文档库 最新最全的文档下载
当前位置:文档库 › 实验报告_迈克耳孙干涉仪的调整与使用

实验报告_迈克耳孙干涉仪的调整与使用

实验报告_迈克耳孙干涉仪的调整与使用
实验报告_迈克耳孙干涉仪的调整与使用

【实验题目】迈克耳逊干涉仪的调整与使用【实验记录与数据处理】

1.实验仪器

2.仪器调整记录:

3.光波波长测定

计算:

4.选作:

【结论】

结论:

【复习题】

迈克耳逊干涉仪在什么状态才能出现清晰的等倾干涉条纹?应该如何调节仪器到改状态?

报告成绩(满分30分):??????????????指导教师签名:?????????????????日期:???????????????????

迈克耳孙干涉仪的调节和使用实验报告

实验十四迈克耳孙干涉仪的调节与使用 迈克耳孙干涉仪在近代物理学的发展中起过重要作用。19世纪末,迈克耳孙(A、A、Michelson)与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。迈克耳孙发现镉红线(波长 λ=643、84696nm)就是一种理想的单色光源。可用它的波长作为米尺标准化的基准。她定义1m=1553164、13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。 今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然就是许多现代干涉仪的基础。 【实验目的与要求】 1、学习迈克耳孙干涉仪的原理与调节方法。 2、观察等倾干涉与等厚干涉图样。 3、用迈克耳孙干涉仪测定He-Ne激光束的波长与钠光双线波长差。 【实验仪器】 迈克耳孙干涉仪,He-Ne激光束,钠光灯,扩束镜,毛玻璃 迈克耳孙干涉仪就是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。 S-激光束;L-扩束镜;G1-分光板;G2-补偿板;M1、M2- 反射镜;E-观察屏。 图7-1迈克耳孙干涉仪光路图 从氦氖激光器发出的单色光s,经扩束镜L将光束扩束成一个理想的发散光束,该光束射到与光束成45?倾斜的分光板G1上,G1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)与(2)。这两束光沿着不同的方向射到两个平面镜M1与M2上,经两平面镜反射至G1后汇合在一起。仔细调节M1与M2,就可以在E处观察到干涉条纹。

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

迈克耳孙干涉仪实验报告

南昌大学物理实验报告 课程名称: 大学物理实验 实验名称: 迈克尔逊干涉仪 学院: 专业班级: 学生姓名: 学号: 实验地点:基础实验大楼B308 位号: 实验时间:第周星期二下午13:00开始

一、实验目的: 1.掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样. 2.区别等倾干涉、等厚干涉和非定域干涉,测定He-Ne激光波长 二、实验原理: 1.仪器的构造 图40-1为干涉仪的实物图,图40-2为其光路示意图.其中M1和M2为两平面反射镜,M1可在精密导轨上前后移动,而M2是固定的. P1是一块平行平面镜,板的第二表面(靠近P2的面)涂以半反射膜,它和全反射镜M1成45°角. P2是一块补偿板,其厚度及折射率和P1完全相同,且与P1平行,它的作用是补偿两路光的光程差,使两束光分别经过厚度和折射率相同的玻璃三次.从而白光实验时,可抵消光路.

