文档库 最新最全的文档下载
当前位置:文档库 › 中职数学正弦函数的图象与性质1优质课教学设计

中职数学正弦函数的图象与性质1优质课教学设计

中职数学正弦函数的图象与性质1优质课教学设计
中职数学正弦函数的图象与性质1优质课教学设计

§6.3.1正弦函数的图象与性质1——图象教材分析

1、教材的地位与作用

《6.3.1正弦函数的图象与性质1——图象》是温州市中等职业学校地方创新教材第六章第三节第一小节的内容。在此之前,学生已经学习了角的概念的推广和度量以及任意角的三角函数值,这为过渡到本节的学习起着铺垫作用。本节内容不仅可以使学生掌握正弦函数的图象的形状,又可以学会简图的画法——五点法。也为今后研究正弦、余弦、正切函数的性质作了充分的准备,起到承上启下的作用。

2、教学目标

会用描点法画出正弦函数的图象;

掌握“五点法”画正弦函数的简图;

3、教学的重点难点

重点是正弦函数的图象的形状;难点是用描点法画出函数y=sinx,x∈[0,2π]的图难点的突破:突破难点主要是在学生配合下教师边讲解步骤(怎么列表,怎么描点,怎么连线,),边画图,力求准确,以起到示范作用。

教法学法

1、教法

根据本节课的教学内容和中职学生的实际水平,我采用具体到一般,部分到整体的启发引导与合作探究的教学方法,辅助采用多媒体课件,学生练习用格子纸。

2、学法

通过观察、归纳、类比、实际操作演练的过程:让学生学会用自己的思维分析问题。

3、学情分析

(1)前几节课学生已经学习了角的概念的推广及其度量,任意角的三角函数,掌握了特殊的弧度角的三角函数值。

(2)我任教的14电商班学生数学基础较为薄弱,学习探究能力较差,所以课堂上离不开老师的思维启发,也离不开师生、生生间的合作探究。

教学过程

常用弧度角的正弦值的求解及等式异同点的分析

正弦函数的定义及表示——解析式,图象

正弦函数y=sinx ,x ∈[0,2π]的图象的具体演练

正弦函数简图画法——五点法

正弦曲线及特征

例题板演,练习巩固

三、教学过程

变量分析步骤分析特征分析

诱导公式

完善巩固基本思路:由旧及新,由易及难,逐步加强,逐步推进文成职专

周海桃

小结,作业布置

课后巩固

一、 设疑引入

教师出示问题,引导学生分析、思考:

要求学生:(1)能读出符号;(2)能求正弦值;(3)能讲出异同点:相同点都是取正弦,不同点有弧度角,正弦值

2.教师顺势引导学生:对于每一个确定的弧度角x ,通过取正弦,都有唯一一个正弦值y 与之对应,所以y 与x 存在函数关系: )(sin R x x y ∈=;

设计思维:通过特殊角的三角函数值引入,既能巩固学生已有的知识,激发兴趣;同时又为后面列表做好铺垫;还能通过分析变量弧度角,正弦值的关系引出正弦函数的定义及图象.

==

====

=ππππππ2sin 723sin 6 sin 52sin 4 3sin 36sin 2 0sin 11)

()()

()()()()(点:观察求出的等式的异同、尝试求解下列式子并

二、学习新课 一.定义

1.型如y =sin x (x ∈R )的函数叫做正弦函数.

教师角色:教师在黑板上将正弦函数写下,并写出课题“6.3.1正弦函数的图象与性质1” 二.定义的巩固

1.判断下列函数是否为正弦函数: (1) y=1+sinx ;(2) y=2sinx (3) y=sin2x ; (4) y=sin(x-π) (5) y=cosx

对学生要求,一看角——是否为x ;二看名——是否为正弦(sin );三看y 是否就为正弦值。 设计思维:通过定义的巩固,让学生明确正弦函数的构成要素:一是弧度角,二是正弦名,三是正弦值为y;同时奠定“解三角函数题”的初步思维:一看角,二看三角函数名,三看三角函数值的运算

