文档库 最新最全的文档下载
当前位置:文档库 › 中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)与例题讲解

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)与例题讲解

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)与例题讲解
中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)与例题讲解

中考总复习:一元二次方程、分式方程的解法及应用

—知识讲解(基础)

【考纲要求】

1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;

2. 会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

【知识网络】

【考点梳理】

考点一、一元二次方程 1.一元二次方程的定义

只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.

它的一般形式为2

0ax

bx c ++=(a ≠0).

2.一元二次方程的解法

(1)直接开平方法:把方程变成2

x m =的形式,

当m >0时,

方程的解为x m =±

;当

m =0时,方程的解1,2

0x

=;当m <0时,

方程没有实数解.

(2)配方法:通过配方把一元二次方程2

0ax

bx c ++=变形为

2

22

424b b ac x a a -?

?+= ???

的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程2

0ax

bx c ++=,当240b ac -≥时,

它的解为242b b ac x a

-±-=

(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:

直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 3.一元二次方程根的判别式

一元二次方程根的判别式为ac 4b 2

-=?. △>0?方程有两个不相等的实数根; △=0?方程有两个相等的实数根; △<0?方程没有实数根.

上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:

△≥0?方程有实数根.

4.一元二次方程根与系数的关系

如果一元二次方程0c bx ax 2

=++(a ≠0)的两个根是2

1

x x 、,那么a

c

x x a

b x x 2

12

1=?-=+,.

考点二、分式方程 1.分式方程的定义

分母中含有未知数的有理方程,叫做分式方程. 要点诠释:

(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.

(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程

都是分式方程,而关于的方程

都是整式方程. 2.分式方程的解法

去分母法,换元法.

3.解分式方程的一般步骤

(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;

(2)解这个整式方程;

(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公

分母等于零的根是原方程的增根.

口诀:“一化二解三检验”.

要点诠释:

解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.

考点三、一元二次方程、分式方程的应用

1.应用问题中常用的数量关系及题型

(1)数字问题(包括日历中的数字规律)

关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.

(2)体积变化问题

关键是寻找其中的不变量作为等量关系.

(3)打折销售问题

其中的几个关系式:利润=售价-成本价(进价),利润率×100%.

=利润

成本价

明确这几个关系式是解决这类问题的关键.

(4)关于两个或多个未知量的问题

重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.

(5)行程问题

对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.

注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.

(6)和、差、倍、分问题

增长量=原有量×增长率;

现有量=原有量+增长量;

现有量=原有量-降低量.

2.解应用题的步骤

(1)分析题意,找到题中未知数和题给条件的相等关系;

(2)设未知数,并用所设的未知数的代数式表示其余的未知数;

(3)找出相等关系,并用它列出方程;

(4)解方程求出题中未知数的值;

(5)检验所求的答数是否符合题意,并做答.

要点诠释:

方程的思想,转化(化归)思想,整体代入,消元思想,

分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.

注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.

【典型例题】

类型一、一元二次方程

1.用配方法解一元二次方程:2

213x x +=

【思路点拨】

把二次项系数化为1,常数项右移,方程两边都加上一

次项系数一半的平方,再用直接开平方法解出未知数的值. 【答案与解析】

移项,得2

231x

x -=-

二次项系数化为1,得2

31

22

x

x -=- 配方22

233132424x x ????

-+=-+ ?

???

??

2

31416x ?

?-= ?

?

? 由此可得314

4

x -=±

11x =,21

2

x =

【总结升华】用配方法解一元二次方程的一般步骤:

①把原方程化为的形式;

②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;

③方程两边同时加上一次项系数一半的平方;

④再把方程左边配成一个完全平方式,右边化为一个常数;

⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程

无实数解.

举一反三:

【变式】用配方法解方程x2-7x-1=0.

【答案】

将方程变形为x2-7x=1,两边加一次项系数的一半的

平方,得

x2-7x+=1+,所以有=1+.

直接开平方,得x-=或x-=-.

所以原方程的根为 x=7+53

2或x=7-53

2

2.(2018?咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.

(1)证明:不论m为何值时,方程总有实数根;

(2)m为何整数时,方程有两个不相等的正整数根.

