,可达到事半功倍的效果。 噪声源识别方法很多,从复杂程度、精度高低以及费用大小等方面均有不少的差别,实际使用时可根据研究对象的具体要求,结合人力物力的可能条件综合考虑后予以确定。具体说来,噪声源识别方法大体上可分为二类: ?第一类是常规的声学测量与分析方法,包括分别运行法、分别覆盖法、近场测量法、表面速度测量法等。 ?第二类是声信号处理方法,它是基于近代信号分析理论而发展起来的,象声强法、表面强度法、谱分析、倒频谱分析、互相关与互谱分析、相干分析等都属于这一类方法。 在不同研究阶段可以根据声源的复杂程度与研究工作的要求,选用不同的识别方法或将几种方法配合使用。 声学测量法 人的听觉系统具有比最复杂的噪声测量系统更精确的区分不同声音的能力,经过长期实践锻炼的人,有可能主观判断噪声声

噪声源测量方法

噪声源测量方法 发布时间:2014-02-11 来源于:互联网 噪声源测量是一种多用途测量方法,这种方法能测量与次临界中子增殖因子相关的量。 噪声源测量 (1)主要是测量噪声源的辐射功率和指向性。测量方法有混响室法、消声室(或半消声室)法和比较法等。 混响室法只能测量噪声源的辐射声功率。将被测的噪声源放在混响室(见声学实验室)中,当噪声源辐射声功率W随时间的改变量不大时,即 在混响室的混响场中声压的均方根的平方: (2) 或声源辐射的声功率级(分贝): (3) 式中ρ为室内空气密度;c为室内声速;V为混响室的体积;A=S峞,S为混响室总面积;峞为平均吸声系数;岧p为混响场中的平均声压级。ρc值取温度为15℃时空气中的值为415。 在混响室的混响场中取n个点,在这些点上测声压级,取其平均值岧p代入(3)式。混响室的平均吸声系数可由混响时间的测量得到。 在实际测量时,声源应放在离开墙壁λ/4的距离以外,测点之间的距离不小于λ/2,各测点与墙壁之间的距离应大于λ/2。λ是相应于测量的频率的波长。 消声室法(或半消声室法)在消声室内,可以同时测量噪声源的辐射声功率和指向性。在自由场内,声强(I)与声压p之间的关系为: (4) 将被测的噪声源放在消声室内,以它为中心,作一球面,将球面等分为n个面元,在每个面元的中心测量声压级Lpj,取这些测量值的平均值岧p,按声强与声功率之间的关系计算声功率级LW: (5) 式中r为测量球面的半径,ρc值取温度为15℃时空气中的值。再按 (6) 计算指向性指数DI。θ和φ是以球心为中心的方位角。 在半消声室中的测量与在消声室中的测量相似。将被测的噪声源尽可能按实际的安装放置在半消声室的地面上,以声源为中心在自由场内作半球面,将半球面分成n个相等面元,在每个面元中心测声压级Lpj,取它们的平均值岧p,按下式计算辐射声功率级: (7) 及按(6)式计算指向性指数。 比较法是一种工程方法。对测量环境除要求安静、不影响声压级测量数据以及有一个用以比较的标准声源以外,没有其他要求。比较法可以在安装机器(设备)的现场,或在其他环境进行。测量时,以机器或设备为中心,在地面上作一半球面,将它分成n个相等的面元,在每个面元的中心测量一个声压级,计算其平均声压级岧p。机器或设备如能移开,将

车辆噪声源识别方法综述

文章编号:1006-1355(2012)05-0011-05 车辆噪声源识别方法综述 胡伊贤,李舜酩,张袁元,孟浩东 (南京航空航天大学能源与动力学院,南京210016) 摘要:在车辆产业中,噪声问题越来越突出,噪声源识别方法是车辆噪声控制的重要前提。近年来,车辆噪声源识别的方法得到快速发展,但仍需不断改进和完善。本文对车辆噪声源识别方法进行总结,将车辆噪声源识别方法分为传统方法、基于信号处理方法和基于声阵列技术方法三类,并描述和分析各种识别方法的特点。最后总结全文,展望未来车辆噪声源识别方法。 关键词:声学;车辆;噪声控制;综述;噪声源识别方法 中图分类号:V231.92文献标识码:A DOI编码:10.3969/j.issn.1006-1335.2012.05.003 Reviews of Vehicle Noise Source Identification Methods HU Yi-xian,LI Shun-ming,ZHANG Yuan-yuan,MENG Hao-dong (College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing210016,China) Abstract:In the vehicle industry,noise issues have become more evident.Vehicle noise source identification is an important prerequisite for noise control.In recent years,new methods of vehicle noise source identification have been developed,but it is necessary still for them to improve and optimize.The different methods for identifying noise sources are reviewed in this paper.All methods are divided into three categories,i.e.the traditional analysis method,the method based on signal processing,and method based on acoustic array technology.The features of various identification method are described and compared.Finally,some prospects of noise source identification method are given. Key words:acoustics;vehicle;noise control;review;noise source identification method 车辆噪声源识别是指在有许多噪声源或包含许多振动发声部件的复杂声源情况下,为了确定各个声源或振动部件的声辐射的性能,区分噪声源,并加以分等而进行的测量与分析。车辆的噪声主要分为发动机噪声、进排气噪声、传动噪声、轮胎噪声以及其他机械噪声[1,2]。 车辆噪声产生机理不同,针对不同噪声源有不同的识别方法[3]。本文将车辆噪声源识别方法分为三类:一类是传统噪声源识别方法,包括主观识别法、铅覆盖法、分部运行法、表面振速法和近场声压 收稿日期:2011-11-23;修改日期:2012-01-21 项目基金:江苏省普通高校研究生科研创新计划资助(基金编号:CX10B_094Z) 作者简介:胡伊贤(1986-),男,江苏,江苏宿迁泗阳县人,硕士,目前从事车辆噪声与振动控制研究。 E-mail:nuaayixian@https://www.wendangku.net/doc/7d11499549.html, 测试法等。这些方法可以简单的对车辆噪声源进行识别。第二类是以信号处理为基础的噪声源识别方法,典型的有时域平均法、相关分析法、相干分析法、倒谱分析法、阶次分析法、小波分析法以及盲源分离法等。其中时域平均与相关分析是描述幅值随时间变化的时域分析方法。相干分析、倒谱分析在频域内对噪声信号进行分析,主要针对平稳噪声信号;阶次分析、小波分析、盲源分离识别方法在时频域内对信号进行分析,一般用于非平稳噪声信号。第三类是以声阵列技术为基础的噪声源识别方法,主要包括声强测试、波束成形以及声全息测试技术,它们主要特征是以全息面来直观全面反映各声源对整车噪声贡献的大小。本文在对各种声源识别方法总结基础上,分析声源识别方法的使用特点、优点与不足,对车辆噪声源识别方法进行总结与展望。