2.正弦函数中两个变量x,y 关系的表示除了解析法:)(sin R x x y ∈=,还有什么方法——列表法、图象法——画图步骤是? 三.正弦函数的图象

1.作正弦函数图象的主要步骤是怎样的?——列表;描点;连线

点教师在黑板边讲解边画图,力求准确,以起到示范作用。连线时也强调是曲的还是直的,凸的还是凹的。

2.引导学生观察图象,得出:

⑴图象的基本特征

⑵有五个点起到了关键的作用,引出在准确度要求不高的情况下可用简便的“五点法”:

(0,0) 、(,1)2π、(π,0) 、3(,-1)2

π

、(2π,0)

特点:五点处于波峰、波谷及中心点位置,相邻两点x 的值相差2

π

,波峰与两边的中心点

的连线是“凸”的,波谷与两边的中心点的连线是“凹”的.

设计思维:通过教师的准确演示,适时的引导学生观察、归纳来引入五点法,自然的克服本节难点

正弦函数的图象

简图作法

图象中关键点

)

1,(2π)

0,0()

0,(π)

1(,23-π)

0,2(π(1) 列表(列出对图象形状起关键作用的五点坐标)(3) 连线(用光滑的曲线顺次连结五个点)

(2) 描点(定出五个关键点)

.2

π

.32

πy

π

.2π

1

-1

x ..

.五点法

4.利用终边相同的角三角函数值相同的性质,绘出实数域上的正弦曲线。

正弦函数的图象

x

6πy

o

-1

2π3π4π5π

-2π

-3π

-4π

1

πy=sinx x ∈[0,2π]

y=sinx x ∈R

正弦曲线

y x

o 1-1

2

π2

3π2

π-

π

R

x x y ∈= ,sin ]2,0[ ,sin π∈=x x y 因为终边相同的角的三角函数值相同,所以y=sinx 的图象在……,

…与y=sinx,x ∈[0,2π]的图象相同

[]ππ2,4--[],0,2,π-[],2,0π[],4,2ππ

正弦曲线有哪些图象特征呢?这个我们下节课再讲。

设计思维:引入正弦曲线后要研究图象特征,为下节课做好铺垫。

三、例题解析

例1.画出下列函数的简图

(1)y=sinx+1, x ∈[0,2π]列表

描点作图

-

2

3π2

π11--x

y

o

-

x

x

sin 1

sin +x 10

10

1

02

10

1

-02π2

3ππ

π

2解:(1)]

2,0[,sin 1π∈+=x x y ]

2,0[,sin π∈=x x y 练习1:

(1)作函数y=sinx-2,x ∈[0,2π]的简图

(2)作函数y=2sinx ,x ∈[0,2π]的简图练习2:书本第58页第1题(1),(2)

教师角色:引导学生讲解步骤,教师完整板书起示范,并在例题讲完后引导学生做两点归纳:一是五点法作图步骤及细节;二是解析式的变换与函数图像的变化之间的联系 设计思维:巩固本节知识点,数列五点法画图,也为以后的图象的变换做好铺垫。 四、小结

1、 正弦函数定义;

2、 正弦函数图象的作图方法——五点法及其步骤

3、 能力要求:能用五点法画出正弦函数的简图;

4、 数学思想方法:观察、抽象、归纳 五、作业

教科书第67页习题6.3第1题(1),(2),(3),(4);练与考第29页第8题

教学反思

这篇案例由特殊弧度角的正弦值求解引入课题,既呼应学生刚学的新知,引起学生的兴趣,又能引出两个变量弧度角和正弦值的变化关系,自然引入课题正弦函数的定义及其图象,激发起学生的求知欲望,还能为本节重点,难点的突破打下良好的基础(列表中要求特殊角的正弦值).由学生已有知识归纳做出y=sinx ,x ∈[0,2π]的图象的步骤,加上教师准确的操作示范作用,画出正弦函数y=sinx ,x ∈[0,2π]的图象克服难点,并通过学生自己的观察得出画简图的“五点法”,进而由部分到整体,得出正弦曲线。使学生易于理解和接受.由典型例题的讲解,进一步巩固五点法作图步骤及细节,归纳出一般结论,培养了学生的观察、猜想能力.由练习的变形培养了学生灵活处理问题的能力及验证猜想的能力.同时实现目标:掌握“五点法”画正弦函数的简图.

