文档库 最新最全的文档下载
当前位置:文档库 › 2008 Automated Color Image Edge Detection Using PCNN Model

2008 Automated Color Image Edge Detection Using PCNN Model

2008 Automated Color Image Edge Detection Using PCNN Model
2008 Automated Color Image Edge Detection Using PCNN Model

Automated Color Image Edge Detection Using

Improved PCNN Model

LIANG ZHOU, YU SUN, JIANGUO ZHENG

Glorious Sun School of Business & Management

Donghua University

Shanghai, 200051 China

1882 West Yan’An Rd., Shanghai 200051

P. R. CHINA

homzhou@https://www.wendangku.net/doc/7515920938.html,, sunyu@https://www.wendangku.net/doc/7515920938.html,

Abstract: -Recent researches indicate that pulse coupled neural network can be used for image processing, such as image segmentation and edge detection effectively. However, up to now it has mainly been used for the processing of gray images or binary images, and the parameters of the network are always adjusted and confirmed manually for different images, which impede PCNN’s application in image processing. To solve these problems, based on the model of Pulse Coupled Neural Network and the model of HIS, this paper bring forward an improved PCNN model in the color image segmentation with the parameters determined by images’ spatial and gray characteristics automatically at the first, then use the above model to obtain the edge information. The experiment results show the good effect of the new PCNN model.

Key-Words: - pulse coupled neural network (PCNN), image processing, HIS, color image segmentation, parameter determination, image edge detection, spatial characteristics, gray characteristics

1 Introduction

Pulse Coupled Neural Network, PCNN [1] was brought forward by Eckhorn firstly. It is a model derived from a neural mammal model. PCNN models have biological background and are based on the experimental observations of synchronous pulse bursts in the cat and the monkey visual cortex. Johnson and his colleagues had modified the model of the initial PCNN, which was applicable to calculate in the computer more easily. The improved model of PCNN have the well feature of transmitting burst, which is used widely in the fields of image processing, pattern recognition and so on.

The existed algorithm of PCNN is often applied to the fields of segmentation of gray image[2], edge detection of gray image[3] or binary image[4] respectively, Bao qingfeng put forward a new algorithm based on PCNN firstly[5], in her paper, Bao used PCNN in the colorized image. However, Bao’s algorithm is based on Xiao Dong Gu’s [6], which is a simplified algorithm of image segmentation based on PCNN. In Bao’s algorithm, the parameter of network should be adjusted manually firstly, and then it could be used to segment the image. At the same time, the author didn’t use the model of PCNN to process edge detection of the image. So if she wanted to get the result of segmentation, she should adjust the parameters time after time, and switch the model of PCNN when edge detection began. This algorithm restricted the application of the PCNN in the fields of color image. In order to improve the model of PCNN, we put forward a new PCNN system, which can adjust the parameters of the network voluntarily based on the reference [5], and we can use it to process the segmentation and edge detection of colorized image. The experimental results show that we can get the approving results.

2 PCNN

PCNN is a neural network which is composed of lots of neurons. Every neuron is made up of dendritic tree, linking modulation, and pulse generator. Dendritic tree is divided into two small portions, which are applied to guide two different of input to

the linking part of the neuron. One of them is applied to accept the outside input signal which we called it feed-in input, and the other one is used for receive other neuron’s linking input. We can describe them as follows: ∑+?+??=ij kl ijkl F ij ij I n Y M V n F n F F )1(]1[)exp(][α (1)

∑?+??=]1[]1[)exp(][n Y W V n L n L kl ijkl L ij ij L α (2)

])

[1]([][n L n F n U ij ij ij β+= (3) ?

?

?>=otherwise n T n U n Y ij ij ij ,0]

[][1][, (4) ]

[]1[)exp(][n Y V n T n T ij T ij ij T +??=α (5) As the top formulas, ,,,,,

mean separately neurons’ outside stimulating input, feed-in input, linking input, inside activity, firing output, dynamic threshold. ij I ij F ij L ij U ij Y ij T M and W are

linking weight matrix (usually, ),V ,, mean separately inherent electricity in ,,and , W M =F L V T V ij F ij L ij T F α,L α,T α mean separately

attenuation time constants in ,,T , is a

loop constant, and is a binary output.

ij F ij L ij n ij Y As shown in figure 1, the neuron receives input signals from other neurons and from external sources through the receptive field. In general, the signals from other neurons are pulses; the signals from external sources are analog timing-varying signals, constants, or pulses. After inputting the receptive field, input signals are divided into two channels. One channel is feed-in input (); the other is linking input (). In general, the feeding connection has a slower characteristic response time constant than that of the linking connection. In modulation field, see Fig.1 and Equ. (3), at first, the linking input is added a constant positive bias. Then it is multiplied by the feed-in input. The bias is taken to be unity, ij F ij L β is the linking strength. The total inside activity is the result of modulation. Because the feed-in input has a slower characteristic response time constant than that of the linking input, is like a spikelike signal riding on an approximate constant. The pulse generator consists of a threshold adjuster, a threshold discriminator and a pulse creator. The threshold changes with the variation of the neuron’s output pulse. When the neuron emits a pulse, it feeds back to increase the threshold. When arises more than , the pulse

creator closes and stop emitting pulses. Then

threshold value drops. When threshold drops less than , the pulse creator opens again and emits pulses, namely fires. If the neuron only emits a pulse when it fires, the threshold discriminator and the pulse former can be replaced by a step function. This model is shown in Fig.1. Meanwhile, Equ.(4) shows the neuron’s output under single output pulse condition and is the output. Connecting the neurons on another, then a PCNN model appears.

ij U ij U ij T ij T ij U ij T ij U ij Y Unlike other neural network, there is no training involved for PCNN, and it is an extremely powerful algorithm that can be applied in a variety of ways to image processing. PCNN has the characteristics of grouping of pixels in term of 2D space similarity or gray similarity, reduces local gray difference of image, and makes up local tiny discontinuous points of image. Thus, the algorithm can remove noise, do segmentation, edge detection and object isolation, etc.

