文档库 最新最全的文档下载
当前位置:文档库 › 项目一 内存调度算法模拟

项目一 内存调度算法模拟

项目一   内存调度算法模拟
项目一   内存调度算法模拟

项目一 Linux环境下几种内存调度算法模拟

1.设计原理

在进程运行过程中,若其访问的页面不在内存而需要将其调入,但内存已无空闲空间时,需要从内存中调出(淘汰)一页程序或数据,送入磁盘的对换区。

用来选择淘汰哪一页的算法叫做置换算法,也称为淘汰算法。淘汰算法是否适合某一序列直接影响系统的性能。一个好的置换算法应具有较低的页面置换频率,置换时应将以后不再会访问,或是在较长时间内不再访问的页面淘汰。

(1)先进先出算法(FIFO算法)基本思想

先进先出算法选择在内存中驻留时间最长的页面予以淘汰,即先进入内存的页面先淘汰。

其优点是算法实现简单,只须把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,使该指针总是指向最先进入内存的页面。

缺点是算法与进程的实际运行规律不相适应,因为进程中的某些页面经常被访问,但先进先出置换算法不能保证这些页面不被淘汰。

(2)最近最久未使用算法(LRU算法)基本思想

最近最久未使用算法选择未被访问的页中时间最长的页予以淘汰。

该算法思想中,如果某个页面被访问,则它可能马上还要被访问,即某页面长时间未被访问,则页面在最近一段时间也不会被访问,所以选择未被访问页中时间最长的予以淘汰能降低页面置换频率。

该算法的优点是性能较好,降低置换频率。缺点是实现复杂,需要硬件辅助,增加系统负担。

(3)最近未使用淘汰算法(NUR算法)基本思想

最近未使用淘汰算法淘汰第1个最近未被访问的页(淘汰页表中第一个访问位为0的页)

(4)最不经常使用页面淘汰算法(LFU算法)基本思想

最不经常使用页面淘汰算法,淘汰那些到当前时间为止访问次数最少的页。页表中增加一个访问记数器。

(5)最佳置换算法(OPT算法)基本思想

当要调入一新页而必须淘汰一旧页时,最佳置换算法是所淘汰的页是以后不再使用的,或者是以后相当长的时间内不会使用的。

该算法的优点是保证获得最低的缺页率。

该算法的缺点是无法预知一个进程在内存的若干个页面,哪个在未来最长时间内不再被访问。

(6)页面淘汰算法优劣的衡量标准

操作系统采用请求分页方式管理内存时,可以使用缺页中断率衡量页面淘汰算法的优劣,缺页中断率f’,f’=f/a (a是总的页面访问次数,f是缺页中断次数)。

对于一个给定内存页面数和给定的进程页面访问序列,如果某算法的缺页中断率最小,则该算法对于该页面访问序列而言是最好的。(7)Belady异常现象

缺页中断率还与系统设定的内存页面数有关系,通常情况下,内存页面数越大,缺页中断也越小。但在采用FIFO算法时,有时会出现当内存页面数越大,缺页次数不减少反而增加的现象,称之为Belady异常现象。

(8)抖动

导致系统效率急剧下降的主存与辅存之间的频繁的页面置换现象称为抖动。产生抖动的原因是系统使用的淘汰算法不合理,导致刚被淘汰的页面马上又要被访问的一种频繁的页面置换状态。抖动将造成系统效率下降,在选择页面置换算法时既要考虑尽可能少的缺页率和算法的简单性,同时还要尽量避免抖动的发生。