总之,关注学生已有知识与新知识,新知识与将要学的知识的联系是这篇案例的突出特点,“问题驱动式”的设计是这篇案例成功的关键,而“从问题出发构建定义,画出图象,反过来,又利用图象特征得出正弦函数的性质及其应用”的设计又可以使学生领略到学习数学的成功和胜利喜悦.

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质 一、学情分析: 1、学习过指数函数和对数函数; 2、学习过周期函数的定义; 3、学习过正弦函数、余弦函数[]π2,0上的图象。 二、教学目标: 知识目标: 1、正弦函数的性质; 2、余弦函数的性质; 能力目标: 1、能够利用函数图象研究正弦函数、余弦函数的性质; 2、会求简单函数的单调区间; 德育目标: 渗透数形结合思想和类比学习的方法。 三、教学重点 正弦函数、余弦函数的性质 四、教学难点 正弦函数、余弦函数的性质的理解与简单应用 五、教学方法 通过引导学生观察正弦函数、余弦函数的图象,从而发现正弦函数、余弦函数的性质,加深对性质的理解。(启发诱导式)

六、教具准备 多媒体课件 七、教学过程 1、复习导入 (1) 我们是从哪个角度入手来研究指数函数和对数函数的? (2) 正弦、余弦函数的图象在[]π2,0上是什么样的? 2、讲授新课 (1)正弦函数的图象和性质(由教师讲解) 通过多媒体课件展示出正弦函数在[]ππ2,2-内的图象,利用函数 图象探究函数的性质: ⅰ 定义域 正弦函数的定义域是实数集R ⅱ 值域 从图象上可以看到正弦曲线在[]1,1-这个范围内,所以正弦函数的值域是[]1,1- ⅲ 单调性 结合正弦函数的周期性和函数图象,研究函数单调性,即: ⅳ 最值 观察正弦函数图象,可以容易发现正弦函数的图象与虚线的交点,都是函数的最值点,可以得出结论: 上是增函数;在)(22,22Z k k k ∈??????+-ππππ上是减函数;在)(232,22Z k k k ∈????? ?++ππππ1,22max =∈+=y Z k k x 时,当ππ1,2 2min -=∈-=y Z k k x 时,当ππ

正比例函数的图像与性质教案

19.2.1正比例函数图像与性质导学案 教学内容 正比例函数图像与性质 教学目标 1、知识与技能: 知识性目标:理解正比例函数图像特征. 技能性目标:能画出正比例函数图像 2、数学思考: 数学思想:体会与发展建立数学模型和数形结合的思想. 数学研究方法:从特殊到一般,从数到形研究正比例函数图像特征及性质. 3、解决问题: 利用正比例函数图像特征及性质知识解决有关实际问题. 4、情感与态度: 结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯. 教学重难点 教学重点:正比例函数图像特征和性质. 教学难点:正比例函数图像特征和性质的综合运用. 一情境导入: 3月31日清晨,强飓风尼可拉斯以每小时192km的速度从北部登陆德国,造成重大损伤,飓风在德国横扫的路程随时间变化而变化吗? t (h) 1 2 3 4 s (km) 问题1.从上表中,你能得出时间和路程之间的函数关系式吗? 问题2.上述解析式是正比例函数吗? 那么它们的图像有什么性质呢? 二自主探究

在同一直角坐标系中画出下列函数图像. (1)y=2x (2) 解:列表得: 根据你所画的图像回答: 1.上述图像的形状是_____________. 2.对函数y=kx, ,当x=0时,y=_,函数过点__________. 当x=1时,y=_,函数过点__________. 函数y=kx 是一条经过点________和点________的__________. 3.当k>0时,直线y=kx 经过第____________象限. 当k<0时,直线y=kx 经过第____________象限. 4.在函数y=2x 上,当x=-1时,y=____. 当x=0时,y=_____. 当x=1时,y=_____. 当x 增大时,y____________.图像从左到右呈________趋势. 在函数y=-2x 上,当x=-1时,y=____. 当x=0时,y=_____. 当x=1时,y=_____. 当x 增大时,y______________.图像从左到右呈________趋势. 归纳:正比例函数的性质: x … -3 -2 -1 1 2 3 … y=2x … … … … x … -3 -2 -1 0 1 2 3 … y=-2x … … y=-x … … x y 21=x y 2-=x y -=x y 2 1 =

