文档库 最新最全的文档下载
当前位置:文档库 › 差分法求解初边值问题

差分法求解初边值问题

差分法求解初边值问题
差分法求解初边值问题

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

数学实验“微分方程组边值问题数值算法(打靶法,有限差分法)”实验报告(内含matlab程序)

西京学数学软件实验任务书

实验二十七实验报告 一、实验名称:微分方程组边值问题数值算法(打靶法,有限差分法)。 二、实验目的:进一步熟悉微分方程组边值问题数值算法(打靶法,有限差分法)。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.打靶法: 对于线性边值问题 ?? ?==∈=+'+''β α)(,)(] ,[) ()()(b y a y b a x x f y x q y x p y (1) 假设L 是一个微分算子使:()()Ly y p x y q x y '''=++ 则可得到两个微分方程: )(1x f Ly =,α=)(1a y ,0)(1 ='a y ?)()()(111 x f y x q y x p y =+'+'',α=)(1a y ,0)(1='a y (2) 02=Ly ,0)(2=a y ,1)(2 ='a y ?0)()(222 =+'+''y x q y x p y ,0)(2=a y ,1)(2='a y (3) 方程(2),(3)是两个二阶初值问题.假设1y 是问题(2)

的解,2y 是问题(3)的解,且2()0y b ≠,则线性边值问题(1)的解为:1122() ()()()() y b y x y x y x y b β-=+ 。 2.有限差分法: 基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 五、实验内容: %线性打靶法 function [k,X,Y,wucha,P]=xxdb(dydx1,dydx2,a,b,alpha,beta,h) n=fix((b-a)/h); X=zeros(n+1,1); CT1=[alpha,0]; Y=zeros(n+1,length(CT1)); Y1=zeros(n+1,length(CT1)); Y2=zeros(n+1,length(CT1)); X=a:h:b; Y1(1,:)= CT1; CT2=[0,1];Y2(1,:)= CT2; for k=1:n k1=feval(dydx1,X(k),Y1(k,:)) x2=X(k)+h/2;y2=Y1(k,:)'+k1*h/2;

变分法的发展与应用

变分法的发展与应用 应用数学11XX班XXX 104972110XXXX 摘要:变分法是研究泛函卡及值的数学分支,其基本问题是求泛函(函数的雨数)的极值及相应的极值函数。变分法是重要的数学分支,与诸如微分方程、数学物理、极小曲面用论、微分几何、黎曼几何、积分力‘程、拓扑学等许多数学分支或部门均有密切联系。变分法有着广泛的应用:变分法构成了物理学中的种种变分原理,成为物理学理论不可缺少的组成部分,是研究力学、弹性理论、电磁学、相对论、量子力学等许多物理学分支的重要工具;变分法通过“直接方法”而成为近似计算的有效于段,为微分方程边值问题的数值解法开辟了一条途径,形成了有限元方法的基础之一。近年来,变分法又在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 关键词:起源;发展;应用 1.引言 变分法是17世纪末发展起来的一门数学分支,是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。它最终寻求的是极值函数:它们使得泛函取得极大或极小值。变分法起源于一些具体的物理问题学问题,最终由数学家研究解决。变分法在科学与技术的各个领域尤其是在物理学中有着十分重要的作用,它提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们在材料学中研

究材料平衡中大量使用。微分几何中的测地线的研究也是显然的变分性质的领域。 近年来,变分法在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 2.变分法的起源 物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。 受费尔马的影响,约翰伯努利研究了“最速降线”问题:给 定空间中的两个点,a b,其中a比b高,求一条连接两点的曲线使得一个质点从a沿曲线下降到b用时最少。 变分法对于几何的应用在早期主要是对曲面上的测地线和欧氏空间中给定边界的极小曲面(Plateau问题)的研究。但在很长时间内仅限于一些特殊情形,没有重要进展。 3.变分法的发展 18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。19世纪人们把变分法广泛应用到数学物理中去,建立了极值函数的充分条件。20世纪伊始,希尔伯

两点边值问题的有限差分法

学生实验报告 实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计2班学生姓名学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年月日