2.设计步骤和方法

(1)选择其中两种算法的原理进行分析

① FIFO内存调度算法的原理

②(其他任选一个算法)内存调度算法的原理(2)设计两种算法的流程图

①设计FIFO算法的流程图。

②其他任选一个算法设计流程图。

(3)使用Vi编写实现两种算法的程序

①FIFO内存调度算法的代码。

②(其他任选一个算法)内存调度算法的代码。(4)结果分析

①分析设计结果是否达到预期目标。

②针对同一访问序列比较两种算法的缺页率。

虚拟存储管理器的页面调度算法实现

三、虚拟存储管理器的页面调度 页面调度算法主要有:FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU),最佳算法(OPT) 1.输入: 页面流文件,其中存储的是一系列页面号(页面号用整数表示,用空格作为分隔符),用来模拟待换入的页面。 下面是一个示意: 1 2 3 4 1 2 5 1 2 3 4 5 2.处理要求: 程序运行时,首先提示“请输入页面流文件的文件名:”,输入一个文件名后,程序将读入该文件中的有关数据。 初始条件:采用三个页框,初始时均为空。 根据第二次机会算法对数据进行处理。 3.输出要求: 每换入一个页面(即:每读入一个页面号),判断是否有页面需要被换出。若有,把被换出的页面号输出到屏幕上; 若没有,则输出一个“*”号。 4.文件名约定 提交的源程序名字:sourceXXX.c或者sourceXXX.cpp(依据所用语言确定) 输入文件名字:可由用户指定 其中:XXX为账号。 5.测试说明:测试教师将事先准备好一组文件(格式为*.txt),从中为每个程序随机指定一至三个作为输入文件 (被测试者需从键盘输入指定文件的文件名),并查看程序输出结果。 6.第二次机会算法:对FIFO算法做如下简单的修改:发生替换时,先检查最老页面的R(访问)位。如果为0, 那么此页面是最早被换入的,而且近期没有被访问,可以立刻被替换掉;如果R位为1,就清除R位,并修改它的装入时间, 使它就像刚被装入的新页面一样,然后继续搜索可替换的最老页面。 我没做出来~~~~ 页面调度算法主要有:FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU),最佳算法(OPT) 这几种算法的调度都有可能在考试中碰到。 关于这一类型,大家还可以参看书本251页的实验指导。 如2001年考题: 要求: 1。实现三种算法: FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU) 2。页面序列从指定的文本文件(TXT文件)中取出

处理器调度习题

处理器调度 选择题 当CPU执行操作系统代码时,则处理机处于( )。 A.执行态 B.目态 C.管态 D.就绪态 ( )是机器指令的扩充,是硬件的首次延伸,是加在硬件上的第一层软件。 A.系统调用 B.操作系统 C.内核 D.特权指令 操作系统提供给程序员的接口是( )。 A.进程 B.系统调用 C.库函数 D.B和C 用户程序向系统提出使用外设的请求方式是( )。 A.作业申请 B.原语 C.系统调用 D.I/O指令 当作业正常完成进入完成状态时,操作系统( )。 A.将输出该作业的结果并删除内存中的作业 B.将收回该作业的所占资源并输出结果 C.将收回该作业的所占资源及输出结果,并删除该作业 D.将收回该作业的所占资源及输出结果,并将它的控制块从当前的队列中删除 下列选项是关于作业和进程关系的描述,其中哪一个是不正确的( )。 A.作业的概念主要用在批处理系统中,而进程的概念则用在几乎所有的OS中。 B.作业是比进程低一级的概念。 C.一个作业至少由一个进程组成。 D.作业是用户向计算机提交任务的实体,而进程是完成用户任务的执行实体以及向系统申请分配资源的基本单位。 作业从后备作业到被调度程序选中的时间称为( )。 周转时间B.响应时间C.等待调度时间D.运行时间 设有三个作业J1,J2,J3,它们同时到达,运行时间分别为T1,T2,T3,且T1≤T2≤T3,若它们在一台处理机上按单道运行,采用短作业优先算法,则平均周转时间为( )。 A.T1+T2+T3 B.1/3(T1+T2+T3) C.T1+2/3T2+1/3T3 D.T1+1/3T2+2/3T3 从作业提交给系统到作业完成的时间间隔称为作业的( )。 A.中断时间 B.等待时间 C.周转时间 D.响应时间 设有四个作业同时到达,每个作业执行时间均为2 h,它们在一台处理机上按单道方式运行,则平均周转时间为( )。 A.1 h B.5 h C.2.5 h D.8 h FCFS调度算法有利于( )。 A.长作业和CPU繁忙型作业 B.长作业和I/O繁忙型作业 C.短作业和CPU繁忙型作业 D.短作业和I/O繁忙型作业 下列哪种说法不是SJ(P)F调度算法的缺点( )。 A.对于长作业(进程)不利 B.未考虑作业(进程)的紧迫程度 C.不能有效降低作业(进程)的平均等待时间 D.由于根据的是用户提供的估计执行时间,因此不一定真正做到短而优先。 选择排队进程中等待时间最长的进程被优先调度,该调度算法是( )。 A.先来先服务调度算法B.短进程优先调度算法 C.优先权调度算法D.高响应比优先调度算法 在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则此时的优先权调度算法实际上和( )相同。

操作系统实验报告—磁盘调度算法

操作系统实验报告实验3 磁盘调度算法 报告日期:2016-6-17 姓名: 学号: 班级: 任课教师:

实验3 磁盘调度算法 一、实验内容 模拟电梯调度算法,实现对磁盘的驱动调度。 二、实验目的 磁盘是一种高速、大量旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,负担着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请示等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。驱动调度能降低为若干个输入输出请求服务所须的总时间,从而提高系统效率。本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。 三、实验原理 模拟电梯调度算法,对磁盘调度。 磁盘是要供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。 假设磁盘有200个磁道,用C语言随机函数随机生成一个磁道请求序列(不少于15个)放入模拟的磁盘请求队列中,假定当前磁头在100号磁道上,并向磁道号增加的方向上移动。请给出按电梯调度算法进行磁盘调度时满足请求的次序,并计算出它们的平均寻道长度。 四、实验过程 1.画出算法流程图。