中分光镜色散的影响. 放松刻度轮止动螺丝⑧,转动刻度轮⑦,可使反射镜M1沿精密导轨前后移动,当锁紧止动螺钉⑧,转动微量读数鼓轮⑨时,通过蜗轮蜗杆系统可转动刻度轮,从而带动M1微微移动,微量读数鼓轮最小格对应值为10?4㎜,可估读到10?5㎜,刻度轮最小分度值为10?2㎜. M1的位置读数由导轨上标尺、刻度轮和微量读数鼓轮三部分组成.反射镜M2背后有三个螺钉,用以粗调M2的倾斜度,他的下方还有两个相互垂直的微调螺丝,以便精确调节M2的方位. 2.干涉条纹的图样 由于光源性质的不同,用迈克耳孙干涉仪可观测定域干涉和非定域干涉. (1)当使用扩展的面光源时只能获得定域干涉.定域干涉因形成的干涉条纹有一定的位置而得名.定域干涉又分为等倾干涉和等厚干涉,这取决于M1和M2是否垂直,或者说M1和M2′是否平行. M2′是反射镜M2被分光板P1反射所成的虚像. (a)等倾干涉 当M1和M2′互相平行时,得到的是相当于平行平面的等倾干涉条纹,七干涉图样定位于无限远,如果在E处放一会聚透镜,并在其焦平面上放一屏,则在屏上可观察到一圆圈的同心圆.对于入射角i相同的各束光,如右图所示,其光程差均为 δ=2d cos i (40?1) 对于k级亮条纹,显然是由满足下式的入射光而成的 δ=2d cos i=kλ (40?2) 在同心圆的圆心处i=0,干涉条纹的级数最高,此时有 δ=2d=kλ (40?3) 当移动M1使间距d增加时,圆心的干涉次级增加,我们就可以看到中心条纹一个一个向外“冒出”,而当d减小时, ?.如果测出M1移动的距离?d,中心条纹将一个一个地“缩”进去.每“冒出”或“缩进”一个条纹,d就增加或减少了λ2 算出相应的“冒出”或“缩进”的条纹个数?k,就可以算出光源的波长: ? λ=2?d?k (b)等厚干涉 当M1和M2′不平行而有一个很小的角度时,行程一个楔形的空气层,这时就将出现等厚干涉条纹,如图40-3所示.当d很小时,即M1和M2′相交时,由面光源上发出的光束,经楔形空气薄层两面反射所产生的等厚干涉条纹定位于楔形

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪及其应用

迈克尔逊干涉仪及其应用 迈克尔逊干涉仪的应用 迈克尔逊干涉仪是一种利用分振幅法实现干涉的精密光学仪器.自1881 年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“ 以太” 的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域. 【预习要求】 1. 阅读实验十六,理解光的干涉、等倾干涉与等厚干涉 . 2. 了解定域干涉与非定域干涉概念 . 3. 了解迈克尔逊干涉仪的结构和使用 . 【实验目的】 1. 研究迈克尔逊干涉仪上各种光的干涉现象 . 2. 了解迈克尔逊干涉仪的应用 . 【实验仪器】 迈克尔逊干涉仪,法布里-珀罗干涉仪,氦氖激光器,钠光灯,白炽灯, 扩束镜 【实验要求】 1. 定域干涉与非定域干涉的研究 (1)观察激光产生的定域干涉与非定域干涉; (2)粗略测定激光定域等倾干涉条纹和等厚干涉条纹的定域位置(精确到 mm ); (3)观察钠光产生的定域干涉与非定域干涉 . 2. 钠光双线波长差与相干长度的测定 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用迈克耳孙干涉仪测定钠光相干长度;

(3)用迈克耳孙干涉仪考察氦-氖激光的相干长度 . 3. 钠光双线波长差的测定与考察补偿板的作用 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用法布里-珀罗干涉仪测定钠光双线波长差; (3)观察无补偿板的迈克耳孙干涉仪中条纹的特点 . 【实验提示】 1. 如何获得点光源和面光源?如何测定干涉条纹的定域位置? 2. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪中它的干涉条纹有什么特点? 测波长差的公式;能用测出的波长差计算相干长度吗?测定光源相干长度的方法,实际可能达到的精度 . 3. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪和法布里-珀罗干涉仪中它的干涉条纹各有什么特点? 4. 迈克耳逊干涉仪中补偿板有哪些作用? 5.考虑实际可能达到的精度,确定是否要用微动手轮,应如何安排测量次数,如何处理数据 . 【设计报告要求】 1 . 写明实验的目的和意义 2 . 阐明实验原理和设计思路 3 . 说明实验方法和测量方法的选择 4 . 列出所用仪器和材料 5 . 确定实验步骤 6 . 设计数据记录表格 7 . 确定实验数据的处理方法 【思考题】