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

正比例函数图象及性质

14.2.2 正比例函数图象及性质 罗江中学初中数学组:张恩东 【教材分析】 正比例函数图像及性质位于第十四章第二节,是学好正比例函数解析式的后续内容,这一节内容是函数与直角坐标平面第一次完美的结合,在这节课中如果学生能够很好的感悟和内化数形结合的思想,将为研究更为复杂的反比例函数图像、二次函数图像奠定坚实的基础,本节内容在初中数学里起着承上启下的重要作用。在感悟数形结合思想同时也适合对学生分析、对比、归纳等能力的培养。 一、教学目标 1、知识与技能: 认识正比例函数图像是一条直线,学会画正比例函数图像 2、过程与方法: 通过计算机辅助教学使学生在观察、探究中自主发现正比例 函数的性质,并认识k 的符号对函数图象的影响. 3、情感态度与价值观: 通过性质的探索、研究、发现,使学生感受、领悟数 形结合思想,同时培养学生的观察、分析、归纳的逻辑思维 能力。 二、教学重点: 正比例函数图像的画法及其性质的发现。 三、教学难点: 正比例函数图像的画法及其性质的发现。 四、教学过程 知识复习: 上一节课我们学习了正比例函数,那么正比例函数一般解析式是什么呢? y=kx (k 是常数,k ≠0)其中k 叫做比例系数.称y 与x 成正比例 怎样判断一个函数是正比例函数呢? 正比例函数的图象是什么呢?这节课我们一起来探索正比例函数图象及性质 现在请同学们在同一直角坐标系中画出下列正比例函数的图象 (1)x y 2= (2)x y 2-= 提问:要画出这两个函数图象应采用什么方法呢?这种方法有哪些步骤? 自变量的取值有没有要求呢? 观察、 比较两个函数的相同点与不同点. 两图象都是经过原点的___________.函数y=2x 的图象从左向右____________,经过第________象限;函数y=-2x 的图象从左向右_________,经过第_________象限. 为什么函数图象不同?请大家观察这两个函数的解析式同不同?不同在哪个地方? 说明k 的值对函数图象有影响吗? 请大家在刚才直角坐标系中画下列两个正比例函数的图象 (1)x y 21= (2) x y 2 1-= k 的值对函数图象有影响吗?(没有) k 的符号对函数图象有影响,有怎样的影响呢?

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

正比例函数图象与性质

3/ 2016 -2017学年度第二学期初二数学单元测试 (时间70分钟,满分100 分) (共 2 页) 2017.5 1 2 3 4 5 6 7 8 、选择题(本题共36分,每小题4分,将答案填在表格中) 1如果点M 在直线y =X-1上,贝y M 点的坐标可以是( ) 8 .如图,菱形 ABCD 中,AB = 2,/ B = 120 °点 M 是AD 的中点, 点P 由点A 出发,沿A T B T D 作匀速运动,到达点 D 停止, 则厶APM 的面积y 与点P 经过的路程x 之间的函数关系的图 象大致是( O 1 2 3 1 O O A ? (1, 0) B ? ( 0, 1) C - (— 1, 0) D ? (1,— 1) ?如果函数y =(m -1)x |m| 是正比例函数,那么( ) 二、填空题(本题共 24分,每小题4分) A . m = 1 或 m = -1 B . m = 1 .一次函数y= — 3x+2的图象不经过( A .第一象限 B .第二象限 5.若一次函数y = x +4的图象上有两点 B . 5 - y2 .关于直线y= -2x - 4的描述正确的是( A ?可以看成是直线 B ?可以看成是直线 m = -1 D . m = 0 C ?可以看成是直线 D ?可以看成是直线 ) C .第三象限 1 A(- , yj 、B (1, 2 y= -2x 沿x 轴向左平移 y= -2x 沿x 轴向右平移 y= -2x 沿y 轴向上平移 y= -2x 沿y 轴向下平移 D .第四象限 y 2),则下列说法正确的是 ( ) C . % y 2 4个单位得到 4个单位得到 4个单位得到 4个单位得到 乃-忌+/> .一次函数y 1 =kx b 与y^ x a 的图象如图,则下列结论① k :: 0 ;② a 0 ;③当 x 3 寸,Wh 中,正确的个数是( B . 1 9.函数y=" x 中,自变量x 的取值范围是 3 10.写出一个一次函数,使该函数图象经过第一、二、四象限和点 ( 可以是 0,5), 则这个一次函数 11.平行四边形的周长为 240,两邻边为x 、y ,则它们的函数解析式为 y= 其中自变量 x 的取值范围是 __________________ 12.已知函数 y = ax + b 和y = kx 的图象交于点 P ,则根据图象可得,二元一次方程组 13.如图,三个正比例函数的图象分别对应表达式:① 从小到大排列并用“v”连接为 __________________ b , c 14.右表是一次函数 比=kx ? d, y 2二kx ? 6的部分自变 量x 与函数的对应值,则 m 的值为 _______ . x -2 0 1 y 1 3 y 2 2 m