2.源代码 #include #include #include int *Init(int arr[]) { int i = 0; srand((unsigned int)time(0)); for (i = 0; i < 15; i++) { arr[i] = rand() % 200 + 1; printf("%d ", arr[i]); } printf("\n"); return arr; } void two_part(int arr[]) { int i = 0; int j = 0;

实验五-页面调度算法模拟实验报告

《计算机操作系统》实验报告 实验五:页面调度算法模拟 学校:╳╳╳ 院系:╳╳╳ 班级:╳╳╳ 姓名:╳╳╳ 学号:╳╳╳

指导教师:╳╳╳ 目录 一、实验题目 (3) 二、实验学时 (4) 三、指导老师 (4) 四、实验日期 (4) 五、实验目的 (4) 六、实验原理 (4) 6.1页面的含义 (4) 6.2 页面置换算法的含义 (4) 6.3 置换算法 (4) 6.3.1最佳置换算法(Optimal) (5) 6.3.2先进先出(FIFO)页面置换算法 (5) 6.3.3 LRU置换算法 (5) 七、实验步骤及结果 (5)

7.1 验证最佳置换算法 (5) 7.1.1 实验截图 (5) 7.1.2 实验分析 (6) 7.2 验证先进先出(FIFO)页面置换算法 (7) 7.2.1 实验截图 (7) 7.2.2 实验分析 (7) 7.3 验证LRU置换算法 (8) 7.3.1 实验截图 (8) 7.3.2 实验分析 (8) 八、报告书写人 (9) 附录一最佳置换算法(Optimal) (9) 附录二先进先出(FIFO)页面置换算法 (15) 附录三LRU置换算法 (20) 实验五:页面调度算法模拟 一、实验题目 页面调度算法模拟

二、实验学时 2学时 三、指导老师 ╳╳╳ 四、实验日期 2018年12月10日星期一 五、实验目的 (1)熟悉操作系统页面调度算法 (2)编写程序模拟先进先出、LRU等页面调度算法,体会页面调度算法原理 六、实验原理 6.1页面的含义 分页存储管理将一个进程的逻辑地址空间分成若干大小相等的片,称为页面或页。 6.2 页面置换算法的含义 在进程运行过程中,若其所要访问的页面不在内存而需把它们调入内存,但内存已无空闲空间时,为了保证该进程能正常运行,系统必须从内存中调出一页程序或数据,送磁盘的对换区中。但应将哪个页面调出,须根据一定的算法来确定。通常,把选择换出页面的算法称为页面置换算法(Page_Replacement Algorithms)。 6.3 置换算法 一个好的页面置换算法,应具有较低的页面更换频率。从理论上讲,应将那些以后不再会访问的页面换出,或将那些在较长时间内不会再访问的页面调出。

C语言模拟CPU调度

C语言模拟CPU调度 C语言模拟CPU调度 CPU在处理多个进程时,要根据各种情况对处理的进程进行调度。这其中就包括对各个进程优先级的处理,和调度算法的处理。下面这个C语言程序,是我在大学期间学习《操作系统》课程的CPU调度时编写的,模拟了CPU的两种调度模式和各种模式所对应的多种调度算法。为了模拟得更为形象,采用了图形屏幕输出。 #include<stdlib.h> #include<stdio.h> #include<conio.h> #include<graphics.h> #include<math.h> #include<dos.h> #define NULL 0 /*-----------------------------------------------------------------*/ struct event /*事件结点结构*/ { int evtype; /*1:进程产生。2:进程执行。3:激

活阻塞进程。 4:进程执行完5:进程阻塞* 6:返回事件*/ int pnum; /*执行该事件的进程号*/ int t; /*事件发生的时间*/ int ifblock; /*如果是执行事件标准其有无阻塞,其它事件时无定义*/ struct event *next; }; struct process /*进程结点结构*/ { int pnum; /*进程号*/ int plong; /*进程长度*/ int prior; /*进程优先级*/ int blocknum; /*进程当前的阻塞数*/ int runtime; /*执行次数*/ struct process *next; }; struct headnod /*队列头结点结构*/ { struct process *head; /*队列头*/ int totalpro; /*队列中的进程数*/

进程调度算法模拟 (操作系统课程设计报告)

福建农林大学计算机与信息学院 课程设计报告 课程名称:操作系统 实习题目:进程调度算法模拟 姓名: 系:计算机科学与技术系 专业:计算机科学与技术 年级:2012 学号: 指导教师: 职称:副教授 年月日