Fig.1 The model neuron of PCNN

When PCNN is used for the discrete image processing, it is a single layer 2D array of laterally linked neurons. Each neuron in the processing layer is directly tied to image pixel or set of neighboring image pixels, which means that the number of neurons is equal to that of pixels of input image, every neuron or pixel has its corresponding pixel or neuron, and every neuron is linked to its corresponding pixel and its neighboring neurons. Neuron iteratively processes signals from these nearby image pixels and linking from nearby neurons to produce a pulse train. Similarities in the input pixels cause the associated neurons to fire in synchrony indicating similar structure or texture. This synchrony of pulses is then used to segment similar structures or textures in the image.

3.The description of the new model

Presently, there are two color models in common use

now: RGB model and HIS model. When we use HIS model, it means hue, saturation, and intensity. HIS model has two advantages. Firstly, intensity has not relations with the color information of the image; secondly, hue and saturation have a close relation with the feeling of human. All of these features let HIS model fit for the image segmentation based on the human’s vision system. In this paper, we use the HIS model. At the same time, we propose a new improved PCNN model which can ensure the parameters adaptively based on the traditional PCNN, and in this paper, we apply the same improved model to the color image segmentation and edge detection.

3.1 Confirming the parameters adaptively

Image segmentation and edge detection play important role in any image processing system. PCNN can be efficiently applied to image segmentation and edge detection. The performance of image segmentation and edge detection based on PCNN depends on the suitable PCNN parameters. However, the PCNN parameters which are suitable for segmenting a particular type of images may not be suitable for segmenting a different type of images. In this paper, we should describe how to get the suitable PCNN parameters to efficiently segment images and detect the edge of images.

Firstly, we should transform a color image into the space of HIS, secondly, we set up a corresponding model of PCNN for the hue, saturation, intensity separately, and thirdly we should set image point: to be unitary, at last, we get the final image:.

),(j i ),(j i f When we segment the image, we should set the right parameters based on the image’s features of gray and space, and when we process edge detection, we use the same new PCNN model, and we just need to ensure the right area(gray value=1) of the binary image which has the corresponding neuron, and the corresponding neuron can fire the impulse alone the shape of the target and transform freely, then we control the dynamic threshold, we can get the whole edge of the target. So when we do the edge detection, we can predigest the parameters. The material methods as follows:

(1) Linking weights :

ijkl W This parameter means how much the output impulse of the surrounding neuron has effect upon the current neuron. As for the current neuron’s corresponding image point, more small the distance between it and its corresponding image point is, more close the differences between these image

points are, then we can conclude that more strong the degree of effect is.

e

s g s g ijkl l

k l j k i d l j k i d l j k i d l j k i d W )))1),(),((1()1),(),((1(,∑

+++×+++++×++= (6)

Let ),(l j k i d g ++ means the distance of the

gray value between two corresponding image points , and ),(l j k i d s ++ means the distance of space between two corresponding image points.

),(l j k i d g ++ is

defined :),(),(l j k i f j i f ++? ),(l j k i d g ++ is

defined :22l k +; When we do the image segmentation: let

1=e ;When we do the edge detection: we want to make the output impulse of neuron transform freely and quickly, let 0=e 。

(2) Adjusting the step of threshold value r : Let means the times of iterative in the max n image processing, we want to ensure the threshold value can be through all of the image points. The adjusting step of threshold value is: max 1n r = (7) When we do the edge detection: let 0=r .

(3) inherent electricity :

T V The inherent electricity in the

T V PCNN is used to judge whether the neuron is firing at a moment, if it is firing, then we should set and let the corresponding threshold increase quickly. When >, the impulse creator can stop firing. In this paper, we have the same no matter what kinds of images, and let: (8)

T V T V ij U T V 100=T V (4) initial dynamic threshold :ij T α=ij T (9) When we do the image segmentation: Let 1=α; When we do the edge detection: Let 15.0=α. (5) modulating parameters β:

e ij ij M V )(=β (10)

when we do the image segmentation: let 1=e , then we can control the degree of increasing of ,

means that image point which corresponding image points’ gray value variance in the surrounding area, and means that image point which corresponding image points’ gray value mean in the surrounding area, when ij F ij V ),(j i ij M ),(j i 0=ij M , let 2.0=β. More small βand the distributing scope of gray value of image points are, more average the distributing is in the surrounding area, then we can find a little improving of gray value can make with the neuron firing in the ),(j i surrounding area at the same time, whereas, the

distributing is not average, then we need a big improving of gray value can make ),(j i with the neuron firing in the surrounding area at the same time. In a certain extent, we can confirm the integrality of the area of segmentation.

When we do the edge detection, we will predigest β, and let 0=e .

3.2 The threshold segmentation of the image ln S (11) and mean the probability and “0”ou based on the Shannon entropy maximum rule

In the reference [7], the author defines the segmentation methods based on the Shannon entropy maximum rule as follows:

11ln )(S S S S H ??=0

01S 0S of the “1”

in the tput binary image separately. The

formula (11) means that how much the information of statistical mean value of the image points (“1” or “0”) include in a binary image after segmentation. Usually, the more Shannon entropy is, it means the image after segmentation get more information from the initial image, and then the image after segmentation has ample details, and well segmentation effect as a whole. In this paper, we will calculate the 1S and 0S from the output binary image Y by an iterative processing. When 1S and 0S make the H maximum, which means w get a t segmentation binary image:e bes Y .