汽车噪声的控制措施及控制技术

汽车噪音的控制措施及控制技术 随着汽车工业的发展,汽车给世界带来了现代物质文明,但同时也带来了环境噪声污染等社会问题。至此汽车噪声控制日益引起人们的关注,尤其近几年来,作为汽车乘坐舒适性的重要指标,汽车噪声也会在很大程度上反映出生产厂家的设计水平及工艺水平,噪声水平成为衡量汽车质量的重要标志之一,因此控制汽车噪声到最低水平也是追求的方向.汽车噪声通过声辐射的方式传到车外、车内,为了达到国家规定的噪声标准,需要控制车辆外部噪声;随着现代汽车对乘坐的舒适性和行使安全性的要求越来越高,需要降低车辆内部的噪声。车内噪声过大会影响汽车的舒适性、语言清晰度,甚至影响驾驶员和乘客的心理、生理健康,如果驾驶员长期处于噪声环境中容易引起疲劳造成交通事故和生命危险;车外噪声过大会影响路人的身心健康。因此只有掌握车辆噪声产生机理采取对症下药就显得非常必要了。 1.噪声的产生机理 车辆噪声主要是发动机噪声,按其产生的机理可以分为结构振动噪声和空气动力噪声。 1.1空气动力噪声 凡是由于气体扰动以及气体和其他物体相互作用而产生的噪声称为空气动力噪声,它包括进气噪声、排气噪声、风扇噪声。进气噪声的主要成分通常包括:周期性压力脉动噪声、涡流噪声、气缸的亥姆霍兹共振噪声和进气管的气柱共振噪声;排气噪声是

汽车及其发动机中能量最大的最主要的噪声源,它的噪声往往比发动机整机噪声高10~15dB(A),因此降低排气噪声是主要的;风扇噪声在空气动力噪声中,一般小于进、排气噪声,特别是近几年来,一些车辆装设车内空调系统及排气净化装置等原因,使发动机罩内温度上升,风扇负荷加大,噪声变得更加严重。 1.2结构振动噪声 发动机的每一个零件在激振力的作用下发生振动而辐射的噪声,根据激振力的不同可以分为燃烧噪声、机械噪声、液体动力噪声三类。燃烧噪声是指气缸燃烧压力通过活塞、连杆、曲轴、缸体等途径向外辐射产生的噪声;机械噪声是发动机的零部件作往复的运动和旋转运动产生的周期力、冲击力和撞击力对发动机结构激振产生的噪声;液体动力噪声是发动机中液体流动产生的力对发动机结构激振产生的噪声。此外,由于机械撞击、摩擦和机械载荷的作用,车内装备的运动部件也会产生振动和车内噪声。 综上所述,噪声源是由多方面引起的,它与车身结构的固有频率、振型、阻尼等模态参数有着密切的关系。 2.噪声的控制措施 在汽车发动机中,柴油机的燃烧噪声在总噪声中占有很大比例。目前所研究的降噪措施主要有: (1)采用隔热活塞以提高燃烧室壁温度,缩短滞燃期,降低空间雾化燃油系统的直喷式柴油机的燃烧噪声。如尼莫尼克镍基合

车用发动机设备噪声形成原因及控制措施(新编版)