【思路点拨】判别式大于0,二次项系数不等于0.

【答案与解析】

(1)证明:△=(m+2)2﹣8m

=m2﹣4m+4

=(m﹣2)2,

∵不论m为何值时,(m﹣2)2≥0,

∴△≥0,

∴方程总有实数根;

(2)解:解方程得,x=,

,x2=1,

x1=2

m

∵方程有两个不相等的正整数根,

∴m=1或2,

∵m=2不合题意,

∴m=1.

【总结升华】

(1)注意隐含条件m≠0;(2)注意整数根的限制条件的应用,求出m的值,要验证m的值是否符合题意.

举一反三:

【变式】已知关于x 的方程2

(2)210x

m x m +++-=.

(1)求证方程有两个不相等的实数根.

(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解. 【答案】

(1)证明:因为△=)12(4)2(2

--+m m =4)2(2+-m

所以无论m 取何值时, △>0,所以方程有两个不相

等的实数根.

(2)解:因为方程的两根互为相反数,所以021

=+x x

根据方程的根与系数的关系得02=+m ,解得2-=m ,

所以原方程可化为052

=-x

,解得51=x ,52-=x .

类型二、分式方程

3.(2018?贺州)解分式方程:

=

【思路点拨】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【答案与解析】

解:方程两边同乘以(2x+1)(2x ﹣1),得 x+1=3(2x-1)-2(2x+1)

x+1=2x-5, 解得x=6.

检验:x=6是原方程的根. 故原方程的解为:x=6.

【总结升华】首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根. 举一反三:

【变式1】解分式方程:21

23

3

x x x -+=

--. 【答案】方程两边同乘以3x -,得 22(3)1x x -+-=.

2261

x x -+-=.

5x =.

经检验:5x =是原方程的解,

所以原方程的解是5x =.

【一元二次方程、分式方程的解法及应用 :例1(1)】 【变式2】方程221

2

3=-+

--x

x x 的解是x= .

【答案】0x =.

4.若解分式方程211

1(1)x m x x x x x

++-=++产生增根,则m 的值是( ) A.

B. C. D.

【思路点拨】先把原方程化为整式方程,再把可能的增根分别代入整式方程即可求出m 的值.

【答案】D ;

【解析】由题意得增根是:

化简原方程为:

代入解得

2m =-或1,

故选择D.

【总结升华】分式方程产生的增根,是使分母为零的未知数的值. 举一反三:

【一元二次方程、分式方程的解法及应用:例1(2)-例2】 【变式】若关于x

的方程

23

32+-=--x m

x x 无解,则

m

的值

是 . 【答案】1.

类型三、一元二次方程、分式方程的应用

5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.

【思路点拨】

在航行问题中的等量关系是“顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度”,两次航行提供了两个等量关系.

【答案与解析】

设船在静水中的速度为x 千米/小时,水流速度为y 千

米/小时 由题意,得

解得:经检验:是原方程的根

x y x y ==??

?==???

17

317

3 答:水流速度为3千米/小时,船在静水中的速度为17千米/小时. 【总结升华】

流水问题公式:顺流速度=静水速度+水流速度; 逆

流速度=静水速度-水流速度;

静水速度=(顺流速度+逆流速度)÷2;水流速度=

(顺流速度-逆流速度)÷2. 举一反三:

【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树? 【答案】设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树,

由题意得:

答:甲班每小时种树20棵,乙班每小时种树22棵.

6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?

【思路点拨】

设该产品的成本价平均每月降低率为x,那么两个月后的

(1+6%),两个月后的成本价为500(1-x)销售价格为625(1-20%)

2,然后根据已知条件即可列出方程,解方程即可求出结果.【答案与解析】

设该产品的成本价平均每月应降低的百分数为x.

625(1-20%)(1+6%)-500(1-x)2=625-500

整理,得500(1-x)2=405,(1-x)2=0.81.

1-x=±0.9,x=1±0.9,

x1=1.9(舍去),x2=0.1=10%.

答:该产品的成本价平均每月应降低10%.