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

11正比例函数的图象和性质同步习题含答案

12.2 一次函数的图象 1 正比例函数的图象和性质 要点感知1画函数图象的步骤:(1)__________;(2)__________:建立直角坐标系,以__________为横坐标,__________为纵坐标,确定点的坐标;(3)__________. 预习练习1-1下面所给点的坐标满足y=-2x的是( ) A.(2,-1) B.(-1,2) C.(1,2) D.(2,1) 要点感知2 正比例函数y=kx(k为常数,k≠0)的图象是一条__________,因此画正比例函数图象时,只要描出图象上的__________,然后过两点作一条直线即可,这条直线叫作“直线__________”. 预习练习2-1 如图,某正比例函数的图象过点M(-2,1),则此正比例函数表达式为( ) A.y=-1 2 x B.y= 1 2 x C.y=-2x D.y=2x 要点感知3 正比例函数图象的性质:直线y=kx(k≠0)是一条经过________的直线.当k>0时,直线y=kx经过第_______象限,从左到右,y随x的增大而________;当k<0时,直线y=kx经过第_____象限,从左到右,y随x的增大而________. 知识点1 画正比例函数的图象 1.正比例函数y=3x的大致图像是( )

2.已知正比例函数y=x,请在平面直角坐标系中画出这个函数的图象. 知识点2 正比例函数的图象与性质 3.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 4.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( ) A.其函数图象是一条直线 B.其函数图象过点(1 k ,-k) C.其函数图象经过一、三象限 D.y随着x增大而减小 5.正比例函数y=-x的图象平分( ) A.第一、三象限 B.第一、二象限 C.第二、三象限 D.第二、四象限 6.函数y=-5x的图象在第__________象限,y随x的增大而__________. 知识点3 实际问题中的正比例函数

(完整版)第1课时正比例函数的图象和性质练习题(含答案)

第1课时正比例函数的图象和性质一.选择题(共10小题) 1.下列函数表达式中,y是x的正比例函数的是() A.y=﹣2x2B. y=C. y= D.y=x﹣2 2.若y=x+2﹣b是正比例函数,则b的值是() A.0B.﹣2 C.2D.﹣0.5 3.若函数是关于x的正比例函数,则常数m的值等于() A.±2B.﹣2 C.D. 4.下列说法正确的是() A.圆面积公式S=πr2中,S与r成正比例关系 B. 三角形面积公式S=ah中,当S是常量时,a与h成反比例关系 C. y=中,y与x成反比例关系 D. y=中,y与x成正比例关系 5.下列各选项中的y与x的关系为正比例函数的是() A.正方形周长y(厘米)和它的边长x(厘米)的关系 B.圆的面积y(平方厘米)与半径x(厘米)的关系 C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系 D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米 6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为() A.3B.﹣3 C.±3D.不能确定 7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是() A.k=2 B.k≠2C.k=﹣2 D.k≠﹣2 8.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是() A.1B.2C.3D.4 8题图 9题图 9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是() A.k 1 <k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4 10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是() A.B.C.D. 二.填空题(共9小题) 11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ . 12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .

