文档库 最新最全的文档下载
当前位置:文档库 › 复变函数论试题库及答案

复变函数论试题库及答案

复变函数论试题库及答案
复变函数论试题库及答案

《复变函数论》试题库

《复变函数》考试试题(一)

一、 判断题(20分):

1.若f(z)在z 0的某个邻域可导,则函数f(z)在z 0解析. ( )

2.有界整函数必在整个复平面为常数. ( )

3.若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( )

4.若f(z)在区域D 解析,且0)('≡z f ,则C z f ≡)((常数). ( )

5.若函数f(z)在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )

6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )

7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )

8.若函数f(z)在是区域D 的单叶函数,则)(0)('D z z f ∈?≠. ( )

9. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=?C dz z f .

( )

10.若函数f(z)在区域D 的某个圆恒等于常数,则f(z)在区域D 恒等于常数.( )

二.填空题(20分)

1、 =-?=-1||0

0)(z z n

z z dz __________.(n 为自然数) 2.

=+z z 22cos sin _________. 3.函数z sin 的周期为___________.

4.设11)(2+=

z z f ,则)(z f 的孤立奇点有__________. 5.幂级数0n n nz

∞=∑的收敛半径为__________.

6.若函数f(z)在整个平面上处处解析,则称它是__________.

7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i)

21______________.

8.=)0,(Re n z

z e s ________,其中n 为自然数. 9. z

z sin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .

三.计算题(40分):

1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 的罗朗展式.

2. .

cos 11||?=z dz z

3. 设?-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +

4. 求复数11

+-=z z w 的实部与虚部.

四. 证明题.(20分)

1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D 为常数.

2. 试证

: ()f z 0Re 1z ≤≤的z 平面能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

《复变函数》考试试题(二)

一. 判断题.(20分)

1. 若函数),(),()(y x iv y x u z f +=在D 连续,则u (x,y )与v (x,y )都在D 连续.

( )

2. cos z 与sin z 在复平面有界. ( )

3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )

4. 有界整函数必为常数. ( )

5. 如z 0是函数f (z )的本性奇点,则)(lim 0

z f z z →一定不存在. ( ) 6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )

7. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=?C

dz z f . ( )

8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )

9. 若f (z )在区域D 解析,则|f (z )|也在D 解析. ( )

10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n n

n f . ( )

二. 填空题. (20分)

1. 设i z -=,则____,arg __,||===z z z

2.设C iy x z y x i xy x z f ∈+=?+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.

3. =-?=-1||00)(z z n z z dz _________.(n 为自然数)

4. 幂级数0n n nz ∞

=∑的收敛半径为__________ .

5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.

6. 函数e z 的周期为__________.

7. 方程083235=++-z z z 在单位圆的零点个数为________.

8. 设211)(z

z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________. 10. ____)1,1(Res 4=-z

z . 三. 计算题. (40分)

1. 求函数

)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.

3. 计算积分:?-=i

i z z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.

4. 求 dz z z z ?

=-22

)2(sin π.

四. 证明题. (20分)

1. 设函数f (z )在区域D 解析,试证:f (z )在D 为常数的充要条件是)(z f 在D 解析.

2. 试用儒歇定理证明代数基本定理.

《复变函数》考试试题(三)

一. 判断题. (20分).

1. cos z 与sin z 的周期均为πk

2. ( )

2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )

3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )

4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )

5. 若函数f (z )是区域D 解析且在D 的某个圆恒为常数,则数f (z )在区域D 为常

数. ( )

6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域可导. ( )

7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则

)1|(|1|)(|≤≤z z f . ( )

8. 若函数f (z )在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )

9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( )

10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )

二. 填空题. (20分) 1. 设11)(2+=

z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.

3. 若n n n

i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.

5. =-?=-1||00)(z z n z z dz _________.(n 为自然数)

6. 幂级数∑∞

=0n n nx 的收敛半径为__________.

7. 设1

1)(2+=z z f ,则f (z )的孤立奇点有__________. 8. 设1-=z e ,则___=z .

9. 若0z 是)(z f 的极点,则___)(lim 0

=→z f z z . 10. ____)0,(Res =n z

z

e . 三. 计算题. (40分)

1. 将函数12()z

f z z e =在圆环域0z <<∞展为Laurent 级数. 2. 试求幂级数n n n z n

n ∑+∞=!的收敛半径.