【总结升华】

题目中该产品的成本价在不断变化,销售价也在不断变

化,?要求变化后的销售利润不变,即利润仍要达到125元,?关键在于计算和表达变动后的销售价和成本价.

最新一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次 方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关 于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系 数;c 叫做常数项。 3.一元二次方程的解法 (1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平 方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平 方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项 的系数的一半的平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方 法。一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的 系数为b ,常数项的系数为c (4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单 易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的 是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形 式 4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元 二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?” 来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等的实数根;

一元二次方程基础知识

一元二次方程基础知识 一、基础知识回顾: 1.一元二次方程必须满足的三个条件:① ;② ;③ 。 不满足其中任何一个条件的方程都 一元二次方程。 实例解答:下列关于x 的方程:①20ax bx c ++=(a ≠0);②2 430x x +-=;③2540x x -+=;④23x x = ⑤5xy -x+6=0;⑥mx 2=4x+1中,一元二次方程的个数是( ) A .1个 B .2个 C .3个 D .4个 2.一元二次方程的一般形式为 ( )。当 时,是不含一次项的一元二次方程;当 时,是不含常数项的一元二次方程;当 时,是一次项和常数项的一元二次方程。 实例解答:①把方程2)5)(2(-=-+x x 化为一般形式为 ,其中二次项系数是 ,一次项系数是 ,常数项是 。②若0992)1(12=--++x x m m 是一个一元二次方程,则m 的值为 。③ 若kx 2+x=k 2+6的一个根是2,则k 的值是 。 3.解一元二次方程的方法有① ;② ;③ ;④ 。 其中 是一般方法, 是特殊方法。 4.配方法是将方程化为形式 ,当 时,利用开平方求解。步骤为: ① ;② ;③ ; ④ ;⑤ ;⑥ 。 5.公式法解20ax bx c ++=(a ≠0)的求根公式为 (042≥-ac b ),步骤为: ① ;② ;③ ;④当 时,方程有 ,为 ;当 时,方程有 ,为 ;当 时,方程 。 6.因式分解法解一元二次方程,是把方程一边化为 ,另一边分解成 的形式。常用方法有① ;② ;③ 。 7.已知方程0)(2=+++pq x q p x 可化为( )( )=0,则x 1= ,x 2= 。 8.根与系数的关系: ①基本型:方程02=++q px x 的两根为21x x 、,则=+21x x ,21x x ?= ; ②一般型:方程20ax bx c ++=(a ≠0)的两根为21x x 、,则=+21x x ,21x x ?= 。 思路归纳:要证明一元二次方程①有两个不相等的实数根,只要推导出△ ;②有两个相等的实数根,只要推导出△ ;③没有实数根,只要推导出△ ;④总有实数根,只要推导出△ 。 二、方程应用题: 1.单(双)循环问题:设参与数量为x ,总次数为a 时,则①单循环问题的方程是 ;②双循环问题的方程是 。 2.平均增长(下降)率问题:设增长(下降)前的数量为a ,增长(下降)后的数量为b ,增长(下降)次数为n ,平均增长(下降)率为x 时,则①平均增长(下降)率问题的方程是 ;②平均增长(下降)次数是2时,方程是 。 3.数字问题:①若个位上数字、十位上数字、百位上数字分别为a 、b 、c ,则这个数为100c+10b+a ;②扎实掌握整数、奇数、偶数等数量关系,还有 。 4.面积、体积问题:①牢记几何图形的面积和体积公式;②注意图形的拼、拆、平移等变换。

一元二次方程及解法经典习题及解析

┃知识归纳┃ 1.一元二次方程的概念 只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.[注意] 一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数. 2.一元二次方程的解法 一元二次方程有四种解法:法、法、法和法. [注意] 公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0. 3.一元二次方程根的判别式Δ=b2-4ac (1)Δ>0?ax2+bx+c=0(a≠0)有的实数根; (2)Δ=0?ax2+bx+c=0(a≠0)有的实数根; (3)Δ<0?ax2+bx+c=0(a≠0) 实数根. 4.一元二次方程根与系数的关系 一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=,x1·x2=. [注意] 它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0. 四大解法 一、开平方法 方程的左边是完全平方式,右边是非负数;即形如x2=a(a≥0)