福建农林大学计算机与信息学院计算机类 课程设计结果评定

目录 1.本选题课程设计的目的 (4) 2.本选题课程设计的要求 (4) 3.本选题课程设计报告内容 (4) 3.1前言 (4) 3.2进程调度算法模拟的环境 (4) 3.3系统技术分析 (4) 3.4系统流程图及各模块 (5) 3.5程序调试情况 (8) 4.总结 (11) 参考文献 (11) 程序代码 (12)

1.设计目的 课程设计将课本上的理论知识和实际有机的结合起来,锻炼学生的分析系统,解决实际问题的能力。提高学生分析系统、实践编程的能力。 2.设计要求 利用学到的操作系统和编程知识,完成具有一定难度的系统分析研究或系统设计题目。其中:专题系统理论研究应包括研究目的、目标,论点和论据以及证明推导等;分析、设计系统应包括编写、调试程序以及最后写出设计报告或系统说明文档文件,系统说明文档包括系统界面、变量说明、系统功能说明、编程算法或思路、流程图和完整程序。具体要求如下: 1、对系统进行功能模块分析、控制模块分析正确; 2、系统设计要实用; 3、编程简练,可用,功能全面; 4、说明书、流程图要清楚。 3.设计方案 3.1前言 本程序包括三种算法,用C或C++语言实现,执行时在主界面选择算法(可用函数实现),进入子页面后输入进程数,(运行时间,优先数由随机函数产生),执行,显示结果。 3.2本选题设计的环境 WindowsXP下的Microsoft Visual C++ 6.0 3.3系统技术分析 (1)编程实现对N个进程采用某种进程调度算法(如动态优先权调度算法、先来先服务算法、短进程优先算法、时间片轮转调度算法)调度执行的模拟。(2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段:进程标识数ID。 进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。

处理器调度(设计一个按时间片轮转法实现处理器调度的程序)

实验一处理器调度 一、实验容 选择一个调度算法,实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实习模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验题目 设计一个按时间片轮转法实现处理器调度的程序。 [提示]: (1)假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。进程控制块的 格式为: 其中,Q1,Q2,Q3,Q4,Q5。 指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址最后一个进程的指针指出第一个进程的进程控制块首地址。 要求运行时间——假设进程需要运行的单位时间数。 已运行时间——假设进程已经运行的单位时间数,初始值为“0”。 状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R”表示。 当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 每次运行所设计的处理器调度程序前,为每个进程任意确定它的“要求运行时间”。 (3) 把五个进程按顺序排成循环队列,用指针指出队列连接情况。另用一标志单元记录轮到运行的进程。例如,当前轮到P2执行,则有: 标志单元 K1 K2 K 3 K4 K5

(4)处理器调度总是选择标志单元指示的进程运行。由于本实习是模拟处理器调度的 功能,所以,对被选中的进程并不实际的启动运行,而是执行: 已运行时间+1 来模拟进程的一次运行,表示进程已经运行过一个单位的时间。 请同学注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行满一个时间片。在这时省去了这些工作,仅用“已运行时间+1”来表示进程已 经运行满一个时间片。 (5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一 个轮到运行的进程。同时,应判断该进程的要求运行时间与已运行时间,若该进程的要求运行时间 已运行时间,则表示它尚未执行结束,应待到下一轮时再运行。若该进程的要求运行时间=已运行时间,则表示它已经执行结束,应指导它的状态修改成“结束”(E)且退出队列。此时,应把该进程的进程控制块中的指针值送到前 面一个进程的指针位置。 (6)若“就绪”状态的进程队列不为空,则重复上面的(4)和(5)的步骤,直到所有 的进程都成为“结束”状态。 (7)在所设计的程序中应有显示或打印语句,能显示或打印每次选中进程的进程名以及 运行一次后进程队列的变化。 (8)为五个进程任意确定一组“要求运行时间”,启动所设计的处理器调度程序,显示 或打印逐次被选中的进程名以及进程控制块的动态变化过程。 四. 所用数据结构及符号说明 typedef struct PNode//PCB { struct PNode *next; //定义指向下一个节点的指针 char name[10]; //定义进程名,并分配空间 int All_time; //定义总运行时间 int Runed_Time; //定义已运行时间 char state; //定义进程状态Ready/End } *Proc; //指向该PCB的指针 int ProcNum; //总进程数

进程调度算法模拟实验

华北科技学院计算机系综合性实验 实验报告 课程名称操作系统C 实验学期2012至2013学年第2学期学生所在系部计算机系 年级专业班级 学生姓名学号 任课教师杜杏菁 实验成绩 计算机系制

《操作系统C》课程综合性实验报告 开课实验室:基础六机房2013年6月3日 实验题目进程调度算法模拟 一、实验目的 通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。 二、设备与环境 1.硬件设备:PC机一台 2.软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java等编程语言环境。 三、实验内容 (1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段: ?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进 入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,将 转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。