[]0max N i i c i N e u u <<=-,[]1 2 1 N N i i i e h u u -== -∑及收敛阶 ( )2ln ln 2 N N e e ,将计算结果填入 第五部分的表格,并对表格中的结果进行解释? 4. 将数值解和精确解画图显示,每种网格上的解画在一张图。 三.实验原理、方法(算法)、步骤 1. 差分格式: =-1/h^2(-( ) + )+ ( )/2h+ = A, 2. 局部阶段误差: (u)=O(h^2) 3.程序 clear all N=10; a=0;b=1; p=@(x) 1; r=@(x) 2; q=@(x) 3; alpha=0;beta=1; f=@(x) (4*x^2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); H(i,i+1)=-(2*p(a+(i+1/2)*h)/h-r(a+i*h)); g(i)=2*h*f(a+i*h)+(2*p(a+(i-1/2)*h)/h+r(a+i*h))*alpha; end

五.实验结果及实例分析 N N c e 收敛阶 N e 收敛阶 10 0.00104256 …… 0.00073524 …… 20 0.00026168 1.9341 0.00018348 1.4530 40 0.00006541 2.0001 0.00004585 2.0000 80 0.00001636 1.9993 0.00001146 2.0000 160 0.00000409 2.0000 0.00000287 2.0000 N 越大 只会使绝对误差变小,方法没变,所以收敛阶一致。 图示为:(绿线为解析解,蓝线为计算解) N=10 N=20

有限差分法解微分方程两点边值问题

使用有限差分方法解边值问题: 由两点边值问题的一般形式: 根据差分方程: 当网格划分均匀,即有,化简差分方程: 代入再次化简: 用方程组展开写成矩阵形式: MATLAB编程:

运行后算出的结果:0 0.00376645934479969 0.00752341210586145 0.0112613555020809 0.0149707943560995 0.0186422448923756 0.0222662385306948 0.0258333256736017 0.0293340794862392 0.0327590996670822 0.0360990162080584 0.0393444931425513 0.0424862322797872 0.0455149769241112 0.0484215155776656 0.0511966856249889 0.0538313769980622 0.0563165358203363 0.0586431680282822 0.0608023429690169

0.0627851969725639 0.0645829368973219 0.0661868436473210 0.0675882756598612 0.0687786723621374 0.0697495575954688 0.0704925430057619 0.0709993313988528 0.0712617200593841 0.0712716040318917 0.0710209793627865 0.0705019463019362 0.0697067124625652 0.0686275959382091 0.0672570283754778 0.0655875580013963 0.0636118526041142 0.0613227024657904 0.0587130232464804 0.0557758588178718 0.0525043840457360 0.0488919075199819 0.0449318742312199 0.0406178681927653 0.0359436150070336 0.0309029843752992 0.0254899925498146 0.0196988047273101 0.0135237373829146 0.00695926054356603 0 与精确解比较:

两点边值问题的有限差分法

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 学生实验报告 实验课程名称偏微分方程数值解 _________________ 开课实验室___________ 数统学院 ____________________ 学院数统年级2013专业班信计2班 学生姓名_________ 学号________ 开课时间2015至2016学年第2 学期

数学与统计学院制 .实验内容 考虑如下的初值问题: 定常数。 部分。 0, b 1 , p 3,r 1,q 2 , 0 , 1,问题(1)的精确解 ux x 2e x 1 , 及p 1,r 2,q 3带入方程(1)可得f x 。分别取 并能通过计算机语言编程实现。 .实验目的 通过该实验,要求学生掌握求解两点问题的有限差分法, 开课学院、实验室: 数统学院 实验时间:2016年 月 日 Lu d du x —p x ------------ dx dx du x dx q f x , x a, b (1) 其中 p x C 1 a,b , x ,q a,b P min 0 , q x 0 ,,是给 将区间N 等分, 网点x 1.在第三部分写出问题( 1)和 (2)的差分格式,并给出该格式的局部截断 2.根据你写出的差分格式, 编写一个有限差分法程序。将所写程序放到第四 3.给定参数a 其中将u x