二、配方法 “配方法”的基本步骤:一化、二移、三配、四化、五解 1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边; 3.配方:方程两边同加一次项系数一半的平方; 4.变形:化成 5.开平方,求解 三、公式法 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0. 四、因式分解法 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,至少有一个因式等于零. 因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 解题技巧: 先考虑开平方法,

一元二次方程知识点归纳与复习

一元二次方程专题 知识点1:一元二次方程的概念及一般形式 1、方程(1)3x-1=0;(2) 2310x -=;(3) 2130x x + =;(4) 221(1)(2)x x x -=--; (5) 2(52)(37)15x x x +-=;(6) 232x y x +=.其中一元二次方程的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、将下列方程化为一元二次方程的一般形式,并指出方程的二次项系数、一次项系数和常数项。 (1)2(5)3x x x --=- (2)(21)(5)6x x x -+= 知识点2:用直接开平方法解一元二次方程 3、用直接看平方法解一元二次方程: (1)2169x = (2)2450x -= (3)24(21)360x --= (4)(21)40x +-= 知识点3:用配方法解一元二次方程

4、用配方法解方程2250x x --=时,原方程变形为 ( ) A 、2(1)6x += B 、2(1)6x -= C 、2(2)9x += D 、2(2)9x -= 5、用配方法解一元二次方程: (1)22410x x -+= (2)2213x x += 知识点4:用公式法解一元二次方程 6、用公式法解一元二次方程: (1)2410x x +-= (2)2441018x x x ++=- 知识点5:根的判别式(24b ac -)的应用 7、若关于x 的一元二次方程2210mx x --=有两个不相等的实数根,则实数m 的取值范围是 ( ) A 、m>-1 B 、m>-1且m ≠0 C 、m<1 D 、m<1且m ≠0 8、已知a 、b 、c 分别是三角形ABC 的三边,其中a=1,c=4,且关于x 的方程240x x b -+=有两个相等的实数根,试判断三角形ABC 的形状。 4、 已知关于x 的一元二次方程2223840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围. 知识点6:用分解因式法解一元二次方程 9、用分解因式法解一元二次方程 (1)230x x += (2)2(3)4(3)0x x x -+-=

(完整)一元二次方程(分知识点,详细,适合基础差的学生),推荐文档

一元二次方程 知识网络详解: 考点 1.一元二次方程的定义:形如ax bx c 0(a 0)的关于x 的方程为一元二次方 程. 考点 2.一元二次方程的解法:先尝试“因式分解法” ;不能分解时可选择“配方法”或者“求根公式法” b b24ac x1,2 求根公式:2a 考点 3.一元二次方程的判别式:b2 4ac 有两个不相等的实数根:0有两个相等的实数根:0 无实数根:0有实数根:0 考点 4.一元二次方程根与系数的关系(韦达定理): 2 若0 时,设x1、x2为一元二次方程ax bx c 0(a 0)的两个实数根,那么:bc x1 x2 x1 x2 a ,a 考点 5.一元二次方程应用题(数字问题,互赠问题,面积问题,增长率问题,利润问题) 【课前回顾】 形的斜边是() A. 3 B.3 C.6 D. 6 2、关于x 的方 程m 1 x22mx m 0有实数根,则 m 的取值范围是 () A. m 0且 1 B. m0 C. m 1 D. m 1 3、关于 x 的一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根 , 则 k 的取值范围是 4、某工厂计划在两年内把产量提高44%,如果每年的增长率都和上一年相同,则平均每年 的增长率是。 5、解方程 (1)x 2 225 0 (2)2x2 10x 3 1、已知一个直角三角形的两直角边长恰是方程2x2 8x 7 0 的两根,则这个直角三角

