文档库 最新最全的文档下载
当前位置:文档库 › 爆炸极限

爆炸极限

爆炸极限
爆炸极限

爆炸极限

可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。

爆炸上限同样不燃不爆。

一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。系统压力增大,爆炸极限范围也扩大,混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。容器、管子直径越小,则爆炸范围就越小。

气体或蒸汽爆炸极限是以可燃性物质在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以可燃性物质在混合物中所占体积的质量比g/m^3来表示的,例如铝粉的爆炸极限为40g/m^3。

可燃气体或蒸气分子式爆炸极限(%):下限上限

氢气 H2 4.0 74.2

氨 NH3 15. 5 27

一氧化碳 CO 12.5 74.2

甲醇 CH3OH 5.5 36

乙醛CH3CHO 4.1 55.0

测量范围0-100%LEL是什么意思?

“LEL”是指爆炸下限。可燃气体在空气中遇明火种爆炸的最低浓度,称为爆炸下限—简称%LEL。英文:Lower Explosion Limited。

可燃气体在空气中遇明火种爆炸的最高浓度,称为爆炸上限—简称%UEL。英文:Upper Explosion Limited。

那么什么是爆炸下限?

可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃

烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。

有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UE L)和爆炸下限(英文lower explode limit的简写LEL?)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。

爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量时,报警浓度一般设定在爆炸下限的25%LEL以下。

直接燃烧甲醇或甲醇蒸汽是被国际环保组织禁止的。因为:

1.直接燃烧甲醇或甲醇蒸汽,其燃烧温度会超过1300℃,这时会产生对人体具有巨大伤害的有毒物质--甲醛。

2.直接燃烧甲醇或甲醇蒸汽还会产生对人体有害的物质-NOx系列的麻痹神经的气体。所以燃烧甲醇的使用受到了限制。

在催化剂的作用下,使得甲醇氧化低温反应,反应温度仅为500℃~550℃,这样就不会生成甲醛等有害物质,且设备运行更安全,废热少,热效率高。甲醇制氢氧化供热系统催化反应温度低,催化剂分布在所有管程之中,加热均匀,同时出口又设置了空气换热器,进一步回收了热量,所以反应后混合气体出口温度仅为150℃左右。热效率非常高。

希望楼主有用。

每mol甲醇释放的能量为725.76kj另1KWH=3600kj 计算得出1KWH(度)与4.96mol(0.1587KG)甲醇充分氧化后放出的能量是相等的。考虑到风机的电损耗和废热损耗约占总损耗的4%左右(计算略),最终每KWH能量甲醇用量约为0.162KG左右

现阶段甲醇的价格约为3元/KG,0.161KG甲醇的费用为0.48元,现阶段工业用电的价格约为0.85元/KWH

这样计算下来0.48/0.85=0.56

所以说甲醇制氢氧化供热成本只为电加热的55%左右

CH3OH+H2O=CO2+3H2 +49.5 KJ/mol

64克甲醇燃烧放出的热量=64*22.68=1451.52KJ

2CH3OH(l)+3O2(g)= 2CO2(g)+4H2O(l)+1451.52KJ

在250C、101KPa时,1g甲醇完全燃烧生成CO2和液态水时放热22.68kJ,则能表示甲醇燃烧的热化学方程式为:

CH3OH(g)+3/2O2(g) ===CO2(g)+2H2O(l),△H=—729.6kJ·mol—1

任何粉尘都能测的检测仪面粉扬尘金属粉尘都能测 空气中粉尘爆炸极限表

24小时在线监测型煤粉检测仪 SGA-500-DUST 一、产品简介 SGA-500-DUST煤粉检测仪是深国安电子专门针对粉尘类产品,所研发生产的一款24小时在线监测型煤粉检测仪。该产品采用光学技术原理,可以快速准确地检测粉尘浓度。每5秒种刷新一次数据同,可以实时查询现场环境的具体浓度。还可选配高分贝声光报警器,可达到危险值时,会第一时间声光报警,提示人员安全撤离。广泛于用抛光车间、五金加工厂、面粉厂、水泥厂、煤矿区域等。 二、产品参数 1、目标气体:可吸入颗粒物等粉尘; 2、量程: 0~30mg/m3(以1μm直径的颗粒为标准); 3、最小检出粒子直径:1μm以上; 4、相对误差:≦20%; 5、预热时间:<20秒; 6、数据刷新间隔:5秒; 6、显示方式:5位八段码LCD显示;