天津理工大学 操作系统实验3:磁盘调度算法地实现

实验报告学院(系)名称:计算机与通信工程学院

【实验过程记录(源程序、测试用例、测试结果及心得体会等)】 #include #include #include using namespace std; const int MaxNumber=100; int TrackOrder[MaxNumber]; int MoveDistance[MaxNumber]; //----移动距离; int FindOrder[MaxNumber]; //-----寻好序列。 double AverageDistance; //-----平均寻道长度 bool direction; //-----方向 true时为向外,false为向里 int BeginNum; //----开始磁道号。 int M; //----磁道数。 int N; //-----提出磁盘I/O申请的进程数 int SortOrder[MaxNumber]; //----排序后的序列 bool Finished[MaxNumber]; void Inith() { cout<<"请输入磁道数:"; cin>>M; cout<<"请输入提出磁盘I/O申请的进程数:"; cin>>N; cout<<"请依次输入要访问的磁道号:"; for(int i=0;i>TrackOrder[i]; for(int j=0;j>BeginNum; for(int k=0;k=0;i--) for(int j=0;jSortOrder[j+1])

实验3-页面调度算法

实验报告 院(系): 专业班级: 学号: 姓名: 实验地点: 实验日期:

课程名称实验项目名称实验学时实验类型计算机操作系统页面调度算法 2 验证型 一、实验目的及要求 通过本实验可以加深理解有关虚拟存储器的工作原理,进一步体会和了解页面替换算法的具体实现方法。 二、实验环境 PC /Windows系统/Visual C++6.0 三、实验内容 ①实现三种算法:先进先出;OPT;LRU ②页面序列从指定的文本文件(TXT文件)中取出 ③输出:第一行:每次淘汰的页面号,第二行:显示缺页的总次数 四、实验步骤 1.先进先出(FIFO)置换算法的思路 该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单,只需把一个进程已调入内存的页面,按照先后次序连接成一个队列,并设置一个替换指针,使它总指向最老的页面。 2.最近久未使用(LRU)置换算法的思路 最近久未使用置换算法的替换规则,是根据页面调入内存后的使用情况来进行决策的。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当需淘汰一个页面的时候选择现有页面中其时间值最大的进行淘汰。 3.最佳(OPT)置换算法的思路 其所选择的被淘汰的页面,将是以后不使用的,或者是在未来时间内不再被访问的页面,采用最佳算法,通常可保证获得最低的缺页率。

4、流程图如下图所示: 五、调试过程 程序结构分析: 程序共有以下九个部分: int findSpace(void);//查找是否有空闲内存 int findExist(int curpage);//查找内存中是否有该页面 开始 取一条指令 取指令中访问的页号=>L 查 页 表 页标记=1? 形成绝对地址 是“存”指令? 置L 页修改标记“1” 输出绝对地址 输出“*页号” 有后继指令? 取一条指令 结 束 J:=P[k] J 页的修改标记 输出“OUTj ” 输出“INL ” P[k]:=L k:=(k+1) mod m 修改页面 是 否 是 否 否(产生缺页中断) 是 否

模拟一种处理机调度算法讲解

课程设计报告 设计名称:模拟实现一种处理机调度算法 学生姓名: xxx 专业:计算机科学与技术 班别: xxxxxxxx 学号: xxxxxx 指导老师: xxxxx 日期: 2014 年 6 月 20 日

初始条件: 1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。 2.实践准备:掌握一种计算机高级语言的使用。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.模拟进程调度,能够处理以下的情形: ⑴能够选择不同的调度算法(要求中给出的调度算法); ⑵能够输入进程的基本信息,如进程名、优先级、到达 时间和运行时间等; ⑶根据选择的调度算法显示进程调度队列; ⑷根据选择的调度算法计算平均周转时间和平均带权周 转时间。 2.设计报告内容应说明: ⑴需求分析; ⑵功能设计(数据结构及模块说明); ⑶开发平台及源程序的主要部分; ⑷测试用例,运行结果与运行情况分析; ⑸自我评价与总结: i)你认为你完成的设计哪些地方做得比较好或比较出 色; ii)什么地方做得不太好,以后如何改正;

iii)从本设计得到的收获(在编写,调试,执行过程中 的经验和教训); iv)完成本题是否有其他方法(如果有,简要说明该方 法); 进程调度模拟设计——先来先服务、优先级法1、背景: 当计算机系统是多道程序设计系统时,通常会有多个进程或线程同时竞争CPU。只要有两个或更多的进程处于就绪状态,这种情形就会发生。如果只有一个CPU可用,那么就必须选择下一个要运行的进程。在操作系统中,完成选择工作的这一部分称为调度程序,该程序使用的算法成为调度算法。 进程调度的核心问题是采用什么样的算法把处理机分配给进程,好的算法将提高资源利用率,减少处理机的空闲时间,避免有些作业长期得不到相应的情况发生等,从而设计出受欢迎的操作系统。较常见的几种进程调度算法有:先来先服务调度算法;短作业优先调度算法;时间片轮转调度算法;优先级调度算法;高响应比优先算法和多级反馈队列调度算法等。 2.1设计目的 无论是在批处理系统还是分时系统中,用户进程数一般都多于处理机数、这将导致它们互相争夺处理机。另外,系统进程也同样需要使用处理机。这就要求进程调度程序按一定的策略,动态地把处理机