经典例题讲解: 例 1、下列方程中是关于 x 的一元二次方程的是( ) 2 11 A 3 x 1 2 2 x1 B 2 20 xx C ax 2 bx c 0 2 D x 2 2x x 2 1 变式: 当 k 时,关于 x 的方程 kx 2 2x x 2 3是一元二次方程。 例 2、方程 m 2 x m 3mx 1 0 是关于 x 的一元二次方程, 则 m 的值为 变式练习: 1、方程 8x 2 7 的一次项系数是 ,常数项是 。 2、若方程 m 2 x m 1 0是关于 x 的一元一次方程, ⑴求 m 的值;⑵写出关于 x 的一元一次方程。 3、若方程 m 1 x 2 m ?x 1是关于 x 的一元二次方程,则 m 的取值范围是 4、若方程 nx m +x n -2x 2=0 是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 考点二、方程的解 例 1、已知 2y 2 y 3 的值为 2,则 4y 2 2y 例 2、关于 x 的一元二次方程 a 2 x 2 x a 2 例 3、已知关于 x 的一元二次方程 ax 2 bx c 必有一根为 。 例 4、已知 a,b 是方程 x 2 4x 则 m 的值为 。 1 的值为 。 4 0 的一个根为 0,则 a 的值为 0 a 0 的系数满足 a c b ,则此方 程 3) (x 3)2 (1 2x)2 4)1x 2 3 x 2 0 3 2 3 2 m 0的两个根, b,c 是方程 y 2 8y 5m 0的两个

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程知识点集 (整理)

一元二次方程 知识点题集 (须用心按质完成) 1.方程12 x (x -3)=5(x -3)的根是_______. 2.下列方程中,是关于x 的一元二次方程的有________. (1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12 x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________. 4.如果21x -2x -8=0,则1x 的值是________. 5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0?有两个不相等的实数根,则m?的取值范围是定______________. 7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形为___________________,原方程的根为________. 9.以-1为一根的一元二次方程可为_____________________(写一个即可). 10.代数式12 x 2+8x+5的最小值是_________. 11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ). A .a=b=c B .一根为1 C .一根为-1 D .以上都不对 12.一元二次方程x 2-4=0的解是( ) A .x 1=2,x 2=-2 B .x =-2 C .x =2 D . x 1=2,x 2=0 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3) 15.已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ). A .1 B .2 C .3 D .4 16.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,?则这个三角形的周长是( ). A .8 B .8或10 C .10 D .8和10 17.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0 232057 x + -= 18下列方程中,常数项为零的是( ) A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+2 19.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )

一元二次方程练习题23718

一元二次方程练习题 一、填空 1.一元二次方程12)3)(31(2 +=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。 2.关于x 的方程023)1()1(2 =++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。 3.已知直角三角形三边长为连续整数,则它的三边长是 。 4. ++x x 32 +=x ( 2);-2x x (2=+ 2 )。 5.直角三角形的两直角边是3︰4,而斜边的长是15㎝,那么这个三角形的面积是 。 6.若方程02 =++q px x 的两个根是2-和3,则q p ,的值分别为 。 7.若代数式5242--x x 与122 +x 的值互为相反数,则x 的值是 。 8.方程492=x 与a x =2 3的解相同,则a = 。 9.当t 时,关于x 的方程032 =+-t x x 可用公式法求解。 10.若实数b a ,满足022=-+b ab a ,则b a = 。 11.若8)2)((=+++ b a b a ,则b a += 。 12.已知1322++x x 的值是10,则代数式1642++x x 的值是 。 二、选择 1.下列方程中,无论取何值,总是关于x 的一元二次方程的是( ) (A )02=++c bx ax (B )x x ax -=+2 21 (C )0)1()1(2 22=--+x a x a (D )0312=-+=a x x 2.若12+x 与12-x 互为倒数,则实数x 为( ) (A )±2 1 (B )±1 (C )±2 2 (D )±2 3.若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( ) (A )1- (B )1 (C )21- (D )2 1 4.关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的 是( )

一元二次方程的解法—知识讲解

一元二次方程及其解法(一)直接开平方法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0. 要点二、一元二次方程的解法 1.直接开方法解一元二次方程: (1)直接开方法解一元二次方程:

一元二次方程的知识点梳理

一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: 1、方程782=x 的一次项系数是 ,常数项是 。 2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) =n=2 =2,n=1 =2,m=1 =n=1 考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: 1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 2、已知关于x 的方程022=-+kx x 的一个解与方程 31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。 3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。 4、已知a 是0132=+-x x 的根,则=-a a 622 。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 6、若=?=-+y x 则y x 324,0352 。 考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次 类型一、直接开方法:()m x m m x ±=?≥=,02