7、多种输出方式可选: 1) RS485有线数字接口; 2)声光报警信号选配(声音音量>120DB); 8、工作电源:24VDC; 9、体积:主机230mm×90 mm×42 mm; 10、重量:350g; 11、材料:铝 12、防护等级:IP20 13、工作环境: 0~50°C;10~95%RH非凝露 14、大气压力:86KPa~110KPa 三、应用场所 木材厂、塑胶厂、抛光车间、五金加工厂、面粉厂、水泥厂、大气环境监测等。 四、知识普及 1)粉尘为什么会发生爆炸呢? 无数微小的粉尘的表面积加在一起是非常大的。一块东西变成无数粉尘后,表面积大大增加了,表面分子与空气接触的机会增多了,使得表面分子的化学性质特别活泼。它们只要不多的热量,很少的空气,就可以充分燃烧。无数粉尘激烈燃烧,使周围的空气剧烈膨胀,就像炸药一样,引起爆炸。 2)粉尘爆炸的条件有哪些? 粉尘爆炸的条件有三:一是烧料,干燥的微细粉尘、浮游粉尘的浓度每立方米达到煤粉30-40克、铝粉40克、铁粉100克、木粉12.6-25克、小麦粉9.7克;二是氧气,空气中的氧气含量达到21%;三是热能,40毫焦尔的火源。 3)常见的可燃性粉尘有哪些? 最常见的可燃粉尘有煤粉尘、玉米粉尘、土豆粉尘、铝粉尘、锌粉尘、镁粉尘、硫磺粉尘等。比如电子产品如果普遍使用铝材,在生产过程中产生的粉尘,就属于典型的可燃粉尘 4)粉尘爆炸悲剧能避免吗? 在中国的大部分企业,工人对于粉尘爆炸的危害,大多所知甚少。 事实上,面粉或饲料等粉尘爆炸的温度,相当于一张易燃纸的点火温度。一星点的火花,都可能引发粉尘爆炸。而粉尘爆炸的威力巨大——因为它很容易产生二次爆炸。第一次爆炸气浪,会把沉积在设备或地面上的粉尘吹扬起来,在爆炸后短时间内爆炸中心区会形

爆炸极限一览表

可燃气体或蒸气分子式爆炸极限(%) 下限上限 氢气H2 4.0 75 氨NH3 15.5 27 一氧化碳CO 12.5 74.2 甲烷CH4 5.3 14 乙烷C2H6 3.0 12.5 乙烯C2H4 3.1 32 乙炔C2H2 2.2 81 苯C6H6 1.4 7.1 甲苯C7H8 1.4 6.70 环氧乙烷C2H4O 3.0 80.0 乙醚(C2H5)O 1.9 48.0 乙醛CH3CHO 4.1 55.0 丙酮(CH3)2CO 3.0 11.0 乙醇C2H5OH 4.3 19.0 甲醇CH3OH 5.5 36 醋酸乙酯C4H8O2 2.5 9 常用可燃气体爆炸极限数据表(LEL/UEL及毒性) 物质名称分子式爆炸浓度(V%) 毒性 下限LEL 上限UEL 甲烷CH4 5 15 —— 乙烷C2H6 3 15.5 丙烷C3H8 2.1 9.5 丁烷C4H10 1.9 8.5 戊烷(液体)C5H12 1.4 7.8 己烷(液体)C6H14 1.1 7.5 庚烷(液体)CH3(CH2)5CH3 1.1 6.7 辛烷(液体)C8H18 1 6.5 乙烯C2H4 2.7 36 丙烯C3H6 2 11.1 丁烯C4H8 1.6 10 丁二烯C4H6 2 12 低毒 乙炔C3H4 2.5 100 环丙烷C3H6 2.4 10.4 煤油(液体)C10-C16 0.6 5 城市煤气 4 液化石油气 1 12

