文档库 最新最全的文档下载
当前位置:文档库 › 复合材料Abaqus仿真分析图文教程

复合材料Abaqus仿真分析图文教程

复合材料Abaqus仿真分析图文教程
复合材料Abaqus仿真分析图文教程

复合材料Abaqus仿真分析图文教程

本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。各单层的材料相同,材料属性如下:

E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。

定义模型的几何形状

创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:

定义材料属性和局部材料方向

定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。

创建铺层

最后,指派材料方向到模型。

可以通过工具——查询来检查铺层

生成装配件、定义分析步和输出要求

定义分析步,保留各项默认值即可。

场输出要求和历史输出要求都按默认的输出方式。规定边界条件和施加载荷

定义完边界条件和载荷后模型会有如下显示

划分网格和定义作业

定义单元类型S8R5

划分8X8结构性网格

定义作业并检查提交求解

在作业管理器中,当状态显示成功后点击“结果”可直接进入结果可视化模块。后处理

查看各单层的Mises应力

整个层板的Mises应力图

abaqus系列教程-13ABAQUSExplicit准静态分析

13 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit 在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型成为很大时,显式过程比隐式过程需要较少的系统资源。关于隐式与显式过程的详细比较请参见第2.4节“隐式和显式过程的比较”。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 13.1 显式动态问题类比 为了使你能够更直观地理解在缓慢、准静态加载情况和快速加载情况之间的区别,我们应用图13-1来类比说明。

abaqus教程ABAQUS墙体滞回曲线例题

看本例题之前,请务必先找着文献[1]中P75——P101中提供的例题完全照做一遍,以熟悉基本的操作流程。 下面是本例题的操作过程,模拟一片砌体墙片的滞回实验。 第一步:模型部件的建立 进入ABAQUS(中文版),在左方菜单中,选择“部件”,鼠标右键点击一下,选择“创建”,进入模型的部件创建菜单。模型中往往有一个或者多个部件构成。如图1,设定部件名称,其他选项如图1所示。 图1 然后中间的主操作界面出现,如图2。 此平面默认的在平行于计算机显示器的方向为XY平面,我们如图2,按照现实中墙体立面的尺寸画出墙体立面框,然后点击“完成”,弹出的菜单如图3.

图2 图3 此处的“深度”一项就是设定墙体部件的厚度,输入0.24(墙体厚度0.24m),点击确定。于是得到了墙体部件的基本视图如图4所示。 同理,依样设定加载梁的尺寸,得到加载梁部件。 这样,第一步部件尺寸设定就完成了。

图4 第二步:部件使用材料的设定 加载梁使用c50混凝土,砌体使用与实验相对应的材料参数。 由于模拟是针对砌体,所以不考虑加载梁的塑性,因此加载梁只设定密度和弹性。 而砌体则以混凝土塑性损伤本构模型来模拟,要设定密度、弹性、混凝土损伤塑性。 以上内容中混凝土材料参数的设定参见资料[2],砌体材料参数的设定参见资料[3]。 第三步:将材料属性赋予模型 设定了材料参数后,还要对将材料参数“赋予”模型。其操作菜单如图5 图5 首先建立两个界面SECTION-1和SECTION-2如图5左边红框所示,将两种材料(C50混凝

土与砌体材料)“注入”SECTION-1和SECTION-2中,然后点击右边红框中的图标,选择截面所要“赋予”的对象,即可完成材料参数赋予模型的操作。 第四步:安装配件 在第一步谁定好了部件后,实际上部件就像积木玩具的各个零件一样还是零散分开的,这时候,就要使用装配件功能如图6所示。 图6 用得较多的是红框中两个移动功能,非常简单,就是通过在空间坐标系中将部件平移到正确的位置即可。 第五步:设置分析步 在模拟滞回曲线实验的拟静力计算中,因为需要循环加载时反复推拉形成的,所以在模拟的时候需要设定多个分析步。而单纯的静力计算则只需一步就可以完成。 分析步的设定如图7所示,本次模拟一共设定了12个分析步,即表示反复推拉的模拟次数一共12次。 在设定分析步的过程中,将分析步的属性定为“静力、通用”。除了自定义的12步以外,还有ABAQUS默认的不能删除的初始步,是调整结构受力初始状态用的。 第六步:设定约束 这一步实际上是第四步的后续,第四步中我们只是把“积木玩具”完全进行了搭接,而没有进行固定。这一步的作用就是确定“积木玩具”各个分块之间相互作用的属性与关系。 对于实验来说,加载梁是牢牢固定在气体墙之上的,因此新建一个约束,属性选择“绑定”,将加载梁与砌体牢牢固定在一起。

abaqus复合材料

复合材料不只是几种材料的混合物。它具有普通材料所没有的一些特性。它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。 复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。 复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。它的性能与制造过程密切相关,但是制造过程很复杂。由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。 在ABAQUS中,复合材料的分析方法如下 1,造型 它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。复合材料被广泛使用,但是复合材料的建模是一个困难。铺设复杂的结构光需要一个月 2,材料