人教版 21章 一元二次方程知识点总结

21章 一元二次方程知识点 一、一元二次方程 1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未 知数的最高次数是2的方程叫做一元二次方程。 注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于0 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。 (2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。 (3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。 二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当2 =x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等) 三、一元二次方程的解法 1、直接开平方法: 直接开平方法理论依据:平方根的定义。 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 三种类型:(1)()02≥=a a x 的解是a x ±=;

(2)()()02≥=+n n m x 的解是m n x -±=; (3)()()0,02≥≠=+c m c n mx 且的解是m n c x -±= 。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 (一)用配方法解二次项系数为1的一元二次方程 用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式 (2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这 个数; (3) 把原方程变为()n m x =+2的形式。 (4) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。 (二)用配方法解二次项系数不是1的一元二次方程 当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤: (1)把一元二次方程化成一般形式 (2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数; (3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为()n m x =+2的形式; (4)若0≥n ,用直接开平方法或因式分解法解变形后的方程。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式:

《一元二次方程》知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高) 【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式:   3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想

一元二次方程??? →降次一元一次方程 2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系; 三是正确求解方程并检验解的合理性. 2.利用方程解决实际问题的关键是寻找等量关系. 3.解决应用题的一般步骤: 审 (审题目,分清已知量、未知量、等量关系等);

一元二次方程知识点归纳

一元二次方程知识点 知识点一:一元二次方程及其解法关键点拨及对应举例 1.一元二次方程的相关概念 (1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方 程. (2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次 项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常 数项. 例:方程20 a ax+=是关于x 的一元二次方程,则方程的根为- 1. 2 .一元二 次方程的解法 (1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方 求解. ( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解 法求解. ( 3 )公式法:一元二次方程ax2+bx+c=0的求根公式为 x= 24 2 b b ac a -±-(b2-4ac≥0). (4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶 数时,也可以考虑用配方法. 解一元二次方程时,注意 观察,先特殊后一般,即先 考虑能否用直接开平方法和 因式分解法,不能用这两种方 法解时,再用公式法. 例:把方程x2+6x+3=0变 形为(x+h)2=k的形式后, h=-3,k=6. 知识点二:一元二次方程根的判别式及根与系数的关系 3 .根的判别式 (1)当Δ=24 b ac -0时,原方程有两个不相等的实数根. (2)当Δ=24 b ac -0时,原方程有两个相等的实数根. (3)当Δ=24 b ac -0时,原方程没有实数根. 例:方程2210 x x +-=的判 别式等于8,故该方程有两个不相 等的实数根;方程2230 x x ++= 的判别式等于-8,故该方程没有实 数根. * 4.根与系数的关系 (1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)有两 个根分别为x1、x2,则x1+x2= ;x1x2= 。注意运用根与系数 关系的前提条件是△≥0. (2)解题策略:已知一元二次方程,求关于方程两根的代数式 的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与 系数的关系求解. 与一元二次方程两根相关代数 式的常见变形: x12+x22=(x1+x2)2-2x1x2, (x1+1)(x2+1)=x1x2+(x1+x2)+1, 12 1212 11x x x x x x + += 等. 失分点警示 在运用根与系数关系解题时, 注意前提条件时△=b2-4ac≥0.a≠0 知识点三:一元二次方程的应用 4(1)解题步骤:①审题;②设未知数;③列一元二次方程; ④解一元二次方程;⑤检验根是否有意义;⑥作答. 运用一元二次方程解决实际问题时,方程一般有两个实

一元二次方程知识点总结与易错题及答案

一元二次方程知识点总结 考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于- a b ,二根之积等于a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=a c 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

一元二次方程知识点整理

一元二次方程 一、本节学习指导 本节中我们要注意一元二次方程成立的条件,填空题最青睐这简单而又易忽视的知识。其次就是根与系数的关系(韦达定理)、判别式,求根公式,这些需要我们重点记忆。本节有配套学习视频。 二、知识要点 1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。一元二次方程的标准式:ax2+bx+c=0 (a≠0) 其中:ax2叫做二次项,bx叫做一次项,c叫做常数项 a是二次项系数,b是一次项系数 2、一元二次方程根的判别式(二次项系数不为0): “△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac △=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2 △=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2 △=b2-4ac<0 <====> 方程没有实数根。 注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<0 3、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。 ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有: 因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,