车用发动机设备噪声形成原因及控制措施(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0038

车用发动机设备噪声形成原因及控制措施 (新编版) 1.噪声的主要危害 噪声污染不仅对人们的自我感觉和工作能力产生消极的影响,而且能导致健康严重失调、疲劳、早期失聪、高血压、神经疾病等。 2.车用发动机噪声的形成与对策 发动机噪声主要包括燃烧噪声、机械噪声、进排气噪声、冷却风扇及其他部件发出的噪声。燃烧噪声是在可燃混合气体燃烧时,因气缸内气体压力急剧上升冲击发动机各部件,使之振动而产生的噪声。柴油中的十六烷值不合适或喷油时间过于提前,会引起发动机工作粗暴,使噪声急剧增大。汽油机由于过热、汽油品质不良和点火提前角过大等原因造成高频爆炸声、敲缸。 发动机内部的燃烧过程和结构振动所产生的噪声,是通过发动

机外表面以及与发动机外表面刚性连接结构的振动向大气辐射的,因此称为发动机表面噪声。根据发动机表面噪声产生的机理,又可分为燃烧噪声和机械噪声。燃烧噪声主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关;机械噪声是发动机工作时各运动件之间及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般来说,低转速时,燃烧噪声占主导地位,高转速时,机械噪声占主导地位。 降低燃烧噪声,需改善燃烧条件,提高燃烧质量,以达到圆滑的压力波形。采用合理布置火花塞和气门以及采用合适的燃烧室型式和冷却方式即可以达到最有效的燃烧。在燃油方面,汽油的辛烷值越高,点火质量及抗爆振性能越好;对柴油机来说,要选择合适的十六烷值的柴油,如果达不到,可加入点火加速剂,提高点火质量,这样可有效地防治因燃油燃烧引起的噪声。 机械噪声包括活塞敲击声、气门机构冲击声、正时齿轮运转声等。减小活塞敲击声,可采取减小活塞与缸壁之间的间隙和使活塞

汽车噪声声音品质主观评价及控制

汽车噪声声音品质主观评价及控制 第一章绪论 1.1 论文研究的背景 随着现代社会的发展以及对高质量生活的不断追求,人们对车辆乘坐的舒适性要求越来越高。车内噪声不仅降低了乘坐的舒适性,还增加了驾驶员的疲劳感,容易使人烦躁,甚至危及行车安全。除此之外,也影响到人们对汽车质量的评价,进一步影响到汽车的销售。因此,如何控制和改善车内噪声就显得尤为重要。 传统的噪声控制,只强调噪声量级的大小,认为噪声级越低越好。为了得到舒适的车内环境,以前主要采取降低车内噪声的声压级的办法。随着研究的不断深入,我们发现传统的声压级不足以描述汽车噪声的全部特征,单纯地降低声压级并不能改善汽车乘坐的舒适性。近年来人们提出了声品质(Sound Quality):声品质是在特定的技术目标或任务内涵中声音的适宜性。汽车声品质就是在满足人和环境的要求下,寻求符合汽车特性的产品声音。声品质的研究实际上提出了现代噪声控制的理念,即噪声控制不仅仅是消极被动地降低噪声的声压级,而是能够根据顾客的

主观评价,通过合理有效的措施,使特定产品的噪声听上去不仅仅安静,而且尽可能的悦耳,甚至调节噪声至理想状态,并使不同的产品有各自独特的声音特性。除了频率及强度两大因素外,声品质的研究更强调心理声学及非声学因素等的直接影响。 1.2 汽车NVH 研究汽车噪声就要谈到NVH技术,汽车NVH是指汽车的Noise(噪声)、Vibration(振动)和Harshness(舒适性),主要是研究汽车噪声振动对整车性能及舒适性的影响。 Noise(噪声)是指引起人烦躁而危害人体健康的声音。汽车噪声不但增加驾驶员和乘员的疲劳从而影响汽车的行驶安全,而且对环境造成噪声污染。噪声常用声压级评价,其频率范围在20Hz-20kHz。汽车噪声主要包括结构噪声(车身壁板振动产生的噪声)、辐射噪声(如发动机、排气系统、制动器等辐射的噪声)、空气动力噪声(风噪、空气摩擦车身形成的噪声)等。 Vibration(振动)描述的是系统状态的参量(如位移)在其基准值上下交替变化的过程。汽车低频振动危害驾驶员和乘员的身体健康,同时不良的振动会给汽车零部件带来损坏,影响零部件的寿命。振动是噪声产生的原因,因此,振动和噪声的研究是密不可分的。

内燃机噪声标准总结

目录 1. 背景说明 (2) 2. 目的 (2) 3 内燃机噪声标准 (2) 3.1 中国内燃机噪声测量方法标准 (2) 3.2 中国内燃机噪声限值标准 (4) 4 总结 (6)

1. 背景说明 随着交通运输业的发展,噪声问题日益严重,已成为危害人类身心健康的主要公害之一。汽车所产生的噪声是城市交通的主要噪声源,国外工业发达国家自上世纪60年代末和70年代初就已经以法规和标准的形式来控制车辆的噪声: ?欧共体自1969年制定噪声法规以来已经修改4次,限值变化在8~12dB; ?日本从1971年制定噪声法规以来已经修改了10次,限值变化在8~10dB; ?美国自1970年制定噪声法规以来已经修改4次; 中国在1979年制定噪声法规,2002年出台新标准。 发动机的噪声是汽车噪声的主要成分之一,对车辆噪声的贡献很大,已引起国家和行业主管部门的高度视。 2. 目的 整理、对比国内有关内燃机的噪声标准,了解噪声法规的发展演变,学习现行法规的内容,为以后利用标准指导CAE分析工作打好基础。 3 内燃机噪声标准 3.1 中国内燃机噪声测量方法标准 我国从1980年开始实施GB1859-1980《内燃机噪声测定方法》标准,此后国家相关部门相继修订出台了多部相关标准,推动噪声测量方法标准逐步与国际接轨。表1列出了我国内燃机噪声测量方法标准的演变历程。 从表1可见我国内燃机噪声测量标准对测量方法的规定越来越严格,对修正系数影响因素考虑的也越来越全面。 最新实行的标准GB/T1859-2000等同采用了ISO6789:1995《往复式内燃机辐射的空气噪声量》,是GB8194-1987和GB1859-1989两项标准的综合。此标准对声学环境和测量不确定度进行进行修正和规定,见表2和表3。