汽油(液体)C4-C12 1.1 5.9 松节油(液体)C10H16 0.8 苯(液体)C6H6 1.3 7.1 中等 甲苯C6H5CH3 1.2 7.1 低毒 氯乙烷C2H5Cl 3.8 15.4 中等 氯乙烯C2H3Cl 3.6 33 氯丙烯C3H5Cl 2.9 11.2 中等 1.2 二氯乙烷ClCH2CH2Cl 6.2 16 高毒四氯化碳CCl4 轻微麻醉 三氯甲烷CHCl3 中等 环氧乙烷C2H4O 3 100 中等 甲胺CH3NH2 4.9 20.1 中等 乙胺CH3CH2NH2 3.5 14 中等 苯胺C6H5NH2 1.3 11 高毒 二甲胺(CH3)2NH 2.8 14.4 中等 乙二胺H2NCH2CH2NH2 低毒 甲醇(液体)CH3OH 6.7 36 乙醇(液体)C2H5OH 3.3 19 正丁醇(液体)C4H9OH 1.4 11.2 甲醛HCHO 7 73 乙醛C2H4O 4 60 丙醛(液体)C2H5CHO 2.9 17 乙酸甲酯CH3COOCH3 3.1 16 乙酸CH3COOH 5.4 16 低毒 乙酸乙酯CH3COOC2H5 2.2 11 丙酮C3H6O 2.6 12.8 丁酮C4H8O 1.8 10 氰化氢( 氢氰酸) HCN 5.6 40 剧毒 丙烯氰C3H3N 2.8 28 高毒 氯气Cl2 刺激 氯化氢HCl 氨气NH3 16 25 低毒 硫化氢H2S 4.3 45.5 神经 二氧化硫SO2 中等 二硫化碳CS2 1.3 50 臭氧O3 刺激 一氧化碳CO 12.5 74.2 剧毒

定义证明二重极限_1

定义证明二重极限 定义证明二重极限就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0户几卜8的一切点P,有不等式V(P)一周。成立,则称A为函数人P)当P~P。时的极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点P(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点P 入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点P。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点P都适合/(P)一A卜利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

粉尘爆炸极限及燃点

各种粉体的爆炸极限浓度及燃点全收录

影响粉尘爆炸的主要因素: 部因素(粉尘的理化性能): 粉尘的燃烧速度比气体的燃烧速度要小。粉尘的颗粒越小,相对表面越多,分散度越大,则爆炸极限围扩大,其爆炸危险性便增加。因为粒子越小,粒子带电性越强,使得体积和质量极小的粉尘粒子在空气中悬浮的时间更长,燃烧速度就更接近可燃性气体混合物的燃烧速度,燃烧过程也进行的更完全。 燃烧热高的粉尘,其爆炸浓度下限低,一旦发生爆炸即呈高温高压,爆炸威力大。 粉尘中含可燃挥发分越多,热分解温度越低,爆炸的危险性和爆炸产生的压力就越大。 粉尘中的灰分(即不燃物质)和水分的含量增加,其爆炸的危险性就降低。因为,它们一方面能够较多地吸收体系的热量,从而减弱粉尘的爆炸性能,另一方面灰分和水分会增加粉尘的密度,加快其沉降速度,使悬浮粉尘浓度降低。 外部条件: 含氧量是粉尘爆炸最敏感的因素,随着空气中氧含量的增加,爆炸浓度围也随之扩大,爆炸危险性也就增加。 空气湿度增加,粉尘爆炸的危险性减小。因为湿度增大,有利于消除粉尘静电和加速粉尘的凝聚沉降。同时水分的蒸发消耗了体系的热能,稀释了空气中的含氧量,降低了粉尘的燃烧反应速度,使粉尘不轻易发生爆炸。 当粉尘与可燃性气体共存时,粉尘爆炸浓度的下限相应下降,而最小点火能量也有一定程度的降低,即可燃气体的出现,大大增加了粉尘爆炸的危险性。 当温度升高压强增加时,粉尘爆炸浓度极限围会扩大,所需要的点火能量也会降低,从而造成危险性增大。 点火源的温度越高,强度越大,与粉尘和空气的混合物接触的时间越长。其爆炸浓度极限围就变得更宽。爆炸危险性也就增大。每一种可燃粉尘,在一定条件下,都有一个最小点火能量,若低于此能量,粉尘与空气形成的混合物就不能爆炸。粉尘的最小点火能量越小,其爆炸的危险性就越大。