3.3 The new model of color image hould transform the initial color PCNN mod segmentation

At the first, we s image into HIS space, and then we can get the hue image, saturation image, and intensity image.

We should calculate them by improved el respectively, the improved PCNN model as follows:

ij ij I n F =)( (12)

∑∈?=

K

p p p ij n Y W n L e )1()( (13)

K is a 3*3 matrix, and it means a area which is surrounding the image point

),(j i ))(1)(()(n L n F n U ij ij ij ij e β+= (14)

)()()(n Y V r n T n T T ij ij +?=?

?

?>=?=else T U if n T n U step n Y ij

ij ij ij ij ,0,1))()(()( (16) Secondly, we use the PCNN model to calculate

the hue image, saturation image, and intensity image separately as follows:

(1) We should transform the gray value of image point into be unitary, and the initial status of the neurons should be set as follows: ij I 0Re ====Y s U L ,

]50,10[max ∈n K is a 3*3 matrix, and all of its value are 1, is a matrix which saves the result, is a matrix which means the firing status, and is the times of iteration, the rest are calculated by the top formulas automatically.

s Re Y n (2)

∑∈=

K

p p p

ij Y W

L e

;)1(ij ij ij ij L F U e β+=;

)(ij ij ij T U step Y ?=;

(3)α=T ; (4) ∑∈=

K

p p p

ij Y W

L e

(5)),(j i Y Tem =;)

1(ij ij ij ij L F U e

β+=;

)(ij ij ij T U step Y ?=; is a temporary matrix ;

Tem (6) If Tem j i Y =),( go to (7); ∑∈=

K

p p p

ij Y W

L e

Else go

to (5); (7)If 1),(=j i Y 1),(Re =j i s ,

、 are the corresponding elem of 、;

),(j i Y ),(Re j i s ents Y s Re (8)Y V r j i T T *),(+?=α

(9)To calculate Shannon en py of the

corresponding , if we find the maximum tro image H n , and the when the times of iterative is corresponding )(n Y is the last binary image.

(10)1?=n n ; If 0≠n , go to (4); Else END ;

(15)

(11)To integrate the three binary images, then

we can get the result, which is the segmentation image:Bin .

3.4 The new model of color image edge detection

Edges are very important to any vision system. An edge may be regarded as a boundary between two dissimilar regions in an image. These may be rent surfaces of the object, or perhaps a boundary between light and shadow f diffe alling on a singl nsmits distance which is as e, which width is 5 image points. e surface. In this paper, as to the binary image: Bin , the edge detection algorithm can be obtained by the same PCNN model.

Firstly, we should let the corresponding image points of the bright area fire impulse, and the corresponding image points of the dark area do not fire impulse in this image, secondly, the bright area will transmit as the same width as an image point, then the edge between the dark area and bright area would be fired. If we control the transmitting distance, we can control the width of result of image edge detection expediently. For example, if the impulse of bright area tra the same width as 5 image points, and then we can get a result of imag The model is as follows: (1) To set a matrix: E , which can save the result of edge detection.

should in y ich are 0.1(corresponding to the dark area of Bin ), and 1(corresponding to the bright a We transform the to be unitar wh of Bin rea Bin ),Bin F =,0===U =E Y L , 1max +=N n , is the width of the edge image, and the others are calculated by the top formulas automatically;

(2)

N ∑∈=

K

p p p

Y W

L e

;)1(L F U e β+=;)(T U step Y ?=;

(3) If , it means:

A neuron is inspired to fire, w neuron’s threshold to stop it fire.

1=ij Y ,ij T ij ij Y V T T += e should increase this (4)if 1+=N n ,1?=n n ,go back to (2);else

1?=n n

(5)if 1=ij Y ,1=ij E 。

(6)if 0=n ,we get the ou E tput: ,it is the to the image, our results have detected the whole targets’ edge smoothly, and we can also change the width of the last results of images according to the necessary to make these images more clearly.

edge image. Else go back to (2).

4 Experimental Results

We use the new model to process two different kinds of images: figure2 (a) and (b). We can find if we adopt the Bao’s PCNN model, the results are figure 3(a) and (c) which create noises, some bright areas are short of segmentation, and the details are not good. When Bao detect image edge, the results are figure3 (b) and (d). They are not clear, and have lots of disconnected points, so we try to use the traditional method of Laplacian of Gaussian method to get the edges in figure4 (a) and (b). We find that edges are affected by noise present in an image clearly, and the processing results are lack of continuity, too. However, we apply the new PCNN model into the same images, and we get the segmentation results which are figure 5(a) and (c), we can find the details of the image keep integrality; and the shape of the image is intact. The results after edge detection are figure 5(b) and (d), we apply the

same PCNN model in

(a) The initial car’s (b)The initial person’s image image

Fig.2 Original image

(a) After segmentation (b) after edge detection

(c) After segmentation (d) after edge detection

Fig.3 Process results of model in references ]

[5

(a) After edge detection (b) after edge detection

Fig.4 Process results placian of Gaussia

of La n

Method

(a) After segmentation (b) after edge detection

r, th

t we

hoose it based on the experience and ensure it based

aximum rule, so how to get it more

impr

incre

Refer

[1]

V ol.10, No.3, 1999, pp. 480-498.

005, pp.

[3]

g and

[4]

and

[5]

[6], Dao Heng Yu, A

ing, 2002.

]Ma Yide, Dai Ruolan, Li Lian, Automated

image segmentation using pulse coupled neural

networks and images entropy, Journal of China

Institute of Communications, V ol.23, No.1,

2002, pp. 46-51.

(c) After segmentation (d) after edge detection

Fig.5 Process results of new model

5 Conclusions

In this paper, we create an improved PCNN model,

which can choose the right network parameters

adaptively, and we apply it into different kinds of color

images in the image segmentation and edge detection.