使用薄片类型(层材料)建立材料参数。材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。这种材料仅使用平面应力问题。 ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义 复合截面定义对每个区域使用相同的图层属性。这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合材料分析方法介绍 复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。可以根据常规外壳的元素和属性进行定义。 传统的壳单元定义了每个层的厚度,并将其分配给二维模型。应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

Abaqus针对复合材料优势

四Abaqus在复合材料领域的优势 4.1 复合材料介绍 4.1.1 复合材料的应用 复合材料有许多特性: 1、制造工艺简单 2、比强度高,比刚度大 3、具有灵活的可设计性 4、耐腐蚀,对疲劳不敏感 5、热稳定性能、高温性能好 由于复合材料的上述优点,在航空航天、汽车、船舶等领域,都有广泛的应用。复合材料的大量应用对分析技术提出新的挑战。

4.1.2 复合材料的结构 复合材料是一种至少由两种材料混合而成的宏观材料,其中的一种材料被称作基体,其它的材料称作纤维。其中纤维可以包含很多不同的 形式:离散的宏观粒子,任意方向的短纤维,规则排列的纤维和织物。 4.1.3 典型的复合材料 1)单向纤维层合板----冲击分析

2)编织复合材料---- 挤压分析 3)蜂窝夹心复合材料----不可见冲击损伤分析

基体和纤维的存在形式以及材料属性对于复合材料的力学行为有 着很大的影响。改变纤维和基体的属性目的就是在于生成一种复合材料具有如下性质: 1)低成本:原型,大规模生产,零件合并,维修,技术成熟。 2)期望的重量:轻重量,比重分配合理。 3)改进的强度和刚度:高强度/高刚度比。 4)改进的表面属性:良好的耐腐蚀性,表面抛光性好。 5)期望的热属性:较低的热传导性,热膨胀系数较低。 6)独特的电属性:具有较高的绝缘强度,无磁性。 7)空间适应性:大部件,特殊的几何构型。 4.1.4 复合材料的有限元模拟 根据不同的分析目的,可以采用不同的复合材料模拟技术: 1)微观模拟:将纤维和基体都分别模拟为可变形连续体。 2)宏观模拟:将复合材料模拟为一个正交各向异性体或是完全各向

ABAQUS简易培训教材(中文)

ABAQUS 简易教程 一、ABAQUS 公司及产品简介 ABAQUS 是国际上最先进的大型通用有限元计算分析软件之一。ABAQUS 公司成立于1978年,在美国总部的技术开发人员超过160人,其中有70多人具备工程或计算机科学的博士学位,全球技术支持人员超过130人,这可能是世界上最大的计算固体力学团队。 1.1 ABAQUS 产品 ABAQUS/CAE 为ABAQUS 求解器提供 快速交互式的前后处理环境 ABAQUS 的建模、分析、 监测和控制、以及结果评估的完整界面 ABAQUS/Standard 主要用于结构静态、动态线性和非线性分析 耦合分析 ABAQUS/Explicit 瞬态的大变形和高度非线性分析 可以在ABAQUS/Standard 分析结束状态 进行继续分析 1.2 ABAQUS 有限元软件的功能 线性静力学, 动力学, 和热传导 例如 应力, 振动, 声场, 地质力学, 压电效应, 等 汽车、飞机机身等的静力和动力学响应, 结构刚度, 等 非线性和瞬态分析 接触, 塑性失效, 断裂和磨损, 复合材料, 超弹性 等 汽车碰撞, 电子器件跌落, 冲击和损毁等 多体动力学分析 同时结合刚体, 线性柔体, 和非线性柔体模拟各种连接件等 应用在:汽车运动, 高速机械, 微机电系统MEMS, 航空航天机构, 医疗器械, 等 二、ABAQUS 输入文件 2.1 ABAQUS 模型的组件 ABAQUS 的分析模块以批处理的方式运行。分析模块的基本输入为输入文件。在输入文件中包含单元、材料、过程和载荷库等选项。这些选项可以以任意合理的方式组合,所以可以为多种问题建模。输入文件被分为两个部分:模型数据和历程数据。 模型数据 历程数据 几何选项—节点、单元 材料选项 其它模型选项 过程选项 载荷选项 输出选项 2.2 ABAQUS 输入文件的格式 ABAQUS 的输入文件(.inp 文件)包含若干可选的数据块,这些数据块以一个关键字开头,如*PLASTIC 。如果需要的话,数据行将跟在关键字行的后面。所有的输入行长度限制在256字符以内,变量名限制在80字符以内,且必须以字母开始。所有的注释行以**开始,可以放在任意的位置。 关键字行以*开始,后面接关键字,必要的时候可加参数,如:*MATERIAL, NAME=name ,这里,MATERIAL 是关键字,NAME 是参数,name 是你给定的参数值。 数据行用来为给定的选项定义批量数据,如单元的定义: *ELEMENT , TYPE=b21 关键字行