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n→+∞的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?ε>0(不论它多么小),总存在正数N,使得对于满足n >N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明: 引理1:limC=C. (即常数列的极限等于其本身) 法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-A|<ε.①(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-B|<ε.② 设N=max{N?,N?},由上可知当n>N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε. 由于ε是任意正数,所以2ε也是任意正数. 即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε. 由极限定义可知,lim(An+Bn)=A+B. 为了证明法则2,先证明1个引理. 引理2:若limAn=A,则lim(C·An)=C·A.(C是常数) 证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义) ①式两端同乘|C|,得: |C·An-CA|<Cε. 由于ε是任意正数,所以Cε也是任意正数. 即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε. 由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证) 法则2的证明: lim(An-Bn) =limAn+lim(-Bn) (法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An·Bn)=0. 证明:∵limAn=0, ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-0|<ε.③(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-0|<ε.④

常见可燃气体爆炸极限数据表

常见可燃气体爆炸极限数据表(2016-02-26 17:56:29) 转载 分类:火灾爆炸(粉尘) 物质名称分子式下限 LEL 上限 UEL 毒性 甲烷CH4 515 乙烷C2H63 丙烷C3H8 丁烷C4H10 戊烷(液体)C5H12 己烷(液体)C6H14 庚烷(液体)CH3(CH2)5CH3 辛烷(液体)C8H181 乙烯C2H436 丙烯C3H62 丁烯C4H810 丁二烯C4H6212低毒 乙炔C2H2100 环丙烷C3H6 煤油(液体)C10-C165 城市煤气4 液化石油气112 汽油(液体)C4-C12 松节油(液体)C10H16 苯(液体)C6H6 中等 甲苯C6H5CH3低毒 氯乙烷C2H5Cl中等 氯乙烯C2H3Cl33 氯丙烯C3H5Cl中等 二氯乙烷ClCH2CH2Cl16高毒 四氯化碳CCl4 轻微麻醉三氯甲烷CHCl3中等 环氧乙烷C2H4O3100中等 甲胺CH3NH2中等 乙胺CH3CH2NH214中等 苯胺C6H5NH211高毒 二甲胺(CH3)2NH中等

乙二胺H2NCH2CH2NH2低毒 甲醇(液体)CH3OH36 乙醇(液体)C2H5OH19 正丁醇(液体)C4H9OH 甲醛HCHO773 乙醛C2H4O460 丙醛(液体)C2H5CHO17 乙酸甲酯CH3COOCH316 乙酸CH3COOH16低毒 乙酸乙酯CH3COOC2H511 丙酮C3H6O 丁酮C4H8O10 HCN剧毒 氰化氢 ( 氢氰 酸 ) 丙烯氰C3H3N28高毒 氯气Cl2 刺激 氯化氢HCl 氨气NH31625低毒 硫化氢H2S神经 二氧化硫SO2 中等 二硫化碳CS250 臭氧O3刺激 一氧化碳CO剧毒 氢H2475 乙醚(C2H5)O浓度超过303g/m3有 生命危险。

爆炸极限的计算方法

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中 0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k