阵列信号识别声源相关总结_1002

阵列信号识别声源相关总结

1 阵列信号识别声源的方法归类 噪声源的识别方法可大致分为3类:传统的噪声源识别方法,如选择运行法、铅覆盖法及数值分析方法等,传统方法虽然陈旧、使用效率低,但目前仍有许多企业在应用。例如,为了测量汽车高速行驶时的车内噪声,需要将车门缝隙用铅皮封住;第二类,利用现代信号处理技术进行噪声源识别,如声强法、相干分析、偏相干分析适合与很多场合,能解决许多一般问题。如评价某些噪声源、某些频谱对场点(模拟人头耳朵处),这时采用相干分析就可以解决。第三类,利用现代图像识别技术进行振动噪声源识别,其分为两种,一种是近场声全息方法(NAH),一种是波束形成方法(Beamforming)。 相比于传统识别和现代信号处理方法,声阵列技术具有测试操作简单、识别效率高,以及可对声源进行量化分析并对声场进行预测等优点。 1.1 声全息方法 近场声全息技术经过很长时间的发展已经日趋成熟,广泛应用于近距离测量和对中低频噪声源的识别。 声全息方法,其基本原理是首先在采样面上记录包括声波振幅和相位信息的全息数据,然后利用声全息重建公式推算出重建面上的声场分布。该方法一方面可以获得车外声场分布的三维信息,另一方面可以进行运动车辆车外噪声源识别的研究,而且还具有在进行噪声测试时,抗外界干扰强的特点。按声场测量的原理可分为常规声全息、近场声全息和远场声全息三种。 常规声全息,全息数据是在被测物体的辐射或散射场的菲涅尔区和弗朗和费区(即全息接收面与物体的距离d远大于波长λ的条件下)采用光学照相或数字记录设备记录的,因为受到自身实用条件的限制,根据全息测量面重建的图像受制于声波的波长。它只能记录空间波数小于等于2π/λ的传播波成分,而且其全息测量面只能正对从声源出来的一个小立体角。因此,当声源辐射场具有方向性时,可能丢失声源的重要信息。并且通过声压记录得到的全息图,只能用于重建声压场,而不能得到振速、声强等物理量。 远场声全息NAH(Near-field Acoustical Holography),其特点是全息记录平面与全息重建平面的距离d远远大于声波的波长λ,即其全息数据是在被测声源产生声场的辐射或散射声场的菲涅尔区和弗朗和费区获得的。这种方法通过测量离声源很远的声压场来重建表面声压及振速场,由此可预报辐射源外任意一点的声压场、振速场、声强矢量场。由于进行全息数据记录的表面距离被测声源面较远,而全息记录的表面的面积是有限的。所以声源发出的声波有很大一部分不

(汽车行业)汽车发动机振动噪声测试系统

(汽车行业)汽车发动机振动噪声测试系统

附件1 汽车发动机振动噪声测试系统 用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 设备技术要求及参数 设备系统配置 数据采集系统壹套; 数据测试分析软件壹套; 传声器2个; 加速度计2个; 声强探头1套; 声级校准器1个; 笔记本电脑壹台 数据采集、控制系统技术要求 主机箱壹个;供电采用9~36V直流和200~240V交流; 便携式采集前端,适用于实验室及现场环境; 整机消耗功率<150W; 工作环境温度:-10?C~50?C; 中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 输入通道数:4个之上,其中2个200V极化电压输入通道、不少壹个转速输入通道; 输入通道拥有Dyn-X技术,动态范围160dB; 每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 系统留有扩充板插槽,根据需要能够进壹步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 采集前端的数据传输具备二种方式之壹:①通过10/100M自适应以太网传输至PC;②通过无线通讯以太网技术传输至PC,通信距离在100米之上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级; 多分析功能:对同壹信号可同时进行FFT和CPB分析和显示处理;对同壹信号也可同时设置不同的分析带宽进行分析; 输入通道采用至少24位的A/D; 自动检测带传感器电子数据表的传感器(即插即用) 数据测试分析软件系统技术要求 多通道输入测量信号且行采集、处理和存储;根据需要能够进壹步扩充; 多通道实时在线显示; 能测量传递函数、自功率谱、互功率谱、自相关函数、互相关函数、能测量相干函数、概率密度函数、脉冲相应函数、倒频谱、时域波形,能进行动态信号的微积分、四则运算、编辑等;系统具有自动报告生成功能。测试报告模板可根据用户需求定制,用户可从Word中自动得到实时更新的测量曲线和数据等; 函数可用各种图形类型显示,包括:瀑布图、彩色等高线图、条状图、线状图、曲线图、阶