3. 算下列积分:?-C z z z z e )9(d 22,其中C 是1||=z .

4. 求0282269=--+-z z z z 在|z |<1根的个数.

四. 证明题. (20分)

1. 函数

)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D

为常数.

2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时

n z M z f |||)(|≤,

证明

)(z f 是一个至多n 次的多项式或一常数。

《复变函数》考试试题(四)

一. 判断题. (20分)

1. 若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件. ( )

2. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )

3. 函数z sin 与z cos 在整个复平面有界. ( )

4. 若f (z )在区域D 解析,则对D 任一简单闭曲线C 都有0)(=?C dz z f .

( )

5. 若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点. ( )

6. 若函数f (z )在区域D 解析且0)('=z f ,则f (z )在D 恒为常数. ( )

7. 如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )

8. 若

0)(,0)(0)(0==z f z f n ,则0z 为)(z f 的n 阶零点. ( ) 9. 若)(z f 与)(z g 在D 解析,且在D 一小弧段上相等,则D z z g z f ∈≡),()(. ( )

10. 若)(z f 在+∞<<||0z 解析,则

)),((Res )0),((Res ∞-=z f z f . ( )

二. 填空题. (20分)

1. 设i

z -=11,则___Im __,Re ==z z . 2. 若ξ=∞→n n z lim ,则=+++∞→n

z z z n n ...lim 21______________. 3. 函数e z 的周期为__________.

4. 函数2

11)(z z f +=的幂级数展开式为__________ 5. 若函数f (z )在复平面上处处解析,则称它是___________.

6. 若函数f (z )在区域D 除去有限个极点之外处处解析,则称它是D 的

_____________.

7. 设1|:|=z C ,则___)1(=-?C

dz z . 8. z

z sin 的孤立奇点为________. 9. 若0z 是)(z f 的极点,则___)(lim 0

=→z f z z . 10. =)0,(Res n z z

e _____________. 三. 计算题. (40分)

1. 解方程013=+z .

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

《复变函数论》试卷一

《复变函数论》试卷一 一、填空(30分) 1. 将复数()πααα≤≤+-=0sin cos 1i z 化为三角表示式,则=z 把它化为指数表示式,则=z 2.=+i e π3 ,()i i +1的辐角的主值为 3. =z 0是()44sin z z z f =的 阶零点. 4.0z 是()z f 的()1>m m 阶零点,则0z 是 () z f '1 的 阶极点. 5.已知()()2323cxy x i y bx ay z f +++=为解析函数, 则___________________===c b a 6.方程0273=+z 的根为 , , 二、简要回答下列各题(15分) 1. 用复数i 去乘复数i +1的几何意义是什么? 2. 函数()z f 在0z 解析有哪几个等价条件? 3. 设函数()z f 在单连通区域D 内处处解析,且不为零,C 是D 内的任一简 单闭曲线,问积分()() dz z f z f c ? '是否等于零,为什么? 三、计算下列积分(16分) 1. c zdz ?,c 是从点1i -到点1i +的有向直线段 2. 20 2cos d πθ θ +? 四、(12分) 求函数() 1 1z z +在圆环112z <-<内的洛朗级数展开式.

五、(12分) 证明方程24290z z ++=在单位圆1z =内及其上无解. 六、(15分) 求映射,把带形区域0Re 2z <<共形映射成单位圆1w <,且把1z =映 射成0w =,把2z =映射成1w =. 《复变函数》试卷二 一、填空题(20分) 1. -2是 的一个平方根 2. 设2 1i z --= ,则,=z Argz = =z Im 3. 若2 2z z =,则θi re z =满足条件 4. =z e e ,() =z e e Re 5. 设1≠=θi re z ,则()=-1ln Re z 6. 设变换βαβα,,+=z w 为复常数,则称此变换为 变换,它是由 等三个变换复合而成. 7. 幂级数∑∞ =1 2n n n z n 的收敛半径=R 8.函数 b az +1 在0=z 处的幂级数展开式为 ,其收敛半径为 9.变换z e W =将区域π<

《复变函数论》试题(B)