重要极限的证明_1

重要极限的证明 重要极限的证明极限是ea0在n比较大时,(1 (1-a)/n)^n=原式=(1 1/n)^n取极限后,e》=原式的上极限》=原式的下极限》=e^(1-a)由a的任意性,得极限为e利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

爆炸极限计算资料

爆炸极限计算 爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用C αHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: C αHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在 空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度

(2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中 L ——可燃性混合物爆炸下限; 下 L ——可燃性混合物爆炸上限; 上 n——1mol可燃气体完全燃烧所需的氧原子数。 某些有机物爆炸上限和下限估算值与实验值比较如表2: 表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较

关于函数极限如何证明

关于函数极限如何证明 函数极限的性质是怎么一回事呢?这类的性质该怎么证明呢?下面就是学习啦给大家的函数极限的性质证明内容,希望大家喜欢。 X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A| 以此类推,改变数列下标可得|Xn-A| |Xn-1-A| …… |X2-A| 向上迭代,可以得到|Xn+1-A| 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。 n/(n^2+1)=0

爆炸极限理论与计算 (1)

第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。 爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。但此时若补充空气,仍有火灾和爆炸的危险。所以浓度在爆炸上限以上的混合气体不能认为是安全的。 燃烧和爆炸从化学反应的角度看并无本质区别。当混合气体燃烧时,燃烧波面上的化学反应可表示为 A+B→C+D+Q(4—1) 式中A、B为反应物;C、D为产物;Q为燃烧热。A、B、C、D不一定是稳定分子,也可以是原子或自由基。化学反应前后的能量变化可用图4—4表示。初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。 图4-4 反应过程能量变化 假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。如果燃烧波连续不断,放出的能量将成为新反应的活化能。设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。αnW2/E。后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为

极限证明(精选多篇)

极限证明(精选多篇) 第一篇:极限证明 极限证明 1.设f(x)在(??,??)上无穷次可微,且f(x)??(xn)(n???),求证当k?n?1时,?x,limf(k)(x)?0.x??? 2.设f(x)??0sinntdt,求证:当n为奇数时,f(x)是以2?为周期的周期函数;当n为 偶数时f(x)是一线性函数与一以2?为周期的周期函数之和.x f(n)(x)?0.?{xn}?3.设f(x)在(??,??)上无穷次可微;f(0)f?(0)?0xlim求证:n?1,??? ?n,0?xn?xn?1,使f(n)(xn)?0. sin(f(x))?1.求证limf(x)存在.4.设f(x)在(a,??)上连续,且xlim???x??? 5.设a?0,x1?2?a,xn?1?2?xn,n?1,2?,证明权限limn??xn存在并求极限值。 6.设xn?0,n?1,2,?.证明:若limxn?1?x,则limxn?x.n??xn??n 7.用肯定语气叙述:limx???f?x????. 8.a1?1,an?1?1,求证:ai有极限存在。an?1 t?x9.设函数f定义在?a,b?上,如果对每点x??a,b?,极限limf?t?存在且有限(当x?a或b时,

为单侧极限)。证明:函数f在?a,b?上有界。 10.设limn??an?a,证明:lima1?2a2???nana?.n??2n2 11.叙述数列?an?发散的定义,并证明数列?cosn?发散。 12.证明:若??? af?x?dx收敛且limx???f?x???,则??0. 11?an?收敛。?,n?1,2,?.求证:22an?1an13.a?0,b?0.a1?a,a2?b,an?2?2? n 14.证明公式?k?11k?2n?c??n,其中c是与n无关的常数,limn???n?0. 15.设f?x?在[a,??)上可微且有界。证明存在一个数列?xn??[a,?),使得limn??xn???且limn??f'?xn??0. 16.设f?u?具有连续的导函数,且limu???f'?u??a?0,d??x,y?|x2?y2?r2,x,y?0 ?? ?r?0?. i ?1?证明:limu??f?u????;?2?求ir???f'?x2?y2?dxdy;?3?求limr2 r??