At the different processing stage, the new PCNN model

can adjust the network parameters automatically. After

the experiment, we can get a robust and intact result no

matter how complexity our processing image is in

images and it would be interesting to see that no matter

how small or large an object is in images, the achieved

result is satisfactory according to this new PCNN

model. Howeve is new PCNN model also has a lot

of disadvantages and limitations. Firstly, the new

PCNN model should waste more time to process

images, which will restrict the application of this model

to the environment of real time processing. Secondly,

the parameter max

n is the times of iteration, which is

a pivotal factor in the image segmentation, bu

c

on entropy m

reasonably is a problem, too. As an open issue, how to

ove the PCNN model, predigest the model, and

ase its efficiency, we need to research more.

ences:

JOHNSON J L, PADGETTML, PCNN Models

and Application, IEEE Transactions on Neural

Networks,

[2]Liu Qing, Ma Yide, Qian Zhibo, Automated

Image Segmentation Using Improved PCNN

Model Based on Cross-entropy, Journal of

Image and Graphics, V ol.10, No.5,2

579-584.

Yang Zhiyong, Zhou Qiyun, Zhou Dingkang,

Gray Image Edge Detection Method Based on

PCNN, Computer Engineerin

Applications, No.21, 2004, pp. 92-94.

Gu Xiaodong, Guo Shide, Yu Daoheng, A New

Approach for Image Edge Detection Using

PCNN, Computer Engineering

Applications, No.16, 2003, pp. 1-3.

Bao Qingfeng, Wang Jicheng, A New Color

Image Segmentation Based on PCNN,

Computer Engineering and Applications, No.27,

2005, pp. 48-50.

Xiao Dong Gu, Shi De Guo

new approach for automated image

segmentation based on unit-linking pcnn,

IEEE:Proceedings for the First International

Conference on Machine Learning and

Cybernetics, Beij

[7

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

一次函数图像和性质的教案

14.2.2一次函数的图象和性质 教材分析 在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。 1.注重“类比教学” 在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由“ 学会” 到“ 会学” ,真正实现“ 教是为了不教” 的目的. 2.注重“数学结合”的教学数形结合的思想方法是初中数学中一种严重的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使繁复问题简单化,抽象问题详尽化,它兼有数的严格与形的直观之长。 (1)让学生经历绘制函数图象的详尽过程。 (2)切莫急于呈现画函数图象的简单画法。 (3)注意让学生体会研究详尽函数图象规律的方法。 知识技能目标1、理解直线y=kx+b与y=kx之间的位置关系;2、会选择两个适合的点画出一次函数的图象;3、掌握一次函数的性质.过程与方法目标1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。 情感态度目标1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简短美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。教学重点一次函数的图象和性质。

第08章课后习题参考答案

第08章课后习题参考答案 1.充分理解色彩调整中的基本概念,例如色调、色阶、亮度/对比度、色相/饱和度等等。答:“色阶”对话框允许您通过调整图像的阴影、中间调和高光的强度级别,从而校正图像的色调范围和色彩平衡。 亮度/对比度命令用来粗略的调整图像的亮度与对比度。该命令将一次调整图像中所有像素(包括高光、暗调和中间调),但对单个通道不起作用,所以不能作精细调整。 色相/饱和度用来调整图像的色相、饱和度和明度。 2.色阶和曲线图的工作原理是什么?它们是怎么调整图像色彩的。 答:色阶是根据每个亮度值处像素点的多少来划分的,最暗的像素点在左面,最亮的像素点在右面,“输入色阶”显示当前的数值,“输出色阶”显示将要输出的数值。 若要调整特定颜色通道的色调,请从“通道”菜单中选取选项。 若要同时编辑一组颜色通道,请在选取“色阶”命令之前,按住Shift 键在“通道”调板中选择这些通道。 要手动调整阴影和高光,请将黑色和白色“输入色阶”滑块拖移到直方图的任意一端的第一组像素的边缘。 要调整中间调,请使用中间的“输入”滑块来调整灰度系数。向左移动中间的“输入”滑块可使整个图像变亮。将中间的“输入”滑块向右移动会产生相反的效果,使图像变暗。 曲线命令和色阶作用相似,都可以用来调整图像的色调范围,但“曲线”功能更强。它不但可以调整图像的高光、暗调和中间调,还能对灰阶曲线中的任何一点进行调整。 当“曲线”对话框打开时,色调范围将呈现为一条直的对角线。图表的水平轴表示像素(“输入”色阶)原来的强度值;垂直轴表示新的颜色值(“输出”色阶)。 将曲线向上或向下弯曲将会使图像变亮或变暗,具体情况取决于对话框是设置为显示色阶还是百分比。曲线上比较陡直的部分代表图像对比度较高的部分。相反,曲线上比较平缓的部分代表对比度较低的区域。 3.任意打开一幅RGB图像,试用不同的色彩调节命令,体会它们所能达到的效果。 答:略。 4.把素材盘的课后习题与效果图文件夹中第08章一张照片文件ride.jpg制作出旧照片的效果,如图8-99所示。

基本初等函数图像

基本初等函数及图形 基本初等函数为以下五类函数: (1) 幂函数 ,y x μμ=是常数; 1.当μ为正整数时,函数的定义域为区间(,)x ∈-∞+∞,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称; 2.当μ为负整数时。函数的定义域为除去x =0的所有实数。 3.当μ为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称 .4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数. (2) 指数函数 x a y =(a 是常数且01a a >≠,),),(+∞-∞∈x ;

1.当μ为正整数时,函数的定义域为区间 ,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称; 2.当μ为负整数时。函数的定义域为除去x =0的所有实数。 3.当μ为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称. 4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数. (3) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a >1时在区间(0,1),y 的值为负.图形位于x 的下方,在区间(1,)+∞,y 值为正,图形位于x 轴上方.在定义域是单调增函数.a <1在实用中很少用到. (4) 三角函数 正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y ,