得分评卷 人 上装订线 院(系)名:班级:姓名:学号:考生类别: 考试日期: 下装订线 复变函数论(B) 题号一二三四五六七八九十总分 分数 答卷注意事项: 1、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在试题卷上答题。 2、答卷前请将密封线内的项目填写清楚。 3、字迹要清楚、工整,不宜过大,以防试卷不够使用。 4、本卷共 4 大题,总分为100分。 Ⅰ. Cloze Tests( Points) 1. If ,then . 2. If denotes the circle centered at positively oriented and is a positive integer,then . 3. The radius of the power series is . 4. The singular points of the function are . 5. , where is a positive integer. 6. . 7. The main argument and the modulus of the number are . 8. The square roots of 1+ are . 9. The definition of is .

得分评卷人 得分评卷人 10. Log= . Ⅱ. True or False Questions ( Points) 1. If a function is differentiable at a point ,then it is continuous at .() 2. If a point is a pole of order of ,then is a zero of order of .() 3. An entire function which maps the plane into the unite disk must be a constant.() 4. A function is differentiable at a point if and only if whose real and imaginary parts are differentiable at and the Cauchy Riemann conditions hold there.() 5. If a function is continuous on the plane and 0 for every simple closed contour , then is an entire function. ( ) Ⅲ. Computations ( Points) 1. Find . 2. Find the value of .

复变函数论第三版课后习题答案解析

1.设 z 1 3i ,求 z 及 Arcz 。 解:由于 z 1, Arcz 2k , k 0, 1, 。 3 (z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1) 2 z 1z 2 z 1 z 2 3 第一章习题解 答 (一) 2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1 。 z 2 4 i 6i 1 i i 解:由于 z 1 e 3 4 , z 2 3 i 2e 1 2 2 i i ( )i i 所以 z1z2 e 4i 2e 6i 2e ( 4 6)i 2e 12i i z 1 e 4 1 e (4 6)i i z 2 2e 6 2 5i 1 1 e 12 。 2 3.解二项方程 z 4 a 4 0,(a 0) 。 2k i 解: z 4 a 4 (a 4e i )4 ae 4 ,k 0,1,2,3 。 4.证明 z 1 2 2 z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z 1 2 2 z 2 2 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。 2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 ) 平行四边形对角线长平方和等于于两边长的和的平方。 5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0 z 1 z 2 z3 1 。证明 z 1,z 2, z 3是内 接于单位 圆 z 1 的一个正三角形的顶点。 证 由于 z 1 z 2 z3 1 ,知 z 1z 2z 3 的三个顶点均在单位圆上。 因为 所以, z 1z 2 z 1z 2 1 , 所以 z 1 z 2

第二学期 复变函数论期末试卷A

黄冈师范学院 2009—2010学年度第二学期期末试卷 考试课程:复变函数论 考核类型:考试A 卷 考试形式:闭卷 出卷教师: 考试专业:数信学院数教 考试班级:数教200701-02班 一、 选择题(每小题4分,共20分) 1、复数i z 45-=,则=2Re z ( ) A 、40 B 、9 C 、-40 D 、-9 2、关于复数z ,下列不正确的是( ) A 、||2z z z = B 、)Im()Re(iz z = C 、z Argz arg = D 、z z sin )sin(-=- 3、已知xy i y x z f 2)(22+-=,则)(z f ''是( ) A 、2 B 、y x 22- C 、2z D 、0 4、下列等式中不正确的是( ) A 、?==0cos 111z dz z B 、02111=?=dz e z z z C 、??=dz z f k dz z kf )()( D 、? =z z e dz e 5、下列级数收敛的是( ) A 、∑∞ =+1)21(n n i n B 、∑∞=??????+-12)1(n n n i n C 、∑∞=02cos n n in D 、∑∞=+o n n i )251( A 卷 【第 1 页 共 2 页】