混合气体的爆炸极限怎么计算

爆炸极限的计算 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按%计,c0可用下式确定 c0=( n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4 2O2→CO2 2H2O 此时n0=2 则L下=×( 2)=由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏表示一种可燃气在混合物中的Pn特尔定律,可以算出与空气相混合的气体的爆炸极限。用. 体积分数,则: LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%) 此定律一直被证明是有效的。

理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1 V2/L2 …… Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。 Lm=100/(80/5 15/ 4/ 1/)= 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k 式中c——爆炸下限浓度; Q——该物质每靡尔的燃烧热或每克的燃烧热; k——常数 第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的

空气中粉尘爆炸极限表

粉尘爆炸极限表 粉尘爆炸极限包括爆炸下限和爆炸上限。粉尘爆炸下限是指在空气中,遇火源能发生爆炸的粉尘最低浓度。一般用单位体积内所含粉尘质量表示,其单位为g/mso爆炸下限越低,粉尘爆炸危险性越大。 也随条件变化而改变。 空气中粉尘爆炸极限表 不同种类粉尘其爆炸下限不同,同种物质粉尘其爆炸下限 金属粉尘 爆炸下极限 g/m3 起火; 点C ! g ■钳35 645 ■■ ft1■ ■ ■ ■辛弟420 416 t1 锌500 680 t L 1 40 常温 I 1 1 1硅160 775 …?飞 1 ■钛45 460 ■ ■ S 1 ■ < 1铁120 316 220 500 硅铁合金425 860 J 镁20 520 ■- 镁铝合金50 535 1 1镭210 450 ? 绝缘胶木30 460 ■ 环氧树脂20 540 ■1; 1酚甲酰胺25 500 ■? 酚糠醛25 520 A■ ■ 粉尘种类 热固性塑料

精选文库 缩乙醛 35 440 醇酸 155 500 乙基纤维素 20 340 合成橡胶 30 320 醋酸纤维素 35 420 四氟乙烯 ■ 670 尼龙 30 500 丙酸纤维素 25 460 聚丙烯酰胺 40 410 聚丙烯月青 25 500 聚乙烯 20 410 聚对苯二屮酸乙 酯 40 500 聚氯乙烯 ■ 660 聚醋酸乙烯酯 40 550 聚苯乙烯 20 490 聚丙烯 20 420 聚乙烯醇 35 520 甲基纤维素 30 360 ■ L -- — ■■■■ ■…?、 65 510 松香 55 440 热塑性 塑料

精选文库 (1) (2)氧浓度越高,爆炸下限越低。 (3)可燃挥发性成分含量越高,粉尘爆炸下限越低。

可燃性混合气体爆炸特性计算

可燃性混合气体爆炸特性计算 1 绪论 可燃性混合气体的爆炸是生产生活,特别是化工生产中极为普遍的爆炸现象。气体混合物有两种:一种是单一的可燃性气体与空气混合;另一种是多种可燃性气体与空气混合。这两种气体混合物并非在任何情况下都能发生爆炸,只有在一定的爆炸浓度范围,并需要一定的能量点燃,才可能发生爆炸。由此可知,对气体混合物爆炸的爆炸极限和最小点火能的测定相当重要,对生产生活特别是化工生产也有着积极的指导意义。 可燃气体的燃烧、爆炸是最严重的灾害性事故。最近几年,我国城市天然气及煤矿瓦斯爆炸重特大事故频频发生,给国家和人民财产造成了巨大损失,直接影响着我国经济、社会的可持续发展。为了掌握防火防爆技术,了解可燃性混合气体的爆炸特性,掌握可燃性混合气体爆炸极限、最小发火能量的计算方法,以及进一步了解并掌握其危险特性,特做此课程设计。通过对爆炸极限的研究可以了解爆炸与燃烧与可燃物浓度的关系,以及最小发火能对其危险性的影响。燃烧与爆炸是非常激烈的化学反应,特别是爆炸,其反应速度非常快,反应的过程很难控制,如果不是按照人的意愿进行,只要其一发生,就会造成严重的后果。故只有认识其本质,才能从根本上解决它们产生的危害。 2 爆炸极限 2.1 爆炸极限理论 可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量便立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度