N 10,20,40,80,160 ,用所编写的程序计算问题 (1)和⑵。将数值解记为 5 , i 1,...,N 1,网点处精确解记为i 1,…,N 1。然后计算相应的误差 1 l N /I 2 Nil h u i U i 2及收敛阶 n e : e 11,将计算结果填入 I i In 2 第五部分的表格,并对表格中的结果进行解释? 4.将数值解和精确解画图显示,每种网格上的解画在一张图。 三?实验原理、方法(算法)、步骤 1. 差分格式: L L .i=-1/h A 2O |] (% 曲汀—):i.「)/2h+w = 応=A,匕 2. 局部阶段误差: n (u)=O(hA2) 3. 程序 clear all N=10; a=0;b=1; P=@(x) 1; r=@(x) 2; q=@(x) 3; aIpha=0;beta=1; f=@(x) (4*xA2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); max u i c 0 i N i i U i N e

两点边值问题的有限元解法【文献综述】

文献综述 信息与计算科学 两点边值问题的有限元解法 有限元方法已成为当前求解偏微分方程数值解的一个重要方法, 从数学上看, 这种方法起源于变分法, 是古典的变分法与分片多项式插值相结合的产物, 20世纪50年代初, 从事航空工程、土木结构、水利建设的工程师们开始应用和发展一种用离散模型代替连续模型的方法求解各种结构力学问题, 并且逐渐波及各个连续场领域, 1960年美国人Ray Clough教授首先给出了“有限元方法”]1[这一名称. Clough教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”, 即有限元法是Rayleigh Ritz法的一种局部化情况.不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法, 有限元方法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数), 且不考虑整个定义域的复杂边界条件, 这是有限元法优于其他近似方法的 原因之一.对于不同物理性质和数学模型的问题, 有限元求解法的基本步骤是相同的, 只是具体公式推导和运算求解不同.有限元求解问题的基本步骤通常为:首先讨论问题的求解域, 根据实际问题近似确定求解域的物理性质和几何区域.并求解域离散化, 将求解域近似为具有不同有限大小和形状且彼此相连的有限个单 元组成的离散域, 习惯上称为有限元网络划分; 然后确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示, 为适合有限元求解, 通常将微分方程化为等价的泛函形式;接下来进行单元推导:对单元构造一个适合的近似解, 即推导有限单元的列式, 其中包括选择合理的单元坐标系, 建立单元试函数, 以某种方法给出单元各状态变量的离散关系, 从而形成单元矩阵.最后将单元总装形成离散域的总矩阵方程, 反映对近似求解域的离散域的要求, 即单元函数的连续性要满足一定的连续条件.并联立方程组求解, 有限元法最终导致联立方程常用的求解方法如直接法、选代法和随机法.求解结果是单元结点处状态变量的近似值. 我国著名数学家冯康先生说过, 同一物理问题可以有许多不同的数学形式, 它们在数学上是等价的, 但在实践中并不等效, 从不同的数学形式可能导致不同的数值计算方法, 原问

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

金融工程期末复习题知识讲解

金融工程期末复习题

一、简述题(30分) 1.金融工程包括哪些主要内容? 答:产品与解决方案设计,准确定价与风险管理是金融工程的主要内容 P3 2.金融工程的工具都有哪些? 答:基础证券(主要包括股票和债券)和金融衍生产品(远期,期货,互换和期权)P4 3.无套利定价方法有哪些主要特征? 答:a.套利活动在无风险的状态下进行 b.无套利的关键技术是“复制”技术 c.无风险的套利活动从初始现金流看是零投资组合,即开始时套利者不需要 任何资金的投入,在投资期间也不需要任何的维持成本。P16 4.衍生证券定价的基本假设为何? 答:(1)市场不存在摩擦 (2)市场参与者不承担对手风险 (3)市场是完全竞争的 (4)市场参与者厌恶风险,且希望财富越多越好 (5)市场不存在无风险套利机会 P20 5.请解释远期与期货的基本区别。 答:a.交易场所不同 b.标准化程度不同 c.违约风险不同 d.合约双方关系不同 e.价格确定方式不同 f.结算方式不同 g.结清方式不同 P44 6.金融互换的主要有哪些种类? 答:利率互换与货币互换和其它互换(交叉货币利率互换、基点互换、零息互换、后期确定互换、差额互换、远期互换、股票互换等等)P104 7.二叉树定价方法的基本原理是什么? 答:二叉树图方法用离散的模型模拟资产价格的连续运动,利用均值和方差匹配来确定相关参数,然后从二叉树图的末端开始倒推可以计算出期权价格。P214 8.简要说明股票期权与权证的差别。 答:股本权证与备兑权证的差别主要在于: (1)有无发行环节; (2)有无数量限制; (3)是否影响总股本。 股票期权与股本权证的区别主要在于: (1)有无发行环节 (2)有无数量限制。P162 9.影响期权价格的因素主要有哪些?它们对欧式看涨期权有何影响? 答: 1)标的资产的市场价格(+) 2)期权的协议价格(—) 3)期权的有效期(?) 4)标的资产价格的波动率(+) 5)无风险利率(+) 6)标的资产收益(—)