进程调度算法的模拟实现

操作系统课程设计报告题目:进程调度算法的模拟实现_ 专业计算机科学与技术 学生姓名 班级 学号 指导教师 发放日期2015.1.30 信息工程学院

目录 1 概述 (1) 2 设计原理 (1) 2.1先来先服务算法 (1) 3 详细设计与编码 (2) 3.1 模块设计 (2) 3.2 系统流程图 (2) 3.3 系统详细设计 (2) 4 结果与分析 (6) 4.1 测试方案 (6) 4.2 测试结果 (6) 4.3 测试结果分析 (9) 5 设计小结 (10) 6 参考文献 (10) 附录程序代码 (12)

进程调度算法的模拟实现 进程调度算法的模拟实现 1 概述 选择一个调度算法,实现处理机调度,进程调度算法包括:先来先服务算法,短进程优先算法,时间片轮转算法,动态优先级算法。可选择进程数量,本程序包括四种算法,用C或C++语言实现,执行时在主界面选择算法(可用函数实现),进入子页面后输入进程数,(运行时间,优先数由随机函数产生),执行,显示结果。 2 设计原理 2.1先来先服务(FCFS)算法 每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源创建进程,然后放入就绪队列 2.2 时间片轮转法(RR)算法 系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。时间片的大小从几ms到几百ms。当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。 2.3短作业优先(SJF)算法 短作业优先调度算法是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。 2.4最高优先权优先(HRRN)算法 优先权调度算法是为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入最高优先权优先调度算法。动态优先权是指在创建进程时所赋予的优先权,是可以随进程的推进或随其等待时间的增加而改变的,以便获得更好的调度性能。

LRU页面调度算法实现

LRU页面调度算法实现 学院计算机科学与技术专业计算机科学与技术学号 学生姓名 指导教师姓名 2014年3月16 日

目录 1.实验要求 (2) 2.实验目的 (2) 3.实验内容 (2) 4.相关知识 (2) 5.实验原理 (3) 6.流程图 (4) 7.源代码 (5) 8.运行结果 (9) 9.实验心得 (10) 10.参考文献 (11)

LRU页调度算法实现 一实验要求: 1.不同的功能使用不同的函数实现(模块化),对每个函数的功能和调用接口要注释清 楚。对程序其它部分也进行必要的注释。 2.对系统进行功能模块分析、画出总流程图和各模块流程图。 3.用户界面要求使用方便、简洁明了、美观大方、格式统一。所有功能可以反复使用,最好使用菜单。 4.通过命令行相应选项能直接进入某个相应菜单选项的功能模块。 5.所有程序需调试通过。 二实验目的: 将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。进一步巩固和复习操作系统的基础知识。培养学生结构化程序、模块化程序设计的方法和能力。提高学生调试程序的技巧和软件设计的能力。提高学生分析问题、解决问题以及综合利用C 语言进行程序设计的能力。 三实验内容: 程序应模拟实现LRU 算法思想,对n个页面实现模拟调度。 四相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义:

虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。 请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 五.实验原理: 目前有许多页面调度算法,本实验主要涉及最近最久未使用调度算法。本实验使用页面调度算法时作如下假设,进程在创建时由操作系统为之分配一个固定数目物理页,执行过程中物理页的数目和位置不会改变。也即进程进行页面调度时只能在分到的几个物理页中进行。 LRU基本思想: LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的。 关于操作系统的内存管理,如何节省利用容量不大的内存为最多的进程提供资源,一直是研究的重要方向。而内存的虚拟存储管理,是现在最通用,最成功的方式——在内存有限的情况下,扩展一部分外存作为虚拟内存,真正的内存只存储当前运行时所用得到信息。这无疑极大地扩充了内存的功能,极大地提高了计算机的并发度。虚拟页式存储管理,则是将进程所需空间划分为多个页面,内存中只存放当前所需页面,其余页面放入外存的管理方式。 LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条指令中频繁使用。反过来说,已经很久没有使用的页面很可能在未来较长的一段时间内不会被用到。这个,就是著名的局部性原理——比内存速度还要快的cache,也是基于同样的原理运行的。因此,我们只需要在每次调换时,找到最近最少使用的那个页面调出内存。这就是LRU算法的全部内容。 实验中是用一维数组page[pSIZE]存储页面号序列,memery[mSIZE]是存储装入物理块中的页面。数组flag[10]标记页面的访问时间。每当使用页面时,刷新访问时间。发生缺页时,就从物理块中页面标记最小的一页,调出该页,换入所缺的页面。