用极限定义证明极限

例1、用数列极限定义证明:22lim 07 n n n →∞+=- (1)(2)(3)(4)222222222224|0|77712 n n n n n n n n n n n n n n ε>++-=<<=<=<------时 上面的系列式子要想成立,需要第一个等号和不等号(1)、(2)、(3)均成立方可。第一个等号成立的条件是n>2;不等号(1)成立的条件是22;不等号(4)成立的条件是4[]n ε >,故取N=max{7, 4[]ε}。这样当n>N 时,有n>7,4[]n ε >。 因为n>7,所以等号第一个等号、不等式(1)、(2)、(3)能成立;因为4 []n ε >,所以不等式(4)能成立,因此当n>N 时,上述系列不等式均成立,亦即当n>N 时,22| 0|7n n ε+-<-。 在这个例题中,大量使用了把一个数字放大为n 或2 n 的方法,因此,对于具体的数,.......可.把它放大为.....kn ..(.k .为大于零的常数)的形式........... 例2、用数列极限定义证明:24lim 01 n n n n →∞+=++ (1)422224422|0|111n n n n n n n n n n n n n n ε>+++-=<<=<++++++时 不等号(1)成立的条件是2[]n ε>,故取N=max{4, 2[]ε },则当n>N 时,上面的不等式都成立。 注:对于一个由若干项组成的代数式,可放大或缩小为这个代数式的一部分...............................。. 如: 22 222211(1)1 n n n n n n n n n n n n ++>++>-<+>+ 例3、已知2(1)(1) n n a n -=+,证明数列a n 的极限是零。 证明:0(01)εε?><<设,欲使(1)(2)22(1)11|0|||(1)(1)1 n n a n n n ε--==<<+++成立 由不等式11n ε<+解得:11n ε >-,由于上述式子中的等式和不等号(1)对于任意的正整数n 都是成立的,因此取1[1]N ε =-,则当n>N 时,不等号(2)成立,进而上述系列等式和不等式均成立,所以当n>N 时,|0|n a ε-<。

空气中粉尘爆炸极限表之欧阳光明创编

粉尘爆炸极限表 欧阳光明(2021.03.07) 中,遇火源能发生爆炸的粉尘最低浓度。一般用单位体积内所含粉尘质量表示,其单位为g/m3。爆炸下限越低,粉尘爆炸危险性越大。不同种类粉尘其爆炸下限不同,同种物质粉尘其爆炸下限也随

锰210 450 热固性塑料绝缘胶木30 460 环氧树脂20 540 酚甲酰胺25 500 酚糠醛25 520 热塑性塑料缩乙醛35 440 醇酸155 500 乙基纤维素20 340 合成橡胶30 320 醋酸纤维素35 420 四氟乙烯- 670 尼龙30 500 丙酸纤维素25 460 聚丙烯酰胺40 410 聚丙烯腈25 500 聚乙烯20 410 聚对苯二甲酸乙 酯 40 500 聚氯乙烯- 660 聚醋酸乙烯酯40 550

聚苯乙烯20 490 聚丙烯20 420 聚乙烯醇35 520 甲基纤维素30 360 木质素65 510 松香55 440 塑料一次原料己二酸35 550 酪蛋白45 520 对苯二酸50 680 多聚甲醛40 410 对羧基苯甲醛20 380 塑料填充剂软木35 470 纤维素絮凝物55 420 棉花絮凝物50 470 木屑40 430 农产品及其它玉米及淀粉45 470 大豆40 560 小麦60 470 花生壳85 570 砂糖19 410