发动机台架振动噪声试验规范

发动机台架 振动噪声 试验规范 湖南大学 先进动力总成技术研究中心

1.适用范围 本标准适用于缸径100mm以内,功率在150kW以内的往复活塞式发动机。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 2.1 GB/T 1859-2000 往复式内燃机辐射空气噪声测量工程法及简易法。 2.2 GB/T 6072.1-2000 往复式内燃机性能第1部分:标准基准状况,功率、燃油消耗和机油消耗的标定及试验方法。 2.3 GB/T 6072.3-2008 往复式内燃机性能第3部分:试验测量。 3.试验目的 在发动机消声室试验台架上进行发动机振动噪声测试,评价发动机振动噪声水平。 4.测试设备 4.1传声器应该符合GB/T3785规定的1级仪器要求,其测量装置必须至少覆盖 20Hz~20000Hz的频率范围。 4.2加速度传感器应该符合GB/T3785规定的1级仪器要求,其测量仪器频率范围至少为10Hz~2000Hz,并应包括发动机最低稳定转速到lO倍最高转速的激励频率。 4.3 传声器、加速度传感器在测量前必须进行标定。 4.4测量前后,仪器应该按照规定进行校准,两次校准值不应超过1dB。 4.5 发动机转速的测试仪器的准确度应优于1%。 5.安装条件和运转工况 5.1发动机工作条件 测试前确保发动机为工作正常且油位、水位正常。 在测量过程中,发动机的所有运行条件,应该符合制造厂家的规定。测量开始前,发动机应该稳定在正常工作温度范围内。 5.2 发动机状态

近场声全息方法识别噪声源的实验研究

近场声全息方法识别噪声源的实验研究Ξ 于 飞 陈 剑 李卫兵 陈心昭 (合肥工业大学机械与汽车工程学院 合肥,230009) 摘 要 根据近场声全息(NA H)的原理,建立了全息实验所需要的采集、分析系统。针对影响重建精度较大的截止波数的选取问题,给出了较为详细的讨论,并提出一种不需先验知识的截止波数选取方法。最后通过对实测数据进行全息变换,重建结果表明:在采用提出的截止滤波选取方法后,NA H技术可以精确地对噪声源进行定位与识别,并且可以得到三维空间内的声压、质点振速和声强矢量等声学信息。 关键词:声源识别;近场声全息;实验研究;截止波数 中图分类号:TB532;TB533+.2 进行空间声场的可视化和噪声源的识别与定 位,对于噪声测量和控制工程具有非常重要的意义。上世纪80年代初提出的近场声全息技术(NA H),便是可视化空间声场和定位噪声源的一种强有力工具。近场声全息可以由一个测量面的声压标量数据,反演和预测另一面上的声压、质点振速、矢量声强等重要声场参量,受到了各国研究人员及一些相关公司的重视。近场声全息技术真正地将丰富的声学理论同噪声测量、控制工程紧密地结合起来[1~2]。20世纪80年代末,国内一些学者逐渐对此方法进行了研究:中科院武汉物理所对编磬表面振动模态做了研究[3~4];哈尔滨工程大学对基于边界元法的水下近场声全息也做了研究[5];清华大学汽车工程系对非近场声全息确定噪声源进行了研究[6~7];合肥工业大学机械工程学院对近场声全息方法识别噪声源作了一定的研究[8~9]。 近场声全息可以不受波长分辨率限制重建声场,但在此种全息过程中截止波数的选取对重建分辨率的影响非常大。文献[3]提出一种需要测量先验知识的优化滤波方法,而这种先验知识一般是不易获得的。本文根据截止波数的大小对重建结果的影响趋势,提出一种不需要先验和后验知识的截止波数选取方法。并根据近场声全息的原理,建立了全息实验所需要的采集、分析系统。采用提出的滤波参数选取方法后,对数据进行全息变换,得到了令人满意的重建结果。该优化截止波数选取方法的提出,有助于在实际工程中推进近场声全息技术在高分辨率识别噪声源、可视化声场等方面的应用。1 理论背景 由文献[1,8]可知,在稳态的三维空间声场中,一个平面(全息面)上声压的波数谱与另一个更靠近声源的平行面(声源面或重建面)上声压和质点法向振速的波数谱之间的关系为 P(k x,k y,z S)=P(k x,k y,z H)e-i k z(z H-z S)(1) V(k x,k y,z S)=k z P(k x,k y,z H)e-i k z(z H-z S) Θ0ck(2)式中 z H和z S分别为全息面和重建面的z坐标;k 为声波数;k x和k y分别为对应坐标x和y的波数;而k z与波数k x,k y之间的关系为 当k2x+k2y≤k2时 k z=k2-(k2x+k2y)(3)当k2x+k2y>k2时 k z=i(k2x+k2y)-k2(4) k z取值为式(3)时,对应的声波传播方式是以幅值不变、相位改变的传播波方式传播;当取值为式(4)时,对应的声波传播方式是以相位不变、幅值减小的倏逝波方式传播。倏逝波随全息面与重建面之间距离的增加,成指数倍地迅速衰减,对应的是高波数成分的声波。在非近场的声全息中,由于测量点位置与声源面之间距离过大造成倏逝波信息的丢失或被测量噪声所掩盖,全息重建的结果也就失去高频信息,这种高频信息类似于小波变换处理图像中的细节信息。 近场声全息技术除了能够由全息声压数据重建源面上的声压和法向振速之外,由Eu ler公式还能 第17卷第4期2004年12月 振 动 工 程 学 报 Jou rnal of V ib rati on Engineering V o l.17N o.4 D ec.2004 Ξ国家自然科学基金资助项目(编号:50275044)及高等学校博士点科研基金资助项目(编号:20020359005)收稿日期:2004203203;修改稿收到日期:2004205231