abaqus复合材料薄壁圆筒建模流程

1,建立模型Part Module :类型三维,solid,旋转;按尺寸绘图,done,设置旋转角此处为360度。 2,建立参考面,将圆筒分成两半 3,Assembly Module :类型Independent 分区partition截面 4,Mesh module : 点击remove空二,选择cells消隐分区 X Select entities to remove: Cells Undo 撒种子时,需要分几层就在边缘上撒多少个种子,在每条边上尽量都撒相同数量的种子, 生成结构网格,生成的网格才比较规整。 (注意,此处的mesh,对象为assembly,而不是part) 生成网格后,Mesh: Create Mesh Part Module I- Mesh * Model:j Model-1 abject: * Awembly Part「 4,Job Module : Create Job,例如job-007-01,运行生成job-007-01.inp 文件,保存成007-01.cae 文件。 5,File: New打开新窗口

6,File: Import : Model 选择job-007-01.inp 打开 7,Mesh Module: Tools: Surface manager: create: by angle 定义surface 集合 Tools: Set manager: create: Element: by angle 定义Element 集合 用以下三个命令操作,选择恰当的面。 丄i Select the Entity Closest to the Screen, ---- Select From Exterior En tities '包i 一 J Select From Interior Entities (左键点击第二个图标不放拖出即可) 注:定义Element集合时,可以从外到内,定以一层后,在display中--- -:把定义的那层remove掉再定义下面一层。 8,Mesh: Edit :Mesh : Mesh Offset (create solid layers): Surfaces (选择相应的面):Total thickness定义厚度,生成cohesive单元,把其之前定义的几层surface,都生成cohesive单丿元。 9,Mesh: Element type :对cohesive 单元,Family 选择Cohesive,对其他单元,Family 选择3D Stress;对于静态运算,Element Library选择Standard,对于动态(显式)运算,Element Library 选择Explicit。 10,Property: Create Material: jiti (材料名字):Mechanical : Elastic: Type: Isotropic =tdrt Matetial 邑 M<)terial-jiti Description; NLrnnb?r of field v-arid4)l?:0 ' Moduli tme scale [forvi&ctwlKlicrty^ Long-term No compr-eision 3 Nc Datia Voungi'i P鈕1刖n1* 1 4D0C Create Material: xianwei (材料名字):Mechanical : Elastic : Type : Isotropic

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈

服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。 图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除 (如图19.1.1-1中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。

@@ABAQUS CAE典型例题

ABAQUS/CAE典型例题 我们将通过ABAQUS/CAE完成右图的建模及分析过程。 首先我们创建几何体 一、创建基本特征: 1、首先运行ABAQUS/CAE,在出现的对话框内 选择Create Model Database。 2、从Module列表中选择Part,进入Part模块 3、选择Part→Create来创建一个新的部件。在 提示区域会出现这样一个信息。 4、CAE弹出一个如右图的对话框。将这个部件 命名为Hinge-hole,确认Modeling Space、Type和Base Feature的选项如右图。 5、输入0.3作为Approximate size的值。点击 Continue。ABAQUS/CAE初始化草图,并显示格子。 6、在工具栏选择Create Lines: Rectangle(4 Lines) ,在提示栏出现如下的提示后,输入(0.02,0.02)和 (-0.02,-0.02),然后点击3键鼠标的中键(或滚珠)。 7、在提示框点击OK按钮。CAE弹出 Edit Basic Extrusion对话框。 8、输入0.04作为Depth的数值,点击 OK按钮。 二、在基本特征上加个轮缘 1、在主菜单上选择Shape→Solid→Extrude。 2、选择六面体的前表面,点击左键。 3、选择如下图所示的边,点击左键。