三角函数的图像与性质优秀教案

三角函数图像与性质复习 教案目标: 1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。 2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。 重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数) sin(?ω+=x A y 的图象。 难点:一般函数)sin(?ω+=x A y 的图象与性质。 【教案内容】 1、引入: 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数: 注意: 最小正周期: 一般函数)sin(?ω+=x A y 中:A 表示 ,ω表示 及频率: ,相位: 。 正切函数: 3、三角函数的图象:

值域:tan ;tan .2 2 22 x x x x x x π π π π < → →+∞>- →-→-∞当且时,当且时, 单调性:对每一个k Z ∈,在开区间(,)22 k k π π ππ- +内,函数单调递增. 对称性:对称中心:( ,0)()2 k k Z π ∈,无对称轴。 五点作图法的步骤: (由诱导公式画出余弦函数的图象) 【例题讲解】

例1 画出下列函数的简图 (1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈ 例2 (1)方程lg sin x x =解得个数为( ) A. 0 B. 1 C. 2 D. 3 (2)3[, ]22x ππ ∈- 解不等式3 sin 2 x ≥- 4([,])33x ππ∈- 例3已知函数()cos(2)2sin()sin()3 4 4 f x x x x π π π =-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122 ππ - 上的值域。 例4已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的周期为π, 且图象上一个最低点为2( ,2)3 M π -. (Ⅰ)求()f x 的解读式;(Ⅱ)当[0, ]12 x π∈,求()f x 的最值. 例5写出下列函数的单调区间及在此区间的增减性: (1)1tan()26 y x π=-;(2)tan(2)4y x π =-. 【过手练习】 1、函数sin(2)3 y x π =+ 图像的对称轴方程可能是() A .6x π =- B .12 x π =- C .6x π = D .12 x π = 2、已知函数)0)(sin(2>+=ωφωx y 在区间[0,2π]的图像 如下,那么ω=() A. 1 B. 2 C. 1/2 D. 3 1 3、函数()cos 22sin f x x x =+的最小值和最大值分别为

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

指数函数图像与性质的教案

§3.指数函数图像和性质 一、教材分析 教材的地位和作用 函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图象与性质。一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。 重难点分析 教学重点:指数函数的图像、性质及其简单运用 教学难点:指数函数图象和性质的发现过程,及指数函数图像与底的关系。 二、教学目标分析 知识目标:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想以及从特殊到一般等学习数学的方法,增强识图用图的能力情感目标:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。 三、教法学法分析 教法分析 采用梳理—探究—训练的教学方法,充分利用多媒体辅助教学,通过学生的互动探究,教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受 学法分析 学生思维活跃,求知欲强,但在思维习惯上还有待教师引导;从学生原有知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。 四、教学过程分析 1.创设情景,形成概念 2.发现问题,探究新知 3.深入探究,加深理解 4.强化训练,巩固双基 5.小结归纳,拓展深化 6.布置作业,升华提高

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

对数函数图象的与性质教学设计

课题:对数函数的图像和性质(第一课时) 一、教材内容解析 1、“对数函数的图像与性质”是普通高中课程标准实验教科书必修1(北师大版)第三章“指数函数和对数函数”一章中的重点内容。此前,学生已对函数、定义域、值域等相关概念及函数的单调性、奇偶性、对称性等函数性质有了很深刻的了解和掌握。同时本节课又是在刚刚学习了对数函数的概念和对数函数与指数函数互为反函数的关系后,对对数函数的进一步深入学习。也是让学生进一步体会研究函数的方法,即“概念---图像---性质--应用”的过程。同时,为后面函数的学习做好铺垫。 2、“对数函数”是基本初等函数之一,对数函数的知识在其他章节和其他学科中有着广泛应用。同时,对数函数作为常用的数学模型在解决社会生活问题(统计、规划)中也有着广泛的应用。本节课的学习为学生进一步学习、参加生产和实际生活提供了必要的数学基本技能。同时,本节课对对数函数的性质研究不仅反映出对数函数与指数函数的关系,同时也蕴含了函数、数形结合等数学思想,也是高考的重点内容之一。 二、学生学情分析 1、心理生理上:高一年级的学生已入校两个月,现处于相对稳定的时期,所以在学习情绪和学习态度上也相对稳定。加之,新入高一不久,学生渴望知识和学习的情绪也都空前高涨,主动积极,不畏艰难。 2、知识上:从初中到现在学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究函数的方法有了一定的了解和掌握,加之对数函数与指数函数的关系学生已明白,可以通过类比的方法研究学习。 三、教学目标设置 (一)教学目标 1、知识与技能:掌握对数函数的图像与性质,并且在掌握性质的基础上能进行必要的应用。同时培养学生数形结合的思想及观察、分析、归纳的思维过程。

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

《指数函数图像及其性质》教学设计

《指数函数的图像与性质》教学设计 一、教学目标 1.知识与技能 掌握指数函数的图像、性质及其简单应用. 2.过程与方法 通过学生自主探究,让学生总结指数函数的图像与性质. 3.情感、态度、价值观 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问、善于探索的思维品质. 二、教学重难点 教学重点:指数函数的图像与性质 教学难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质. 三、教学方法:自主探究式 四、教学手段:多媒体教学 五、教学过程: (一)创设情境 1、复习: (1)指数函数的定义; (2)指数函数解析式的特征。 2、导入:一般来说,函数的图像与性质紧密联系,图像可反映函数的性质,所以我们今天学习指数函数的图像与性质。 (二)自主探究 1.画一画:用列表、描点、连线的作图步骤,画出指数函数x y 2=、x y ?? ? ??=21的