正弦型函数教案

正弦型函数y=Asin(ψx+φ)的图象变换教学设计 一、教学目标: 1、知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2、过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 3、情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 二、教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这 种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 学情分析: 本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。 教学内容分析:

1.5正弦函数的图像与性质基础练习题

1.5正弦函数的图像与性质基础练习题 一、单选题 1.已知函数()sin 022f x x ππ??????=+<< ???????的图象过点0,2? ?? ,则()f x 图象的一个对称中心为( ) A .1,03?? ??? B .()1,0 C .4,03?? ??? D .()2,0 22sin 0x -≥成立的x 的取值集合是( ) A .()32244x k x k k Z ππππ?? +≤≤+∈???? B .()72244x k x k k Z ππππ?? +≤≤+∈???? C .()52244x k x k k Z π πππ?? -≤≤+∈???? D .()572244x k x k k Z π πππ?? +≤≤+∈???? 3.函数π ()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C .π D .π 2 4.函数sin 26y x π?? =+ ???的最小正周期是( ) A .2π B .π C .2π D .4π 5.函数1sin y x =-的最大值为( ) A .1 B .0 C .2 D .1- 6.已知函数()()sin 2f x x ?=+的图像关于直线3x π =对称,则?可能取值是( ). A .2π B .12π - C .6π D .6π- 7.函数sin 26y x π? ? =+ ???的一条对称轴是( ) A .6x π =- B .0x = C .6x π = D .3x π =

8.函数2sin y x =的最小值是( ) A .2- B .1- C .1 D .2 9.已知集合{}20M x x x =-≤, {}sin ,N y y x x R ==∈,则M N =( ) A .[]1,0- B .()0,1 C .[]0,1 D .? 10.已知函数()sin()()2f x x x R π =-∈,下面结论错误的是( ) A .函数()f x 的最小正周期为2π B .函数()f x 在区间0, 2π??????上是增函数 C .函数()f x 的图像关于直线0x =对称 D .函数()f x 是奇函数 11.函数()sin 4f x x π? ?=+ ??? 图象的一条对称轴方程为( ) A .4πx =- B .4x π = C .2x π = D .x π= 12.函数12sin()24y x π=+ 的周期,振幅,初相分别是( ) A .,2,44ππ B .4,2,4π π-- C .4,2,4π π D .2,2,4π π 二、填空题 13.函数sin 2y x =的最小正周期为_____________ 14.函数1sin 223y x π??=+ ?? ?的最小正周期是_______ 15.y =3sin 26x π??- ???在区间0,2π?? ????上的值域是________. 三、双空题 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是 32,最小值是12-,则A =_____,B =_____. 17.函数sin 24y x π??=+ ???的对称轴为_________,对称中心为_____________. 四、解答题 18.已知函数2sin 23y x π? ?=+ ??? .

正弦、余弦函数的图象

1.3.2 三角函数的图象与性质 第1课时 正弦、余弦函数的图象 正弦曲线、余弦曲线 (1)正弦曲线、余弦曲线 正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )的图象分别叫正弦曲线和余弦曲线(如图). (2)“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),? ???? π2,1,(π, 0),? ?? ?? 3π2,-1,(2π,0). 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),? ???? π2,0,(π, -1),? ?? ?? 3π2,0,(2π,1).

(3)正弦、余弦曲线的联系 依据诱导公式cos x =sin ? ???? x +π2,要得到y =cos x 的图象,只需把y =sin x 的 图象向左平移π 2个单位长度即可. 思考:作正、余弦函数的图象时,函数自变量能用角度 制吗? [提示] 作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用. 1.思考辨析 (1)正弦曲线的图象向左右无限延展.( ) (2)y =sin x 与y =cos x 的图象形状相同,只是位置不同.( ) (3)函数y =cos x 的图象与y 轴只有一个交点.( ) [答案] (1)√ (2)√ (3)√ 2.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是________. [答案] 0,π4,π2,3π 4,π 3.不等式cos x <0,x ∈[0,2π]的解集为________. [答案] ? ?? ?? π2,3π2 利用“五点法”作简图 【例1】 用“五点法”作出下列函数的图象. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π]; (3)y =-1-cos x ,x ∈[0,2π]. 思路点拨:先分别取出相应函数在[0,2π]上的五个关键点,再描点连线.