实验一用有限差分法解静电场边值问题

用有限差分法解静电场边值问题 一、目的 1.掌握有限差分法的原理与计算步骤; 2.理解并掌握求解差分方程组的超松弛迭代法,分析加速收敛因子α的作用; 3.学会用有限差分法解简单的二维静电场边值问题,并编制计算程序。 二、方法原理 有限差分法是数值计算中应用得最早而又相当简单、直观的一种方法。应用有限差分法通常所采取的步骤是: ⑴ 采用一定的网格分割方式离散化场域。 ⑵ 进行差分离散化处理。用离散的、只含有限个未知数的差分方程组,来近似代替场域内具有连续变量的偏微分方程以及边界上的边界条件(也包括场域内不同媒质分界面上的衔接条件)。 ⑶ 结合选定的代数方程组的解法,编制计算机程序,求解由上面所得对应于待求边值问题的差分方程组,所得解答即为该边值问题的数值解。 现在,以静电场边值问题 ?????==??+??) 2( ) ()1(02 2 22s f D y x L ? ? ?中 在 为例,说明有限差分法的应用。f (s )为边界点s 的点函数,二位场域D 和边界L 示于图5.1-1中。 x 图5.1-1 有限差分的网格分割 1. 离散化场域 应用有限差分法时,首先需从网格划分着手决定离散点的分布方式。通常采用完全有规律的方式,这样在每个离散点上可得出相同形式的差分方程,有效地提高解题速度。如图5.1-1所示,现采用分别与x ,y 轴平行的等距(步距为h )网格线把场域D 分割成足够多的正方形网格。各个正方形的顶点(也即网格线的交点)称为网格的结点。这样,对于场域内典型的内结点0,它与周围相邻的结点1、2、3和4构成一个所谓对称的星形。 2.差分格式 造好网格后,需把上述静电场边值问题中的拉普拉斯方程(1)式离散化。设结点0上的电位值为?0。结点1、2、3和4上的电位值相应为?1、?2、?3和?4,则基于差分原理的应用,拉普拉斯方程(1)式在结点0处可近似表达为

FLAC3D基础知识介绍解析

FLAC 3D基础知识介绍 一、概述 FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。因此,大大发护展了计算规模。FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。 FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。 FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。调整三维网格中的多面体单元来拟合实际的结构。单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围

的三维问题。 三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。 FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形。它包含10种弹塑性材料本构模型,有静力、动力、蠕变、渗流、温度五种计算模式,各种模式间可以互相藕合,可以模拟多种结构形式,如岩体、土体或其他材料实体,梁、锚元、桩、壳以及人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩、界面单元等,可以模拟复杂的岩土工程或力学问题。 FLAC3D采用ANSI C++语言编写的。 二、FLAC3D的优点与不足