发动机辐射噪声分析

(研究生课程论文) 振动与噪声控制 论文题目:基于LMS https://www.wendangku.net/doc/7d11499549.html,b边界元法 发动机辐射噪声分析 指导老师: 学院班级: 学生姓名: 学号: 2015年 5月

基于LMS https://www.wendangku.net/doc/7d11499549.html,b边界元法发动机辐射噪声分析 摘要:在国家经济保持快速增长的背景下,国内汽车工业发展迅速。随着汽车保有量增加,汽车噪声污染问题越来越受到人们的重视。发动机的运行噪声是车辆产生环境噪声的主要因素,对其辐射噪声的数值分析能够为控制噪声提供良好的理论参考。本文主要介绍了外声场分析的边界元法的基本理论,利用LMS https://www.wendangku.net/doc/7d11499549.html,b声学模块计算了发动机辐射外声场及其频率响应,为之后的研究学习提供参考依据。 关键词:边界元法,辐射噪声,声固耦合 1 引言 在现代汽车设计过程中,CAE分析起到越来越重要的作用,在汽车设计初期即可快速的取得结果,从而取代后期大量的试验,使得汽车设计周期大大缩短,降低研发成本。而作为汽车性能重要指标的NVH(Noise Vibration and Harshness)在现代汽车市场中越来越受到人们的重视,也成为许多厂家核心竞争力的一部分,涉及车辆的振动噪声问题已经成为汽车技术领域的一个研究热点。 随着国内整机厂汽车CAE 技术的成熟,利用CAE 技术模拟汽车NVH 问题已经不仅仅局限于零部件及子系统的模态,基于整车模型的整车振动和噪声响应的模拟预测技术也已经逐渐被掌握。在设计的虚拟样机阶段即可预测振动噪声水平,以便及时的更改设计,达到可接受的振动噪声水平。发动机是汽车主要的振动和噪声源。发动机怠速时产生的振动与噪声水平是汽车用户对汽车NVH 性能的第一感觉。本文用直接边界元法计算了发动机的辐射噪声。 2 数值方法的基础理论 2.1 边界元法的基本理论 有限单元法的基本思想是将连续的求解区域离散为一组有限个、按一定方式相互联结在一起的单元的组合体。出于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。有限单元作为数值计算方法的另一个重要特点是利用在每一个单元内假设的插值函数来分片地表示全求解域上待求的未知场函数。由于插值函数是已知的一个简单函数,那么有限元分析的基本未知量就是未知场函数的节点值。一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。显然随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断改进。如果单元是满足收敛要求的,近似解最后将收敛于精确解。 尽管有限元法所取得的成就与日俱增,但有限元法还不是十全十美的。改进有限元法的努力一直在进行着,但是有限元法的某些不足是无法克服的。例如有限元法需全域离散,导致问题的自由度和原始信息量大;对无限域只能人为地取成有限域;有限元法的离散技术本身也存在缺陷,它把本来是连续的介质用仅在节点处连接的有限单元的集合来模拟,这样不仅带进了离散的误差,而且在单元之间连续的要求较高时,有限单元的构造也很困难;对有限元法的精度和可靠性也常常会提出疑问,因为对同问题采用不同的程序计算时可能会得出不同的结果。 有限元法的不足用边界元法可以弥补。边界元法仅在边界上离散,使数值计算的维数降低一维,从而减少了问题的自由度和原始信息量。边界元法采用无限域的基本解,用边界元

车辆噪声污染的危害与控制

车辆噪声污染的危害与控制 随着汽车工业的迅速发展,人们对于汽车的舒适性和振动噪声控制的要求越来越严格。据国外有关资料表明,城市噪声的70%来源于交通噪声,而交通噪声主要是汽车噪声。它严重地污染着城市环境,影响着人们的生活、工作和健康。所以噪声的控制,不仅关系到乘坐舒适性,而且还关系到环境保护。然而一切噪声又源于振动,振动能够引起某些部件的早期疲劳损坏,从而降低汽车的使用寿命;过高的噪声既能损害驾驶员的听力,还会使驾驶员迅速疲劳,从而对汽车行驶安全性构成了极大的威胁。所以噪声控制,也关系到汽车的耐久性和安全性。因此振动、噪声和舒适性这三者是密切相关的,既要减小振动,降低噪声,又要提高乘坐舒适性,保证产品的经济性,使汽车噪声控制在标准范围之内。 1噪声的种类 产生汽车噪声的主要因素是空气动力、机械传动、电磁三部分。从结构上可分为发动机(即燃烧噪声),底盘噪声(即传动系噪声、各部件的连接配合引起的噪声),电器设备噪声(冷却风扇噪声、汽车发电机噪声),车身噪声(如车身结构、造型及附件的安装不合理引起的噪声)。其中发动机噪声占汽车噪声的二分之一以上,包括进气噪声和本体噪声(如发动机振动,配气轴的转动,进、排气门开关等引起的噪声)。