二、填空题(每小题4分,共20分) 1、=-)22(i Arg ____________; 2、函数z e z f =)(是以 _______为基本周期; 3、幂级数∑∞ =12n n n z 的收敛半径R=____________; 4、函数()z z f cos =在0=z 处的泰勒级数是_________ ; 5、计算积分?==1||1 2 z z dz e 二、 判断题(每小题2分,共10分) 1、在几何上,θi re z =与)2(πθk i re z +=表示同一个复角.( ) 2、当复数z=0时,则有0=z 和0arg =z .( ) 3、可导函数一定处处连续,连续函数不一定处处可导.( ) 4、若)(z f 在区域D 内解析,则)(z f 在D 内存在无穷阶导数.( ) 5、收敛级数的各项必是有界的.( ) 三、 计算及证明题(8+8+10+12+12,共50分) 1、若0321=z z z ,则复数321,,z z z 中至少有一个为零(8分) 2、已知解析函数iv u z f +=)(的虚部为222121y x v +- =,且0)0(=f ,求)(z f (8分) 3、已知c 为从z =0到z =2+i 的直线段,求?dz z c 2(10分) 4、将z e z -1在0=z 处展成幂级数(12分) 5、将函数2 )(+=z z z f 按1-z 的幂展开,并指出它的收敛范围.(12分) A 卷 【第 2 页 共 2 页】

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

(完整)《复变函数与积分变换》期末考试试卷及答案,推荐文档

2 3 ∞ ?复变函数与积分变换?期末试题(A) 1.1 -i 一.填空题(每小题3 分,共计15 分) 的幅角是();2. Ln(-1 +i) 的主值是(1 );3.f (z) =1 +z 2 , z - sin z f (5)(0) =(); f (z) = 1 , 4.z = 0 是 z 4 的()极点;5.z Re s[f(z),∞]=(); 二.选择题(每小题3 分,共计15 分) 1.解析函数f (z) =u(x, y) +iv(x, y) 的导函数为(); (A)f '(z) =u x +iu y ;(B)f '(z) =u x-iu y; (C) f '(z) =u x +iv y ; (D) f '(z) =u y +iv x. 2.C 是正向圆周z = 3 ,如果函数f (z) =(),则?C f (z)d z = 0 . 3 ;(B)3(z -1) ;(C) 3(z -1) ;(D) 3 . (A) z - 2 z - 2 (z - 2)2 (z - 2)2 3.如果级数∑c n z n 在z = 2 点收敛,则级数在 n=1 (A)z =-2 点条件收敛;(B)z = 2i 点绝对收敛; (C)z = 1 +i 点绝对收敛;(D)z = 1 + 2i 点一定发散.4.下列结论正确的是( ) (A)如果函数f (z) 在z0点可导,则f (z) 在z0点一定解析; 得分

e (B) 如果 f (z ) 在 C 所围成的区域内解析,则 ? C f (z )dz = 0 (C ) 如果 ? C f (z )dz = 0 ,则函数 f (z ) 在 C 所围成的区域内一定解析; (D ) 函数 f (z ) = u (x , y ) + iv (x , y ) 在区域内解析的充分必要条件是 u (x , y ) 、v (x , y ) 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) ∞为sin 1 的可去奇点 z (B) ∞为sin z 的本性奇点 ∞为 1 的孤立奇点; ∞ 1 (C) sin 1 z (D) 为 的孤立奇点. sin z 三.按要求完成下列各题(每小题 10 分,共计 40 分) (1)设 f (z ) = x 2 + axy + by 2 + i (cx 2 + dxy + y 2 ) 是解析函数,求 a , b , c , d . z (2).计算 ? C z (z - 1)2 d z 其中 C 是正向圆周: z = 2 ; 得分

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

《复变函数论》试题(A)

复变函数论(A ) 答卷注意事项: 、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在试题卷上答题。 2、答卷前请将密封线内的项目填写清楚。 3、字迹要清楚、工整,不宜过大,以防试卷不够使用。 4、本卷共 4 大题,总分为100分。 Ⅰ. Cloze Tests (20102=? Points ) 1. If n n n n i i z ?? ? ??++??? ??-=1173,then lim =+∞ →n n z . If C denotes the circle centered at 0z positively oriented and n is a positive integer ,then ) (1 0=-?C n dz z z . The radius of convergence of ∑∞ =++1 3 )123(n n z n n is . The singular points of the function ) 3(cos )(22+=z z z z f are . 0 ,)ex p(s Re 2=?? ? ??n z z , where n is a positive integer. =)sin (3z e dz d z . The main argument and the modulus of the number i -1 are .