所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。 注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。 5、一元二次方程的求根公式: 注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。 三、经验之谈: 对于韦达定理的文字描述希望同学们能理解,试着把二次项系数化1来观察一下。求根公式也要牢记于心,使用很广泛。

一元二次方程的定义及一般形式提高练习

一元二次方程的定义及一般形式提高练习 一.选择题(共8小题) 1.(2012?汉川市模拟)下列方程是一元二次方程的是() A.x2﹣1=y B.(x+2)(x+1)=x2C.6x2=5D. 2.(2007?滨州)关于x的一元二次方程(m+1)+4x+2=0的解为() A.x =1,x2=﹣1B.x1=x2=1C.x1=x2=﹣1D.无解 1 3.(2002?甘肃)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则() A.m=±2B.m=2C.m=﹣2D.m≠±2 4.若关于x的方程(k﹣1)x2﹣4x﹣5=0是一元二次方程,则k的取值范围是() A.k≠0B.k≠1C.k≠0且k≠1D.k=0 5.关于x的方程(m﹣2)x|m|﹣mx+1=0是一元二次方程,则m=() A.±2B.2C.﹣2D.不确定 6.方程①;②3y2﹣2y=﹣1;③2x2﹣5xy+3y2=0;④中,是一元二次方程的为()A.①B.②C.③D.④ 7.一元二次方程的二次项系数、一次项系数、常数项分别是() A.1,﹣4,B.0,﹣4,﹣C.0,﹣4,D.1,﹣4,﹣8.关于x的方程(a2﹣a﹣2)x2+ax+b=0是一元二次方程的条件是() A.a≠﹣1B.a≠2C.a≠﹣1且a≠2D.a≠﹣1或a≠2二.填空题(共8小题) 9.关于x的方程mx2+3x=x2+4是一元二次方程,则m应满足条件是_________ . 10.若关于x的方程(m﹣1)﹣mx﹣3=0是一元二次方程,则m= _________ .

11.关于x 的一元二次方程ax 2﹣3x+2=0中,a 的取值范围是 _________ . 12.若是关于x 的一元二次方程,则a= _________ . 13.当k= _________ 时,(k ﹣1)﹣(2k ﹣1)x ﹣3=0是关于x 的一元二次方程. 14.当m= _________ 时,方程(m 2﹣1)x 2﹣mx+5=0不是一元二次方程. 15.方程(m+4)x |m|﹣2+5x+3=0是关于x 的一元二次方程,则m= _________ . 16.关于x 的方程(m+3)+(m ﹣3)x+2=0是一元二次方程,则m 的值为 _________ . 三.解答题(共4小题) 17.方程(m+1)x+(m ﹣3)x ﹣1=0; (1)m 取何值时是一元二次方程,并求出此方程的解; (2)m 取何值时是一元一次方程. 18.x 2a+b ﹣2x a+b +3=0是关于x 的一元二次方程,求a 与b 的值. 19.已知关于x 的方程(m 2﹣8m+20)x 2+2mx+3=0,求证:无论m 为任何实数,该方程都是一元二次方程. 20.若(m+1)x |m|+1+6﹣2=0是关于x 的一元二次方程,求m 的值. 1.下列方程中的一元二次方程是( ). A .3(x +1)2=2(x -1) B .21x +x 1-2=0 C .ax 2+bx +c =0 D .x 2+2x =(x +1)(x -1)

一般的一元二次方程的解法—知识讲解

一元二次方程的解法(二) 一般的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程; 2.掌握运用配方法和公式法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式222 ±+=±. a a b b a b 2() 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用

一元二次方程知识点总结

一元二次方程知识点 教学重点:根的判别式定理及逆定理的正确理解和运用 教学难点:根的判别式定理及逆定理的运用。 教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。 主要知识点: 一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(242 2≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理

相关文档
相关文档 最新文档