处理器调度习题教学内容

处理器调度习题

处理器调度 选择题 ?当CPU执行操作系统代码时,则处理机处于( )。 ?A.执行态 B.目态 C.管态 D.就绪态 ?( )是机器指令的扩充,是硬件的首次延伸,是加在硬件上的第一层软件。 ?A.系统调用 B.操作系统 C.内核 D.特权指令 ?操作系统提供给程序员的接口是( )。 ?A.进程 B.系统调用 C.库函数 D.B和C ?用户程序向系统提出使用外设的请求方式是( )。 ?A.作业申请 B.原语 C.系统调用 D.I/O指令 ?当作业正常完成进入完成状态时,操作系统( )。 ?A.将输出该作业的结果并删除内存中的作业 ?B.将收回该作业的所占资源并输出结果 ?C.将收回该作业的所占资源及输出结果,并删除该作业 ?D.将收回该作业的所占资源及输出结果,并将它的控制块从当前的队列中删除 ?下列选项是关于作业和进程关系的描述,其中哪一个是不正确的( )。 ?A.作业的概念主要用在批处理系统中,而进程的概念则用在几乎所有的OS中。 ?B.作业是比进程低一级的概念。 ?C.一个作业至少由一个进程组成。 ?D.作业是用户向计算机提交任务的实体,而进程是完成用户任务的执行实体以及向系统申请分配资源的基本单位。 ?作业从后备作业到被调度程序选中的时间称为( )。 ?周转时间B.响应时间C.等待调度时间D.运行时间 ?设有三个作业J1,J2,J3,它们同时到达,运行时间分别为T1,T2,T3,且T1≤T2≤T3,若它们在一台处理机上按单道运行,采用短作业优先算法,则平均周转时间为( )。 ?A.T1+T2+T3 B.1/3(T1+T2+T3) ?C.T1+2/3T2+1/3T3 D.T1+1/3T2+2/3T3 ?从作业提交给系统到作业完成的时间间隔称为作业的( )。 ?A.中断时间 B.等待时间 C.周转时间 D.响应时间 ?设有四个作业同时到达,每个作业执行时间均为2 h,它们在一台处理机上按单道方式运行,则平均周转时间为( )。 ?A.1 h B.5 h C.2.5 h D.8 h ?FCFS调度算法有利于( )。 ?A.长作业和CPU繁忙型作业 B.长作业和I/O繁忙型作业 ?C.短作业和CPU繁忙型作业 D.短作业和I/O繁忙型作业 ?下列哪种说法不是SJ(P)F调度算法的缺点( )。 ?A.对于长作业(进程)不利 ?B.未考虑作业(进程)的紧迫程度 ?C.不能有效降低作业(进程)的平均等待时间 ?D.由于根据的是用户提供的估计执行时间,因此不一定真正做到短而优先。 ?选择排队进程中等待时间最长的进程被优先调度,该调度算法是( )。 ?A.先来先服务调度算法B.短进程优先调度算法 ?C.优先权调度算法D.高响应比优先调度算法 ?在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则此时的优先权调度算法实际上和( )相同。 ?A.先来先服务调度算法B.短进程优先调度算法

进程模拟调度算法课程设计

一.课程概述 1.1.设计构想 程序能够完成以下操作:创建进程:先输入进程的数目,再一次输入每个进程的进程名、运行总时间和优先级,先到达的先输入;进程调度:进程创建完成后就选择进程调度算法,并单步执行,每次执行的结果都从屏幕上输出来。 1.2.需求分析 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目,要使这多个进程能够并发地执行,这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统必(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。本次实验在VC++6.0环境下实现先来先服务调度算法,短作业优先调度算法,高优先权调度算法,时间片轮转调度算法和多级反馈队列调度算法。 1.3.理论依据 为了描述和管制进程的运行,系统为每个进程定义了一个数据结构——进程控制块PCB(Process Control Block),PCB中记录了操作系统所需的、用于描述进程的当前情况以及控制进程运行的全部信息,系统总是通过PCB对进程进行控制,亦即,系统是根据进程的PCB 而不是任何别的什么而感知进程的存在的,PCB是进程存在的惟一标志。本次课程设计用结构体Process代替PCB的功能。 1.4.课程任务 一、用C语言(或C++)编程实现操作模拟操作系统进程调度子系统的基本功能;运用多 种算法实现对进程的模拟调度。 二、通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转、短作业优先、多 级反馈队列调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 三、实现用户界面的开发