4、如右上图那样利用 图标创建三条线段。 5、在工具栏中选择Create Arc: Center and 2 Endpoints 6、移动鼠标到(0.04,0.0),圆心,点击左键,然后将鼠标移到(0.04,0.02)再次点击鼠标左键,从已画好区域的外面将鼠标移到(0.04,-0.02),这时你可以看到在这两个点之间出现一个半圆,点击左键完成这个半圆。 7、在工具栏选择Create Circle: Center and Perimeter 8、将鼠标移动到(0.04,0.0)点击左键,然后将鼠标移动到(0.05,0.0)点击左键。 9、从主菜单选择Add →Dimension →Radial ,为刚完成的圆标注尺寸。 10、选择工具栏的Edit Dimension Value 图标 11、选择圆的尺寸(0.01)点击左键,在提示栏输入0.012,按回车。再次点击Edit Dimension Value , 退出该操作。 12、点击提示栏上的Done 按钮。 13、在CAE 弹出的Edit Extrusion 对话框内输入0.02作为深度的值。CAE 以一个箭头表示拉伸的方向,点击Clip 可改变这个方向。点击OK ,完成操作。 三、创建润滑孔 1、进入Sketch 模块,从主菜单选择Sketch →Create , 命名为Hole ,设置0.2为Approximate Size 的值,点击Continue 。 2、创建一个圆心在(0,0),半径为0.003的圆,然后点击 Done ,完成这一步骤。 3、回到Part 模块,在Part 下拉菜单中选择Hinge-hole 。 4、在主菜单中选择Tools →Datum ,按右图所示选择对 话框内的选项,点击Apply 。 5、选择轮缘上的一条边,见下图,参数的值是从0到1, 如果,箭头和图中所示一样就输入0.25,敲回车,否则就输入 0.75。ABAQUS/CAE 在这条边的1/4处上创建一个点。 6、创建一个基线,在Create Datum 对话框内选择Axis , 在Method 选项中选择2 Points ,点击Apply 。选择圆的中心点和刚才创建的基点,ABAQUS/CAE 将创建如右上图所示的基线。 7、在Create Datum 对话框内选择Plane ,在Method 中选择Point and normal ,点击OK ,选择刚才创建的基点和基线。你的模型将如左下图所示。

ABAQUS中Cohesive单元建模方法

复合材料模型建模与分析 1. Cohesive单元建模方法 1.1 几何模型 使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。建立cohesive层的方法主要有: 方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。 方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。 (a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定 图1.建模方法 上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。 1.2 材料属性 应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。其中基于traction-separation 描述的方法应用更加广泛。 而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性

降低软化阶段。 注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive 单元的刚度。曲线下的面积即为材料断裂时的能量释放率。因此在定义cohesive 的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。常用的定义方法是给定上述参数中的前三项,也就确定了cohesive 的本构模型。Cohesive 单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。Cohesive 单元只考虑面外的力,包括法向的正应力以及XZ ,YZ 两个方向的剪应力。 下文对cohesive 单元的参数进行阐述,并介绍参数的选择方法。 图2. 双线性本构模型 1.2.1 Cohesive 单元的刚度 基于traction-separation 模型的界面单元的刚度可以通过一个简单杆的变形公式来理解 PL AE δ= (1) 其中L 为杆长,E 为弹性刚度,A 为初始截面积,P 为载荷。公式(1)又可以写成 S K δ= (2) 其中S P A =为名义应力,K E L =为材料的刚度。 为了更好的理解K ,我们把K E L =写成: 1E E L E L K L L ===' (3)