2.说一说:通过图像,分析x y 2=、x y ?? ? ??=21的性质; 3.比一比:x y 2=与y ??? ??=21的图像有哪些相同点,哪些不同点? 4.想一想:在平面直角坐标系中画出函数3x y =、13x y ?? = ??? 的图像,试分析性质。 5.议一议:通过以上四个函数的图像和性质,归纳指数函数x a y =(1,0≠>a a 且) 的图像和性质如下:

例2. (2 3例1.(1)

(四)当堂检测 1.课本第73页 练习1 1. 2.解下列不等式: 11 (1)3;81 x -> 1(2)4230.x x +--> (五)课堂小结 (1) 通过本节课的学习,你学到了哪些知识? (2) 你学会了哪些数学思想方法? (六)布置作业 必做题:课本77页,A 组.4,5,6 选做题:课本77页,B 组1,6. 六、教学反思

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果m

除x=0以外的一切实数。 三、指数函数x a y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

九年级下二次函数图像与性质教案

第1课时 26.1 二次函数 一、阅读教科书 二、学习目标: 1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点: 一般地,形如____________________________的函数,叫做二次函数。其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习 1.观察:①y =6x 2;②y =-3 2x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽 然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数. 3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2 (4)y =3x 3+2x 2 (5)y =x +1 x 五、课堂训练 1.y =(m +1)x m m 2-3x +1是二次函数,则m 的值为_________________. 2.下列函数中是二次函数的是() A .y =x +1 2 B . y =3 (x -1)2 C .y =(x +1)2-x 2 D .y =1 x 2-x 3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为() A .28米 B .48米 C .68米 D .88米 4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________. 5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式; (2)当x =4时,y 的值; (3)当y =-1 3时,x 的值.

一次函数图像及性质教案

一次函数的图像和性质教案 [教学目标] 1、通过实际问题,使学生感受一次函数、正比例函数的特点; 2、会用两点法画出正比例函数、一次函数的图像,并由图像得出函数的性质; 3、使学生初步认识数形结合思想; 4、使学生在对问题的研究过程中,体验数学活动的探索,获得成功的体验;[教学重点] 会用两点法画出一次函数、正比例函数的图像,并由图像得出函数的性质。[教学难点] 由函数图像得出函数的性质,及对函数性质的理解。 [教学方法] 1、创设情境:由实际问题抽象成数学问题,引入一次函数、正比例函数的概念 2、结合图像探索性质:包括正比例函数、一次函数的图像和性质 3、解决问题、巩固提高:包括新课环节后的练习、新课后的巩固练习 [学法] 以学生自主探索为主,动手实践画出函数图像。在归纳一次函数图像的性质时建议合作交流。 [学情分析] 1、八(1)班是平行班,基础薄弱,所以本节课以掌握基本知识为目的。 2、本节课之前仅仅开了一节课:函数概念及用描点法画函数图像, 所以本节课的内容整合了用两点法画一次函数图像的图像及性质两个内容。3、在后续的新课学习中,我们会继续加深对一次函数图像性质的掌握和应用。[教学过程] 环节一:复习引入; 环节二:探究新知,合作学习,一次函数和正比例函数的关系; 环节三:两点法画一次函数; 环节四:函数图像的性质; 环节五:知识拓展。 ——一次函数的图像和性质第14章一次函数(二)姓名:_________ 时间:2017年月日 (一)学习目标 1、了解一次函数、正比例函数的念。 2、会用两点法画出正比例函数、一次函数的图像,并由图像得出函数的性质(二)学习过程: 环节一:复习引入 1、什么叫正比例函数、一次函数?它们之间有什么关系? 一般地,形如的函数,叫做正比例函数;

五,图像恢复和重建

五,图像恢复和重建 2007-3-5

5.1 概述和分类 5.2 退化模型和对角化5.3 无约束恢复 5.4 有约束恢复 5.5 交互式恢复 5.6 几何失真校正 5.7 投影重建

概述和分类 图象恢复也称图象复,原图象恢复与图象增强相同之处是,它们都要得到在某种意义上改进的图象,或者说都希望要改进输入图象的视觉质量。图象恢复与图象增强不同之处是,图象增强技术一般要借助人的视觉系统的特性以取得看起来较好的视觉结果,而图象恢复则认为图象是在某种情况下退化或恶化了(图象品质下降了),现在需要根据相应的退化模型和知识重建或恢复原始的图象。换句话说,图象恢复技术是要将图象退化的过程模型化,并据此采取相反的过程以得到原始的图象。由此可见,图象恢复要根据一定的图象退化模型来进行。 在给定模型的条件下,图象恢复技术可分为无约束和有约束的两大类。根据是否需要外来于预,图象恢复技术又可分为自动和交互的两大类。另外根据处理所在域,图象恢复技术还可分为频域和空域两大类。许多图象恢复技术借助频域处理的概念,但越来越多的空域处理技术得到应用。 从广义的角度上来看图象恢复,它还可包括对在图象采集过程中产生的几何失真(畸变)进行校正以及根据对物体的多个投影重建图象的技术。前一种情况里将图象的几何失真看成一种退化,对其校正则看作是一种恢复过程。后一种情况里将图象的投影看作一种退化过程,而将重建图象作为一种恢复手段。

退化模型和对角化 5.2.1 退化模型 H 可有如下4个性质: (1)线性:如果令k1和k2为常数,f1(x,y)和f2(x,y)为2幅输入图象,则: (2)相加性:式(5.2.2)中如果kl=k2=1,则变成: (3)一致性:式(5.2.2)中如果f2(x,y)=0,则变成: 上式指出线性系统对常数与任意输入乘积的响应等于常数与该输入的响应的乘积, (4)位置(空间)不变性:如果对任意f(x,y)以及a和b,有: 线性系统的响应只与在该位置的输入值有关而与位置本身无关。