磁盘调度算法的模拟实现

磁盘调度算法的模拟实现 学院 专业 学号 学生姓名 指导教师姓名 2014年3月19日 目录

一、课设简介 (2) 1.1 课程设计题目 (2) 1.2 课程设计目的 (2) 1.3 课程设计要求 (2) 二、设计内容 (3) 2.1功能实现 (3) 2.2流程图 (3) 2.3具体内容 (3) 三、测试数据 (4) 3.3 测试用例及运行结果 (4) 四、源代码 (5) 五、总结 (12) 5.1 总结............................................ 一、课设简介 1.1课程设计题目

磁盘调度算法的模拟实现1 1.2程序设计目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。 1)进一步巩固和复习操作系统的基础知识。 2)培养学生结构化程序、模块化程序设计的方法和能力。 3)提高学生调试程序的技巧和软件设计的能力。 4)提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 1.3 设计要求 1)磁头初始磁道号,序列长度,磁道号序列等数据可从键盘输入,也可从文件读入。 2)最好能实现磁道号序列中磁道号的动态增加。 3)磁道访问序列以链表的形式存储 4)给出各磁盘调度算法的调度顺序和平均寻道长度 二、设计内容 2.1 功能实现 设计并实现一个本别利用下列磁盘调度算法进行磁盘调度的模拟

程序。 1) 先来先服务算法FCFS 2) 最短寻道时间优先算法 SSTF 2.2流程图 2.3具体内容 1)先来先服务算法FCFS 这是一种比较简单的磁盘调度算法。它根据进程请求访问磁盘 的先后次序进行调度。此算法的优点是公平、简单,且每个进程的请 求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情 况。此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情开始 选择算法 F C F S S S T F 结束

页面调度算法

#include #include #include #define null 0 #define len sizeof(struct page) struct page { int num; int tag; struct page *next; }; struct page *creat(int n) { int count=1; struct page *p1,*p2,*head; head=p2=p1=(struct page *)malloc(len); p1->tag=-1; p1->num=-1; while(counttag=-1; p1->num=-1; p2->next=p1; p2=p1; } p2->next=null; return(head); } void FIFO(int array[],int n) { int *p; int count=0; struct page *cp,*dp,*head,*newp; head=creat(n); p=array; while(*p!=-1) { cp=dp=head;

for(;cp->num!=*p&&cp->next!=NULL;) cp=cp->next; if(cp->num==*p) printf(" ! "); else { count++; cp=head; for(;cp->tag!=-1&&cp->next!=NULL;) cp=cp->next; if(cp->tag==-1) { cp->num=*p; cp->tag=0; printf(" * "); } else { newp=(struct page*)malloc(len); newp->num=*p; newp->tag=0; newp->next=null; cp->next=newp; head=head->next; printf(" %d ",dp->num); free(dp); } } p++; } printf("\nQueye Zongshu:%d\n",count); } void LRU(int array[],int n) { int count=0,*p=array; struct page *head,*cp,*dp,*rp,*newp,*endp; head=creat(n); while(*p!=-1) { cp=dp=rp=endp=head; //for(;endp->next!=NULL;) endp=endp->next; //for(;cp->num!=*p&&cp->next!=NULL;) {

按优先数调度算法实现处理器调度的模拟设计与实现

实验1 处理器调度 一、实验内容 选择一个调度算法,实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验题目 按优先数调度算法实现处理器调度的模拟设计与实现。 四、源程序 #include #include using namespace std; //----------------------- struct _proc { char name[32]; struct _proc *next; int run_time; int priority; int state;//就绪为 }; _proc *root; //向就绪队列中插入进程,按照降序 void Insert(_proc* pr) { _proc *q=root;//方便插入,记录插入位置的前面的进程 _proc *p=root->next; if(root->state!=0) { while(p!=NULL)//找插入位置 { if(p->priority>pr->priority)//优先级小于时,继续遍历 { q=p; p=p->next; }

else//找到插入 { break; } } } pr->next=p;//插入 q->next=pr; ++root->state;//进程个数加一 } //创建进程 _proc Creat(char name[],int priority,int run_time) { _proc pr; strcpy(https://www.wendangku.net/doc/7d17460658.html,,name); pr.priority=priority; pr.run_time=run_time; pr.state=0; pr.next=NULL; return pr; } //删除就绪队列中对首进程 _proc* Delete() { _proc* pr=root->next; root->next=root->next->next; --root->state; return pr; } //对就绪队列排序,按照降序 void Sort() { if(root->next->run_time==0)//要执行时间为时,从就绪队列中删除该进程{ Delete(); root->next->state=1;

相关文档
相关文档 最新文档