abaqus系列教程 多步骤分析

11 多步骤分析 ABAQUS模拟分析的一般性目标是确定模型对所施加载荷的响应。回顾术语载荷(load)在ABAQUS中的一般性含义,载荷代表了使结构的响应从它的初始状态到发生变化的任何事情;例如:非零边界条件或施加的位移、集中力、压力以及场等等。在某些情况下载荷可能相对简单,如在结构上的一组集中载荷。在另外一些问题中施加在结构上的载荷可能会相当复杂,例如,在某一时间段内,不同的载荷按一定的顺序施加到模型的不同部分,或载荷的幅值是随时间变化的函数。采用术语载荷历史(load history)以代表这种作用在模型上的复杂载荷。 在ABAQUS中,用户将整个的载荷历史划分为若干个分析步(step)。每一个分析步是由用户指定的一个“时间”段,在该时间段内ABAQUS计算该模型对一组特殊的载荷和边界条件的响应。在每一个分析步中,用户必须指定响应的类型,称之为分析过程,并且从一个分析步到下一个分析步,分析过程也可能发生变化。例如,可以在一个分析步中施加静态恒定载荷,有可能是自重载荷;而在下一个分析步中计算这个施加了载荷的结构对于地震加速度的动态响应。隐式和显式分析均可以包含多个分析步骤;但是,在同一个分析作业中不能够组合隐式和显式分析。为了组合一系列的隐式和显式分析步,可以应用结果传递或输入功能。在ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)第7.7.2节“Transfering results between ABAQUS/Explicit and ABAQUS/Standard”中讨论了这个功能。而本指南不做进一步的讨论。 ABAQUS将它的所有分析过程主要划分为两类:线性扰动(linear perturbation)和一般性分析(general)。在ABAQUS/Standard或在ABAQUS/Explicit分析中可以包括一般分析步;而线性扰动分析步只能用于ABAQUS/Standard分析。对于两种情况的载荷条件和“时间”定义是不相同的,因而,从每一种过程得到的结果必须区别对待。 在一般分析过程中,即一般分析步(general step),模型的响应可能是非线性的或者是线性的。而在采用扰动过程的分析步中,即称为扰动分析步(perturbation step),响应只能是线性的。ABAQUS/Standard处理这个分析步作为由前面的任何一般分析步创建的预加载、预变形状态的线性扰动(即所谓的基本状态(base state));ABAQUS 的线性模拟功能比之单纯线性分析的程序是更加广义的。

abaqus中的动态分析方法

ABAQUS 线性动态分析 如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。 7.1 引言 动态模拟是将惯性力包含在动力学平衡方程中: +P u M&& I - = 其中 M结构的质量。 u&&结构的加速度。 I在结构中的力。 P 所施加的外力。 在上面公式中的表述是牛顿第二运动定律(F = ma)。 在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u&&)。在两类模拟之间的另一个区别在于力I的定义。在静态分析中,力仅由结构的变形引起;而在动态分析中,力包括源于运动(例如阻尼)和结构的变形的贡献。 7.1.1 固有频率和模态 最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。

图7–1 质量-弹簧系统 在弹簧中的力给出为ku ,所以它的动态运动方程为 mu ku P &&+-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为 k m ω= 如果质量块被移动后再释放,它将以这个频率振动。若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。 实际结构具有大量的固有频率。因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。则运动方程变为 Mu I &&+=0 对于无阻尼系统,I Ku =,因此有 Mu Ku &&+=0 这个方程的解具有形式为 t i e u ωφ= 将此式代入运动方程,得到了特征值(eigenvalue )问题 K M φλφ= 其中2λω=。 该系统具有n 个特征值,其中n 是在有限元模型中的自由度数目。记j λ是第j 个

(整理)基于ABAQUS复合材料薄壁圆筒的屈曲分析.

基于ABAQUS复合材料薄壁圆筒的屈曲分析 由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。因此,为了保证结构的安全,需要进行屈曲分析。 对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。ABAQUS 就是其中的杰出代表。 1.屈曲有限元理论 有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。 1.1线性屈曲 假设结构受到的外载荷模式为。,幅值大小为,结构内力为Q,则静力平衡方程应为 进一步考察结构在载荷作用下的平衡方程,得到 由于结构达到保持稳定的临界载荷时有,代入上式得 该方程对应的特征值问题为 如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为 该方程即为求解线性屈曲的特征值方程。为屈曲失稳载荷因子,为结构失稳形态的特征向量。