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

《工程电磁场》复习题知识讲解

《工程电磁场》复习 题

《工程电磁场》复习题 一.问答题 1.什么是静电场?写出其基本方程并由此总结静电场的特点。 由静止电荷在其周围产生的电场。F=q1*q2/4pi*R*R*e0 静电场不随时间变化2. 什么是恒定电场?写出其基本方程并由此总结静电场的特点。 恒定电流产生的电场。 3. 什么是恒定磁场?写出其基本方程并由此总结静电场的特点。 磁场强度和方向保持不变的磁场。 4. 如果区域中某点的电场强度为零,能否说明该点的电位也为零?为什么? 电场强度E是一个随空间点位置不同而变化的矢量函数,仅与该点的电场有关。a,b为两个电荷相等的正反电荷,在其中心点处电位为零,但场强不为零。 5. 如果区域中某点的电位为零,能否说明该点的电场强度也为零?举例说明?不能。a,b为两个相等正电荷,在其中心点处电场强度为零,但电位不为零。6.静电场的电力线会闭合的吗?恒定电场的电力线会闭合的吗?为什么? 静电场的电力线不会闭合,起于正电荷止于负电荷。在变化的磁场产生的有旋电场中,电力线环形闭合,围绕着变化磁场。 7. 写出两种不同媒质分界面上恒定电场与恒定磁场的边界衔接条件。 恒定电场的边界衔接条件J*dS=0 E*dl=0 恒定磁场的边界衔接条件B*dS=0 H*dl=I 8. 什么是矢量磁位A? 什么是磁感应强度B? B=0 B=*A(*A)=0, 矢量磁位A是一个辅助性矢量。磁感应强度B是描述磁场强弱和方向的基本物理量

9. 什么是磁导率? 什么是介电常数? 表示磁介质磁性的物理量。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数。 10. 导电媒质中恒定电场与静电场之间具有什么相似关系? 二.填空题 1.静止电荷产生的电场,称之为_静电场__________场。它的特点是有散无 旋场,不随时间变化。 2.高斯定律说明静电场是一个有散场。 3.安培环路定律说明磁场是一个有旋场。 4.电流密度是一个矢量,它的方向与导体中某点的正电荷的运动方向相 同。 5.在两种不同导电媒质的分界面上,磁感应强度的法向分量越过分界面时 连续,电场强度的切向分量连续。 6.磁通连续性原理说明磁场是一个无散场。 7.安培环路定律则说明磁场是一个有旋场。 6. 矢量磁位A的旋度为,它的散度等于。 7. 矢量磁位A满足的方程是。 8.恒定电场是一种无散和无旋的场。 9.在恒定电流的周围,同时存在着恒定电场和恒定磁场。 10.两个点电荷之间的作用力大小与两点电荷电量之积成正比关系。 三. 判断题 1. 静电场是一种有(散度)源和无(旋度)源的场(对)

变分原理与变分法

变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切, 似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Exa mp les ① ② Summary:实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的 (映射)关系 第一章 光线最短路径传播; 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); 光线折射遵循时间最短的途径(Fermat ); AE+ EB A AC +CB ③

特征描述法:{ J: X u D T R | J ( x ) = r € R } Exa mp les ① 矩阵范数:线性算子(矩阵)空间— 数域 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 i.梁的弯曲应变能: □b =-f' EJ (雪 2 P dx 2 ii.弹性地基贮存的能量: n f 1 J 2 =一 J kw dx 2 0 iii.外力位能: 口 l l =-0 qwdx iv.系统总的势能: )2dx 11 AII 1 = max 2 a j i4 ;|A L = max 2 a ij ; I A 2 仁 )12 ②函数的积分:函数空间i 数域 b J = a f n (X )dX fn U D Note:泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussi on : ①判定下列那些是泛函: c f (x y) --- '—-3x+5y=2; J 6(x-x 0) f (x)dx = f (x 0) f i=ma 少(x )i ; ex ②试举另一泛函例子。 物理问题中的泛函举例 q(x) /■'■'I rmTrfT ① 弹性地基梁的系统势能 ■ d 丨 L l d 2 w 2 □卡E J( dxr) 2 Tkw - qW}dx; x = 0 d w = 0 dx x x = 0,固支;x =

(完整版)二阶常微分方程边值问题的数值解法毕业论文

二阶常微分方程边值问题的数值解法 摘要 求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化.本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础. 对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法.在本文中我们主要探讨关于有限差分法的数值解法.构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法.后一种更为灵活,它在构造差分格式的同时还可以得到关于截断误差的估计.在本文中对差分方法列出了详细的计算步骤和Matlab

程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较.在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料.在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式.在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析. 关键词:常微分方程,边值问题,差分法,Taylor展开,数值解

The Numerical Solutions of Second-Order Ordinary Differential Equations with the Boundary Value Problems ABSTRACT The numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numerical methods for solving second-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite difference method in a deeper layer, we can establish a foundation for the future learning.

相关文档
相关文档 最新文档