正比例函数图像与性质(20201109201806)

19.2.1正比例函数图像与性质 学习目标 知识与技能 1.会画正比例函数的图象; 2?能根据正比例函数的图象和表达式y =kx(山0),理解k>0和k v 0时, 函数的图象特征与增减性; 情感、态度与价值 通过观察图象、归纳总结概括出正比例函数性质的活动,发展数学感知、数学表征、数学概括能力,体会数形结合的思想,发展几何直观. 学习重点:用数形结合的思想方法,通过画图观察,概括正比例函数的图象特征及性质。 学习难点::发现、归纳正比例函数的性质。 教学过程 一、复习导入 1、什么是正比例函数? 2、画函数图象需要经历哪些步骤? 二、研读课文 (一)例1画出下列正比例函数的图象:

(1)y=2x, y= 3 x 说一说:这些图象都是经过原点的 ________ ,函数y=2x的图 象从左向右 ______________ , 经过第________________ 象限, y随x的增大而___________ ;函数y= 1x 的图象从左向 3 右_____ ,经过第_________ 象限,y随x的增大而_________ < ⑵y=-1 ?5x, y=-4x 当k v 0时,正比例函数的图象特征及性质又怎样呢?

(二)归纳:正比例函数的图象及性质怎样? (三)分析图像,探究画正比例函数图像的简单方法: 过原点_________ 和点 _________ 画直线,得到y =kx 的图象. 四、归纳小结 1.你有哪些收获? 2.你还有哪些困惑? 自我检测: 1. 直线y = 5x经过第______ 象限,y随x增大而______ ; 2. 直线y…(a2T)x经过第 ____________ 象限,y随x增大而______ 3. 若直线y二(2k - 3)X经过二、四象限,则k的取值范围是 --------- 5—— m2-3 4. 若直线y = (m T)x 经过一、三象限,则m= ______ .

正弦型函数图像高考题

正弦型函数历年高考题 1 一、选择题 1、(2005)函数y=sinx 的图象向左平移 6 π 后得到的图像的解析式是( ) A 、y=sinx+6π B 、y=sinx-6π C 、y=sin(x+6π) D 、y=sin(x-6 π ) 2、(2007)函数y=sin2x 的图象向左平移6 π 后得到的图像的解析式是( ) A 、y=sin(2x+6π) B 、y=sin(2x-6π) C 、y=sin(2x-3π) D 、y=sin(2x+3 π ) 3、 (2009)如图是函数y=2sin(x ω?+) (其中ω>0,?< 2 π ),则ω、?正确的是( A ω=2,?=6π B ω=2,?=3 π C ω=1,?=6π D ω=1,?=3 π 5、(2011)把y=sinx 的图像向左或向右平移π/2个单位,得到的函数是( ) A y=sinx B y=-cosx C cos y x = D y=sinx 或 y=-cosx 6、(2012)函数)4 2sin(2π + =x y 的图像,可由函数x y 2sin 2=的图像( )而得到。 A. 向左平移 4π个单位 B. 向右平移4π 个单位 C. 向左平移8π个单位 D.向右平移8π 个单位 二、填空题 7、(2003)函数sin 24y x π? ? =+ ?? ? 的图象向右平移 8 π 单位,所得图象的函数解析式是 。 2、(2004)函数sin 22 x x y =的最小正周期为 ,值域为 。 3、(2007)函数y=sinxcosx 的最小正周期是 ,最小值是 。 8、(2012)正弦型函数)sin(?ω+=x A y )0,0(>>?A 在一个最小正周期内的图像中,最高点为 )2,9(π,最低点是)2,9 4(-π ,则ω=___________. 9、(2014)把正弦函数sin 2y x =的图像向_________________个单位,可以得到正弦函数 sin 24y x π? ?=+ ?? ?的图像

正弦型函数的图像

正弦型函数的图像 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

相关文档
相关文档 最新文档