因此发动机的减振、降噪成为汽车噪声控制的关键。 此外,汽车轮胎在高速行驶时,也会引起较大的噪声。这是由于轮胎在地面流动时,位于花纹槽中的空气被地面挤出与重新吸入过程所引起的泵气声,以及轮胎花纹与路面的撞击声。 2噪声要求 欧洲的法规规定,从1996年10月起,客车的外部噪声必须从77dBA 降到74dBA,减少了一半噪声能量,到本世纪末进一步降低到71dBA。日本的法规规定,小型汽车在今后十年内噪声标准控制在76dBA以下。国内的一些大城市也计划在2010年交通干线的噪声平均值控制在70dBA以内。而据国内目前有关资料表明,国内的大客车的噪声许可值则不得超过82dBA,轻型载货车为83.5dBA。由此可见,我国在车辆噪声控制方面还得狠下工夫。 3噪声评价 噪声评价指标主要是指车内、外的噪声值和振动适应性。评价方法可分为主观评价和客观评价。影响汽车噪声主观评价的主要因素是舒适性、响度和确定性,例如可以利用语义微分法进行主观评价。在客观评价时,可以采用PCNM噪声测量装置测量试验进行分析;此外模

发动机噪声解决方法

发动机噪声解决方法 发动机是汽车的主要噪声源,在我国,发动机噪声约占汽车总噪声的55%以上,因此为降低汽车噪声总水平,应以控制发动机噪声为主要目标。 1发动机噪声的分类及评价方法 一. 分类: 按噪声辐射的方式分:发动机噪声源分为直接大气辐射和发动机表面向外辐射的两大类。 ⒈直接向大气辐射的噪声源有进、排气噪声和风扇噪声。 ⒉发动机表面噪声是发动机内部的燃烧过程和结构产生的噪声,是通过发动机外表面以及与发动机外表面刚性连接的零件的振动向大气辐射的。 按发动机表面噪声产生的机理,又分为燃烧噪声和机械噪声。 燃烧噪声:为研究方便,把气缸内燃烧所形成的压力振动并通过缸盖和活塞—连杆—曲轴—机体的途径向外辐射的噪声。(是由于气缸周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度有关) 机械噪声:把活塞对缸套的敲击,正时齿轮、配气机构、喷油系统等运动件之间机构撞击所产生的振动激发的噪声。(是发动机工作时各运动件之及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关) 二. 评价方法 除考虑其辐射噪声能量总水平外,应考察以下噪声特性: ⑴噪声级及其发动机工作状态的变化关系 ⑵发动机周围空间各点噪声级数值的分布状态 ⑶空间各点的噪声频谱以及发动机工作过程阶段的瞬时声压级 2发动机燃烧噪声及其控制 一. 燃烧噪声的特性 仅讨论柴油机的燃烧噪声。 燃烧噪声与燃烧过程有关,所以从柴油机燃烧过程的四个阶段—滞燃期、速燃期、缓燃期和补燃期来分别研究它。 ⑴滞燃期燃料未燃烧,尚在进行燃烧前必要的物理和化学准备,气缸中的压力和温度变化都很小,因此对噪声的直接影响甚微,但间接影响重大。 ⑵速燃期燃料迅速燃烧,气缸内压力迅速增加,直接影响发动机的振动和噪声。 ▲影响压力增长率的主要因素是着火延迟期的长短和供油规律。延迟期越长,喷入气缸的燃料越多,压力增长率越高,则柴油机的冲击载荷大,柴油机内零件敲击严重,增加了柴油机的结构频率和所辐射的噪声。 ⑶缓燃期气缸内压力有所增长,但增长率小,能激发一定程度的燃烧噪声,但对噪声的影响不显著。 ⑷补燃期活塞下行且绝大多数燃料已在前两个时期内燃烧完毕,对燃烧噪声影响不大。