1.2非线性屈曲 非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。 2.ABAQUS的线性屈曲分析 ABAQUS中提供两种分析方法来确定结构的临界荷载和结构发生屈曲响应的特征形状:线性屈曲分析(特征值屈曲分析)、非线性屈曲分析。 线性屈曲分析用于预测一个理想的弹性结构的理论屈曲强度。它是预期的线性屈曲荷载的上限,可以作为非线性屈曲分析的给定荷载,在渐进加载达到此荷载前,非线性求解必然发散;它还可以作为施加初始缺陷或扰动荷载的依据。所以预先进行特征值屈曲分析有助于非线性屈曲分析,进行特征值屈曲分析是必要的。 3.算例 3.1问题概述 图3-1 实例模型 如图所示两端开口的复合材料薄壁圆筒,底端固支,顶端作用有均匀分布的轴压边载。半径R=152mm,高度300mm,厚度t=0.804mm,对称铺层[±45,0]s,

复合材料ABAQUS分析 精讲版

复合材料Abaqus仿真分析——精讲版 本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。各单层的材料相同,材料属性如下: E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。 定义模型的几何形状 创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:

定义材料属性和局部材料方向 Create coordinate system

定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。 创建铺层 或者使用菜单栏

此处使用全局坐标系

使用用户自定义坐标系 Rotation angle depends on the coordinate system defined by user. Par example, if x-axe in the user defined system is parallel to the direction of fiber; we should replace the angles by 0 and 90. 使用全局坐标系和局部坐标系的区别在下面这一步可以查看 如果使用全局坐标系,会有方向指示,如果使用用户自定义坐标系,在层中没有方向指示可以通过’工具——查询’来检查铺层(Tool ---- Q uery----ply stack plot) Case 1 全局坐标系

abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。

1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图 为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹

ABAQUS及Ansys概述

ABAQUS软件公司和产品应用介绍 一、ABAQUS软件公司的发展历程 1972年,ABAQUS的首要创始人David Hibbitt在布朗大学完成了Ph.D.论文,论文的一部分为基于有限元方法的计算力学内容。这期间,他和他的导师创建了一个公司,产品为他们开发的有限元软件MARC。此后,ABAQUS的另外一个创始人Paul Sorensen也加入了MARC,但之后回到布朗大学继续攻读Ph.D学位。ABAQUS的另外一个创始人Dr. Bengt Karlsson曾经是Control Data公司的分析工程师,由于工作的关系,他逐步对当时各种有限元程序加以熟悉并产生浓厚兴趣。1976年,他从欧洲来到美国和Hibbitt一同在MARC工作。 作为MARC的总工程师,Hibbitt越发意识到工业界对有限元软件有一种强烈的需求,将会成为工程师的日常工具,逐步取代传统的实验做法,但这要求对现有的程序进行大幅度修改,使之能够处理更大规模的模型,计算的可靠性和精度更高。他建议导师重写MARC的内核来适应工业领域的要求,但是他的导师当时不愿意进行这样的一笔投资。1977年,Hibbitt离开MARC开始从头编写ABAQUS。Karlsson很快加入了他。之后,已经从布朗大学博士毕业正在通用汽车公司工作的Sorensen也加入了他们的行列。Hibbitt, Karlsson & Sorensen, Inc., (HKS) 公司于1978年2月1日正式成立。三个力学专家开始了一个强大工程分析工具的发展历程。 HKS的第一个客户是Westinghouse Hanford公司,它在华盛顿州从事核反应堆方面的开发工作。Westinghouse Hanford需要进行复杂的分析,包括核燃料棒的接触、蠕变和松弛等问题。ABAQUS可以进行温度相关的蠕变、塑性以及接触建模体现了其优势,很快ABAQUS在核工业领域小有名气。 ABAQUS早期的应用还包括石油、军工等其它领域。随着软件功能的不断强大,汽车公司在80年代中期开始采用ABAQUS作为复杂工程模拟的工具。此后ABAQUS的研发一直是和重要工业客户一起合作进行的,这些客户碰到的力学难题,双方会一起参与来设法解决,同时不断丰富ABAQUS本身的功能。今天,ABAQUS已经被应用于各个工业领域作为核心产品的研发工具,对它求解能力的强大性和灵活性的赞誉不绝于耳。 2002年底HKS公司改名为ABAQUS公司,全部业务都是进行ABAQUS软件的开发与维护。近年来公司始终保持两位数增长,2007年增长17%,2008年增长18%。目前ABAQUS全球有800名雇员,在北美、欧洲、亚太地区有40个分公司或代表处。在总部的400多名雇员中有200多人具有工程或计算机的博士学位,70多人具有硕士学位。被公认为世界上最大且最优秀的非线性固体力学研究团体。 二、ABAQUS软件的发展历程 ABAQUS最早的产品为ABAQUS/Standard。ABAQUS/Standard是一个通用