一次函数的图像和性质教案

《一次函数的图像和性质》教案 一、课题:一次函数的图像和性质 二、课型:新授课 三、课时:第一课时(共两课时) 四、教学内容分析 在学习此节课之前,已经学习了平面直角坐标系/函数/正比例函数等等,这为一次函数的学习打下了很好的基础,让学生们对一次函数的学习流程也有了一定的认识。在明确一次函数的图像是一条直线后,进一步结合图像研究它的性质,是学生对一次函数有了从“数”到“形”,从“形”到“数”两方面的理解,这也为今后讨论二次函数,反比例函数打下牢固的基础。 五、学情分析 八年级学生刚学函数,但有了七年级“字母表示数”和“变量之间的关系”的铺垫,他们在学习一次函数时,知识结构中印象最深的是用关系式和表格表示,数型的对应关系与他们的学习经验有很大差距,也更复杂更抽象。 此阶段的学生有很强的好奇心,但动手能力较差,而此课时正需要他们动手去画一次函数的图像,从而得出它的性质。大部分学生也正刚刚由形象思维向抽象思维发展,所以此节课的学习有一定的难度。 六、教学目标 1、知识与技能目标:能熟练做出一次函数的图像,并能通过图像

归纳总结出一些简单的性质。

2、过程与方法目标: (1)经历一次函数的图像和性质探究后,能解决一些简单的问题。 (2)进一步培养数型结合及分类讨论的意识和思想。 (3)在思考活动中培养他们的探索和动手能力及合作交流意识。 3、情感态度与价值观目标:让学生全心投入到学习活动中,积 极参与讨论,发展探索能力和创新能力。 七、教学重点、难点 重点:1、能熟练做出一次函数的图像 2、能结合图像掌握一次函数的性质 难点:一次函数的性质及应用图像解决问题 八、教学策略与方法 根据教学内容,教学目标和学生的认知水平,主要采取教师启发式、探讨式、以及鼓励式的方法进行教学,培养他们的思考能力及动手能力。 由于此节课之前已学习了正比例函数,对函数的学习流程已有了初步的认识,通过对比与正比例函数的学习模式来进行一次函数的学习,即函数解析式函数的图像函数的性质。正比例函数是特殊的一次函数,用特殊到一般的教学方法启发学生们思考一次函数的图像和性质,进而渗透数型结合及分类讨论的思想方法。

一次函数图像与性质优秀教案

4.3.2一次函数的图象与性质(1) 一、教学目标 1、了解一次函数y=kx+b 的图象的特点。 2、能熟练地作出一次函数的图象。 3、理解一次函数及其图象的有关性质。 4、理解一次函数的代数表达式与图象之间的对应关系。 二、能力目标 1、进一步培养学生数形结合的意识和能力。 2、通过议一议,培养学生的探索精神和合作交流意识。 三、情感目标 1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。 2、加强新旧知识的联系,促进学生新的认知结构的建构。 3、让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。 四、教学重点 1、能熟练地作出一次函数的图象。 2、归纳作函数图象的一般步骤。 3、理解一次函数及其图象的有关性质。 4、理解一次函数的代数表达式与图象之间的对应关系。 五、教学过程 (一)、新课导入 上节课我们学习了如何画正比例函数的图象,步骤为①列表;②描点;③连线。经过讨论我们又知道了画正比例函数的图象不需要许多点,只要找两点即可,还明确了正比例函数的代数表达式与图象之间的对应关系。 本节课我们进一步来研究一次函数的图象的其他性质。 (二)、讲授新课 1、在同一坐标系内分别作出下列一次函数的图象 (1)据上节课学习的内容作正比例函数y=2x 的图像 52 1,4,2-=+==x y x y x y

(2)作出一次函数y=x+4的图象 解:列表: 描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。 连线:把这些点依次连接起来,得到y=2x+1的图象,它是一条直线。 小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤: (1)列表;(2)描点;(3)连线。 (3)一次函数图像是什么? 怎样更简便的画一次函数图像? 小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b 的图象也称为直线y-kx+b 。 (4)作函数 的图像 (5)讨论 观察三个函数图象,随着 x 值的变化,y 的值在怎样变化? 2、在同一坐标系内分别作出下列一次函数的图象. y=-x+6、y=-2x 、y=12 --3 讨论 观察三个函数图象,随着 x 值的变化,y 的值在怎样变化? 小结: 函数性质: 当k>0时,y 随x 的增大而增大; 当k<0时,y 随x 的增大而减小. 3、在同一坐标系内分别作出下列一次函数的图象. y=x 、y=x+4、y=x-5 讨论: (1)这三个图像有怎样的位置关系? (2)直线y=x 经过怎样的运动得到直线y=x+3?直线y=x 经过怎样的运动得到直线y=x-5? (3)如何根据两条直线的函数解析式来判断两条直线的位置关系? (4)直线y=kx 经过怎样的运动得到直线y=kx+b? 小结: (1) 一次函数的性质 5-21x y =