煤炭(沥青)35 610 肥皂45 430 干浆纸60 480

**指游离SiO2低于10%,不含石棉和有毒物质,而尚未制定容许浓度的粉尘。表中列出的各种粉2尘(石棉纤维尘外),游离SiO2高于10%者,却按矽尘容许浓度对待。

定义证明二重极限

定义证明二重极限 定义证明二重极限 就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与a的差的绝对值会灰常灰常的接近。那么就说f(x,y)在 (x0,y0)点的极限为a 关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点p(x,y)所对应的函数值都满足不等式那末,常数a就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于d的点,若对于任意给定的正数。,总存在正数a,使得对d内适合不等式0<户几卜8的一切点p,有不等式v(p)一周<。成立,则称a为函数人p)当p~p。时的极限.定义3设函数x一人工,”的定义域为d,点产人工。,人)是d的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点p(x,…ed,都有成立,则称a为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人x,…在点p入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点p。(x。,入)的任一去心邻域内都有使人x,y)无定义的点,相应地,定义i要求见的去心邻域内的点p都适合/(p)一a 卜 利用极限存在准则证明: (1)当x趋近于正无穷时,(inx/x^2)的极限为0;

(2)证明数列{xn},其中a>0,xo>0,xn=/2,n=1,2,…收敛,并求其极限。 1)用夹逼准则: x大于1时,lnx>0,x^2>0,故lnx/x^2>0 且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0 故(inx/x^2)的极限为0 2)用单调有界数列收敛: 分三种情况,x0=√a时,显然极限为√a x0>√a时,xn-x(n-1)=/2<0,单调递减 且xn=/2>√a,√a为数列下界,则极限存在. 设数列极限为a,xn和x(n-1)极限都为a. 对原始两边求极限得a=/2.解得a=√a 同理可求x0<√a时,极限亦为√a 综上,数列极限存在,且为√ (一)时函数的极限: 以时和为例引入. 介绍符号:的意义,的直观意义. 定义(和.) 几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1验证例2验证例3验证证…… (二)时函数的极限: 由考虑时的极限引入. 定义函数极限的“”定义.

极限 定义证明

极限定义证明 极限定义证明趋近于正无穷,根号x分之sinx等于0 x趋近于负1/2,2x加1分之1减4x的平方等于2 这两个用函数极限定义怎么证明? x趋近于正无穷,根号x分之sinx等于0 证明:对于任意给定的ξ>0,要使不等式 |sinx/√x-0|=|sinx/√x||sinx/√x|^2sinx^2/ξ^2, ∵|sinx| ≤1∴只需不等式x>1/ξ^2成立, 所以取X=1/ξ^2,当x>X时,必有|sinx/√x-0|同函数极限的定义可得x→+∞时,sinx/√x极限为0. x趋近于负1/2,2x加1分之1减4x的平方等于2 证明:对于任意给定的ξ>0,要使不等式 |1-4x^2/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|需要0|1-4x^2/2x+1-2|=|2x+1|由函数极限的定义可得x→-1/2时,1-4x^2/2x+1的极限为2. 注意,用定义证明X走近于某一常数时的极限时,关键是找出那个绝对值里面X减去的那个X0. 记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷; 下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。 不妨设f1(x)趋于a;作b>a>=0,M>1; 那么存在N1,当x>N1,有a/M注意到f2的极限小于等于a,那么存在N2,当x>N2时,0同理,存在Ni,当x>Ni时,0取N=max{N1,N2...Nm}; 那么当x>N,有 (a/M)^n所以a/M对n取极限,所以a/M令x趋于正无穷, a/M注意这个式子对任意M>1,b>a都成立,中间两个极限都是固定的数。 令M趋于正无穷,b趋于a; 有a这表明limg(x)=a; 证毕; 证明有点古怪是为了把a=0的情况也包含进去。 还有个看起来简单些的方法 记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷; g(x)=max{f1(x),....fm(x)}; 然后求极限就能得到limg(x)=max{a1,...am}。 其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。 有种简单点的方法,就是 max{a,b}=|a+b|/2+|a-b|/2 从而为简单代数式。 多个求max相当于先对f1,f2求max,再对结果和f3求,然后继续,从而为有限次代数运算式, 故极限可以放进去。 2 一)时函数的极限: 以时和为例引入. 介绍符号: 的意义, 的直观意义. 定义( 和. )

相关文档