ABAQUS教材学习:入门手册

ABAQUS教材:入门使用手册 一、前言 ABAQUS是国际上最先进的大型通用有限元计算分析软件之一,具有惊人的广泛的模拟能力。它拥有大量不同种类的单元模型、材料模型、分析过程等。可以进行结构的静态与动态分析,如:应力、变形、振动、冲击、热传递与对流、质量扩散、声波、力电耦合分析等;它具有丰富的单元模型,如杆、梁、钢架、板壳、实体、无限体元等;可以模拟广泛的材料性能,如金属、橡胶、聚合物、复合材料、塑料、钢筋混凝土、弹性泡沫,岩石与土壤等。 对于多部件问题,可以通过对每个部件定义合适的材料模型,然后将它们组合成几何构形。对于大多数模拟,包括高度非线性问题,用户仅需要提供结构的几何形状、材料性能、边界条件、荷载工况等工程数据。在非线性分析中,ABAQUS能自动选择合适的荷载增量和收敛准则,它不仅能自动选择这些参数的值,而且在分析过程中也能不断调整这些参数值,以确保获得精确的解答。用户几乎不必去定义任何参数就能控制问题的数值求解过程。 1.1 ABAQUS产品 ABAQUS由两个主要的分析模块组成,ABAQUS/Standard和ABAQUS/Explicit。前者是一个通用分析模块,它能够求解广泛领域的线性和非线性问题,包括静力、动力、构件的热和电响应的问题。后者是一个具有专门用途的分析模块,采用显式动力学有限元格式,它适用于模拟短暂、瞬时的动态事件,如冲击和爆炸问题,此外,它对处理改变接触条件的高度非线性问题也非常有效,例如模拟成型问题。 ABAQUS/CAE(Complete ABAQUS Environment) 它是ABAQUS的交互式图形环境。通过生成或输入将要分析结构的几何形状,并将其分解为便于网格划分的若干区域,应用它可以方便而快捷地构造模型,然后对生成的几何体赋予物理和材料特性、荷载以及边界条件。ABAQUS/CAE具有对几何体划分网格的强大功能,并可检验所形成的分析模型。模型生成后,ABAQUS/CAE可以提交、监视和控制分析作业。而Visualization(可视化)模块可以用来显示得到的结果。 1.2 有限元法回顾 任何有限元模拟的第一步都是用一个有限元(Finite Element)的集合

abaqus复合材料

复合材料不仅仅是几种材料的混合物。它有一些普通材料所没有的特性。它在潮湿和高温环境、冲击、电化学腐蚀、雷电和电磁屏蔽环境中具有不同于普通材料的特性。 复合材料的结构形式包括层板、夹层结构、微模型、机织预制件等。 复合材料的结构和材料是相同的,并且在结构形成时可以同时确定材料的分布。它的性能与制造过程密切相关,但制造过程非常复杂。由于复合材料结构不同层的材料性能不同,复合材料结构在复杂荷载作用下的破坏模式和破坏准则也各不相同。 在ABAQUS中,复合材料的分析方法如下 1建模 其结构形式决定了其建模方法,可以采用基于连续介质的壳单元和常规壳单元。复合材料应用广泛,但复合材料的建模是一个难点。制作复杂的结构光需要一个月的时间2材料 使用“图纸类型”(图层材质)来建立材质参数。材料参数可以以工程参数的形式给出,也可以通过子选项给出材料强度数据。这种材料只使用平面应力问题。

ABAQUS可以用两种方式定义层压板:复合材料截面定义和复合材料层压板定义复合剖面定义对每个区域使用相同的图层特性。这样,我们只需要创建一个壳组合,将截面属性指定给二维(在网格中定义的常规壳元素)或三维(三维的大小应与壳中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合分析方法简介 复合覆盖定义由复合布局管理器定义,主要用于在模型的不同区域构造不同的层。因此,在定义之前应该先划分区域,并将不同的层分配给不同的区域。它可以根据常规shell的元素和属性进行定义。 传统的壳单元定义每个层的厚度并将其分配给二维模型。根据单元的厚度可以将单元划分为三维单元的厚度方向。 提示:堆栈参考坐标系(放置方向)的定义和每个堆栈坐标系(图层方向)的定义。定义正确的图层角度、图层厚度和图层顺序。ABAQUS无法分析单个层的法向变化超过

相关文档
相关文档 最新文档