运动目标噪声源识别方法

运动目标噪声源识别方法 严光洪,陈志菲,孙进才 (西北工业大学航海学院,陕西西安 710072) 摘 要:文章提出了利用单线列阵确定运动目标噪声源部位和特性的方法,并提出了基于DOA解算运动目标噪声源的空间位置的方法。介绍了噪声源部位识别时M USIC近场和相关性处理方法。数字仿真计算、消声水池模拟试验和实物试验结果表明,文中所介绍的方法是正确的。当运动目标和测试阵垂直距离小于150m时,噪声源部位测试误差不大于0.1m,可用于工程测试。 关 键 词:噪声源,部位识别,线列阵,M USIC 中图分类号:TN911.7 文献标识码:A 文章编号:1000-2758(2009)03-0378-04 水下航行体、汽车、飞机等运动物体辐射噪声,很多场合下要求降噪,为了有效实现噪声控制,必须确定噪声源位置和特性。对于静态目标的噪声源部位和特性的确定,可利用单个声压传感器、声矢量、多传感器形成的阵列对噪声源进行定向定位和特性分析[1~4]。而对于运动目标的噪声特性的确定,目前一般只利用声压传感器或矢量传感器测试到噪声的时域和频域特性[5,6],对运动目标的噪声源部位,目前还没有很有效的确定方法。在运动目标均速直线运动、测试平台静止条件下,本文提出了利用单线列阵基于MU SIC算法解算DOA(Direction of Arrival)的噪声源部位确定方法。另外,本文也介绍了噪声源部位识别时M USIC近场和相关性处理方法。利用仿真确定了基于单一线列阵的噪声源部位识别的误差。消声水池试验和水库试验结果表明本文所介绍方法的正确性,当运动目标和测试阵垂直距离小于150m时,噪声源部位测试误差不大于0.1m,可用于工程测试。 1 噪声源部位确定的方法 当测试阵与运动目标在同一平面时,测试阵可设计成线列阵,噪声源部位求解为2D坐标系的求解,如图1 所示。 图1 不同时刻运动目标在坐标中的位置 当运动目标作均速直线运动时,若t1、t2、t3时刻(设 t=t3-t2=t2-t1)声源与x轴的夹角 1、 2、 3可求得,则根据图中的几何关系可求出t2时刻声源的位置。由图中几何关系,则有 a sin R1-a cos =tg( 3- 2) 2a sin R1-2a co s =tg( 3- 1) (1) 式中,a=v t,为 t时刻运动物体的移动距离。由(1)式可求出和R1 =ctg-1[ctg( 3- 2)-2ctg( 3- 1)] R1=a cos+a sin ctg( 3- 2) (2) 2009年6月第27卷第3期 西北工业大学学报 Jo ur nal o f N or thw ester n Po ly technica l U niv ersity June2009 Vo l.27N o.3 收稿日期:2008-03-04基金项目:国家自然科学基金(60672136)资助作者简介:严光洪(1966-),西北工业大学博士生,主要从事信号处理、噪声控制和固体力学研究。

噪声源识别技术的进展_陈心昭

第32卷第5期 2009年5月 合肥工业大学学报( 自然科学版) JO U RN AL O F H EFEI U N IV ERSIT Y OF T ECH N OL O GY Vol.32No.5 M ay 2009 收稿日期:2008-11-27 基金项目:国家自然科学基金资助项目(10874037);(50675056);高等学校博士学科点专项科研基金资助项目(20060359003)作者简介:陈心昭(1939-),男,浙江余姚人,德国斯图加特大学工学博士,合肥工业大学教授、博士生导师. 噪声源识别技术的进展 陈心昭 (合肥工业大学噪声振动工程研究所,安徽合肥 230009) 摘 要:实现声源控制的前提是正确识别出主要噪声源。文章介绍了噪声源识别的各种方法。简要论述了传统的分析方法和基于信号处理技术的一般识别方法;对近年来出现的声强测量、声全息和波束形成技术的原理、特点、应用作了综述;最后简单介绍了合肥工业大学噪声振动工程研究所近几年来在这方面取得的成果。关键词:噪声源识别;声强测量;声全息 中图分类号:T B53311 文献标识码:A 文章编号:1003-5060(2009)05-0609-06 Progress of techniques for noise source identification CH EN Xin -zhao (Research In stitu te of Sound and Vibration,H efei U niver sity of T echnology,H efei 230009,China) Abstract:The essential prer equisite for noise contro l is to locate the no ise sources w ith exactness.Dif -ferent m ethods for identifying the noise sources ar e illustr ated in this paper.After briefly introducing the traditional analy sis metho ds as w ell as the comm on methods based on sig nal processing,the paper makes a r ev iew of the principle,speciality and utility of so me new techniques dev elo ped in r ecent year s,such as so und intensity measurement,acoustic holog raphy and beam for ming.Also summ ar ized ar e the r esearch achievements gained by the Research Institute of Sound and V ibration,H efei Univer -sity o f Technolog y,in this area. Key words:no ise so urce identificatio n;so und intensity m easurement;aco ustic holo graphy 0 引 言 产品和环境的噪声控制需从三方面进行,即 声源控制、传播途径控制和接受者保护。其中,声源控制是最根本和最有效的。一台设备往往有许多噪声源,它们有不同的特性,对设备总的辐射噪声起着不同的作用。实现声源控制的前提是正确识别出主要的噪声源,从而可以采取有效的措施来控制声源的辐射。噪声源识别的任务是:1弄清主要的噪声源在何处,是哪个部件,它们对总噪声的贡献,以分清主次,排列顺序;o了解主要噪声源的频率成分、辐射特性和产生的机理。正确识别噪声源不仅可以采取针对性的措施减振降噪,更重要的是在产品的设计阶段就能加以控制,实现低噪声设计。噪声源识别的方法很多,应用时要根据实际对象和条件采用一种或几种合理的方法。噪声源识别技术的发展是与噪声测试技术的进步紧密相连的,随着数字信号处理和计算机技术的出现和发展,噪声源识别技术在近数十年里有了很大的进展,新的识别技术和仪器设备不断出现。 常用的噪声源识别方法有:传统识别方法、时域分析法、频域分析法、时频分析与小波分析法、声强测量法、声全息法和波束形成法,下面将分别作出介绍。 1 传统识别方法 111 主观评价法 这种方法是直接利用人的感觉来判别噪声源的位置和特性,靠人的实践经验,简便易行,但不

相关文档