8. The square roots of i -1 are . 9. The definition of z e is . 10. Log )1(i -= . Ⅱ. True or False Questions (1553=? Points) 1. If a function f is analytic at a point 0z ,then it is differentiable at 0z .( ) 2. If a point 0z is a pole of order k of f ,then 0z is a zero of order k of f /1.( ) 3. A bounded entire function must be a constant.( ) 4. A function f is analytic a point 000iy x z += if and only if whose real and imaginary parts are differentiable at ),(00y x .( ) 5. If f is continuous on the plane and =+?C dz z f z ))((cos 0 for every simple closed path C , then z e z f z 4sin )(+ is an entire function. ( ) Ⅲ. Computations (3557=? Points) 1. Find ?=-+1||)2)(12(5z z z zdz . 2. Find the value of ??==-+22812 2) 1(sin z z z z dz z dz z z e .

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

10-11-1复变函数考试题A 2

2010-2011 第一 复变函数与积分变换 (A) 数理学院 自动化各专业 (答案写在答题纸上,写在试题纸上无效) 一、 选择题(每小题3分,共18分) 1、设z =1-i ,则Im(21z )=____________. A 、1- B 、2 1- C 、21 D 、1 2、设z=cosi ,则____________. A 、Imz=0 B 、Rez=π C 、|z|=0 D 、argz=π 3、设C 为正向圆周|z|=1,则积分?c z dz ||=____________. A 、0 B 、2πi C 、2π D 、-2π 4、幂极数∑∞ =+1n n z (2n)!1)!n (的收敛半径为____________. A 、0 B 、1 C 、2 D 、+∞ 5、点z =0是函数) 1(sin )1()(2--=z z z e z f z 的_____________. A 、可去奇点 B 、一阶极点 C 、二阶极点 D 、本性奇点 6、函数? ??><-=0101sgn t t t 在傅氏变换下的像为_____________. A 、ωi -11 B 、 ωi 1 C 、 ωi 2 D 、 ω i +11 课程考试试题 学期 学年 拟题学院(系): 适 用 专 业:

二、 填空题(每小题3分,共21分) 1、当1≤z 时,a z n +的最大值为_____________. 2、i i )1(+为_________. 3、函数) 3)(2()(-+=z z z z f 在1=z 的泰勒展开式的收敛圆域为_____________. 4、若)(z f =ζζζζζd z ?=-+2 353,则()f i ''-=_____________ 5、设)1()(1 -=z e z z f ,则Res[f (z ),0]=__________. 6、已知函数t e 在拉氏变换下的像为才,则t e t 2)1(-在拉氏变换下的像为______. 7、函数z 1=ω把z 平面上的曲线x y =映射成ω平面上的像为 ______. 三、 计算题(每小题10分,共50分) 1、试讨论定义于复平面内的函数)Re()(z z z f =在何处可导?何处解析?在可导点求其导函数。 2、求) 2)(1(12)(+-+=z z z z f 在圆环域1

《复变函数论》试题库及答案

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 }{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________.

复变函数课后习题答案全

. .. . . 资料. 习题一答案 1. 求下列复数的实部、虚部、模、幅角主值及共轭复数: (1)1 32i +(2)(1)(2)i i i -- (3)131i i i --(4)821 4i i i -+- 解:(1)1323213i z i -== +, 因此:32 Re , Im 1313z z ==-, (2)3(1)(2)1310 i i i z i i i -+=== ---, 因此,31 Re , Im 1010z z =-=, (3)133335122 i i i z i i i --=-=-+= -, 因此,35 Re , Im 32z z ==-, (4)821 41413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=, 2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+(3)(sin cos )r i θθ+ (4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+

.. .. 3. 求下列各式的值: (1 )5)i -(2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--(4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- (4)2 3 (cos5sin 5)(cos3sin 3) i i ????+- (5 = (6 ) =4. 设12 ,z z i = =-试用三角形式表示12z z 与12z z 解:1 2cos sin , 2[cos()sin()]4 466 z i z i π π ππ =+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212 i i ππππππ =-+-=+, 5. 解下列方程: (1)5 () 1z i +=(2)440 (0)z a a +=> 解:(1 )z i +=由此 25 k i z i e i π=-=-,(0,1,2,3,4)k = (2 )z ==

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

相关文档
相关文档 最新文档