图像复原——逆滤波复原与维纳滤波复原方法及比较

鲁东大学信息与电气工程学院学年第-----1----学期 《》课程论文 课程号: 任课教师成绩 逆滤波复原与维纳滤波复原方法及比较 摘要 图像复原,即利用退化过程的先验知识,去恢复已被退化图像的本来面目。对遥感图像资料进行大气影响的校正、几何校正以及对由于设备原因造成的扫描线漏失、错位等的改正,将降质图像重建成接近于或完全无退化的原始理想图像的过程。图像在形成,记录,处理和传输的过程中,因为成像系统,记录设备,传输介质和处理方法的不完备导致图像质量的下降,也就是常说的图像退化。图像复原是对发生退化的图像进行补偿,某种意义上对图像进行改进,改善输入图像的质量。我的这篇论文主要介绍逆滤波图像复原,维纳滤波图像复原等方法,以及对他们之间进行比较。 关键词:图像复原、逆滤波复原、维纳滤波复原 一.图像复原的意义 复原是图像处理的一个重要内容,它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受各种因素的影响,图像的质量都会有所下降,典型表现有图像模糊、失真、有噪声等。这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复退化图像本来面目。 二.维纳滤波的介绍 图像复原是图像处理中的一个重要问题。对于改善图像质量具有重要的意义。已在实际应用中被证明是有效的重要的图像复原技术有很多,而维纳滤波法提供了一种在有噪声情况下导出反卷积传递函数的最优方法,它是频率域最常用的一种恢复方法。目前的B超声图像所展示的器官和组织的范围很小,而且图像的分辨率较低,同时伪像也较多,这样在根据B超图像进行病情诊断时,常常出现由于B超图像模糊不清而错误诊断病情的情况,造成严重的后果。因此,利用图像处理技术,对所获得的

基本初等函数图像及性质大全(初中高中)

基本初等函数图像及性 质大全(初中高中) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、一次函数与二次函数 (二)二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

顶点坐标 2 4 , 24 b a c b a a ? ? - - ? ? ? 值域 2 4 , 4 ac b a ?? - +∞ ? ?? 2 4 , 4 ac b a ?? - -∞ ? ?? 单调区间 , 2 b a ?? -∞- ? ?? 递减 , 2 b a ?? -+∞ ? ?? 递增 , 2 b a ?? -∞- ? ?? 递增 , 2 b a ?? -+∞ ? ?? 递减 ①.二次函数2 ()(0) f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为, 2 x a =- 顶点坐标是 2 4 (,) 24 b a c b a a - - ②当0 a>时,抛物线开口向上,函数在(,] 2 b a -∞-上递减,在[,) 2 b a -+∞上递增,当2 b x a =-时, 2 min 4 () 4 ac b f x a - =;当0 a<时,抛物线开口向下,函数在(,] 2 b a -∞-上 递增,在[,) 2 b a -+∞上递减,当 2 b x a =-时, 2 max 4 () 4 ac b f x a - =. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x为自变量,α是常数.

图像复原

MATLAB在图像复原中的应用研究 摘要:图像复原是图象处理的一个重要课题。图像复原也称图象恢复,是图象处理中的一大类技术。它的主要目的是改善给定的图像质量。当给定了一幅退化了的或者受到噪声污染了的图像后,利用退化现象的某种先验知识来重建或恢复原有图像是复原处理的基本过程。可能的退化有光学系统中的衍射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,大气湍流的扰动效应,图像运动造成的模糊及几何畸变等等。噪声干扰可以由电子成像系统传感器、信号传输过程或者胶片颗粒性造成。各种退化图像的复原都可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行处理,以便恢复出原图像。文章介绍了图象退化的原因,几种常用的图像滤波复原技术,以及用MATLAB实现图像复原的方法。 关键词:退化模型;噪声干扰;图像滤波;图像复原 1.图像复原的概念 1.1图像复原的定义 图像复原也称图象恢复,是图象处理中的一大类技术。所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可在空间域,也可在频域进行。 1.2 图象恢复与图象增强的异同 相同点:改进输入图像的视觉质量。 不同点:图象增强目的是取得较好的视觉结果(不考虑退化原因);图象恢复根据相应的退化模型和知识重建或恢复原始的图像(考虑退化 原因)。 1.3图象退化的原因 图象退化指由场景得到的图像没能完全地反映场景的真实内容,产生了失真等问题。其原因是多方面的。如: 透镜象差/色差 聚焦不准(失焦,限制了图像锐度) 模糊(限制频谱宽度) 噪声(是一个统计过程) 抖动(机械、电子) 1.4图象退化举例 如图1所示是两个图象退化的例子。 图1 退化图像与原始图像 2.退化模型

高中数学《三角函数的图像和性质》教案

基础梳理 1.“五点法”描图 (1) y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (3 (0,0), ( ,1) ,(π,0), 2 , 1) ,(2π,0). 2 (2) y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1), 0) ,(π,-1), (3 0) ,(2π,1). ( , , 2 2 2.三角函数的图象和性质 [-1,1] [-1,1] R

(k+0)k ∈Z , 2( k 0)k ∈Z , 2 单调增区间 [2k-2k+k ∈Z; , ] 2 2 单调减区间 [2k+2k+3 k ∈Z , ] 2 2 单调增区间 (k-k+k ∈Z , ) 2 2

) ) 1 . 函数 y = cos(x + ,x ∈R ( ). 双基自测 3 A .是奇函数 B .是偶函数 C. 既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 y = - x ) 2. 函数 tan( 4 的定义域为( ). {x | x ≠ k - A . 4 ∈ Z } B .{x | x ≠ 2k - , k ∈ Z } 4 C .{x | x ≠ k + 4 ∈ Z } D .{x | x ≠ 2k + 4 ∈ Z } 3. y = sin(x - 的图象的一个对称中心是( ). 4 A .(-π,0) B . (- 3 C . (3 4 D. ,0) 2 ( ,0) 2 4. 函数 f (x )=cos (2x + 的最小正周期为 . ) 6 考向一 三角函数的周期 【例 1】?求下列函数的周期: y = - x ) (1) sin( 3 2 ;(2) y = tan(3x - ) 6 考向二 三角函数的定义域与值域 (1) 求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如 y =a sin 2x +b sin x +c 的三角函数,可先设 sin x =t ,化为关于 t 的二次函数求值域(最值); ②形如 y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设 t =sin x ±cos x ,化为关于 t 的二次函数求值域(最值). , k , k , k ,0)

相关文档
相关文档 最新文档