迈克尔逊干涉仪(实验报告)

一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。 2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。 4、微调 M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告 摘要:迈克耳孙干涉仪设计精巧、用途广泛,是许多现代干涉仪的原型。本实验利用迈克耳孙干涉仪对光的干涉基本现象进行了观察,对单色光波长进行了测定,并对光场的时间相干性进行了研究。 关键词:迈克耳孙干涉仪;光的干涉;单色波波长;光场的时间相干性 The Report of Michelson Interferometer Experiment Abstract: The Michelson interferometer is the model of many modern interferometers because of its elaborate design and widespread use. The experiment observed the basic phenomenon of interference of light, measured the wavelength of monochromatic light and studied the temporal coherence of light field. Key words: Michelson interferometer; interference of light; wavelength of monochromatic light; temporal coherence of light field 1881年迈克耳孙制成第一台干涉仪。后来,迈 克耳孙利用干涉仪做了三个文明于世的实验:迈克耳孙-莫雷以太零漂移、推断光谱精细结构、用光波波长标定标准米尺。迈克耳孙在精密仪器以及用这些仪器进行的光谱学和计量学方面的研究工作上做出了重大贡献,荣获1907年诺贝尔物理奖。迈克耳孙干涉仪设计精巧、用途广泛,是许多现代干涉仪的原型,它不仅可用于精密测量长度,还可应用于测量介质的折射率,测定光谱的精细结构等。本实验利用迈克耳孙干涉仪对光的干涉基本现象进行了观察,对单色光波长进行了测定,并对光场的时间相干性进行了研究。1.实验原理及仪器介绍 1.1 迈克耳孙干涉仪简介 迈克耳孙干涉仪是根据分振幅干涉原理制成的精密实验仪器,主要由4个高品质的光学镜片和一套精密的机械传动系统装在底座上组成,其结构如图1所示。

迈克耳孙干涉仪的调整与使用

实验五迈克耳孙干涉仪的调整与使用 【预习思考题】 1.迈克尔孙干涉仪是利用什么方法产生两束相干光的? 答:迈克尔孙干涉仪是利用分振幅法产生两束相干光的。 2.迈克尔孙干涉仪的等倾和等厚干涉分别在什么条件下产生的?条纹形状如何?随M1、M2’的间距d如何变化? 答:(1)等倾干涉条纹的产生通常需要面光源,且M1、M2’应严格平行;等厚干涉条纹的形成则需要M1、M2’不再平行,而是有微小夹角,且二者之间所加的空气膜较薄。 (2)等倾干涉为圆条纹,等厚干涉为直条纹。 (3)d越大,条纹越细越密;d越小,条纹就越粗越疏。 3.什么样条件下,白光也会产生等厚干涉条纹?当白光等厚干涉条纹的中心被调到视场中央时,M1、M2’两镜子的位置成什么关系? 答:白光由于是复色光,相干长度较小,所以只有M1、M2’距离非常接近时,才会有彩色的干涉条纹,且出现在两镜交线附近。 当白光等厚干涉条纹的中心被调到视场中央时,说明M1、M2’已相交。 【分析讨论题】 1.用迈克尔孙干涉仪观察到的等倾干涉条纹与牛顿环的干涉条纹有何不同? 答:二者虽然都是圆条纹,但牛顿环属于等厚干涉的结果,并且等倾干涉条纹中心级次高,而牛顿环则是边缘的干涉级次高,所以当增大(或减小)空气层厚度时,等倾干涉条纹会向外涌出(或向中心缩进),而牛顿环则会向中心缩进(或向外涌出)。

2.想想如何在迈克尔孙干涉仪上利用白光的等厚干涉条纹测定透明物体的折射率?答:首先将仪器调整到M1、M2’相交,即视场中央能看到白光的零级干涉条纹,然后根据刚才镜子的移动方向选择将透明物体放在哪条光路中(主要是为了避免空程差),继续向原方向移动M1镜,直到再次看到白光的零级条纹出现在刚才所在的位置时,记下M1移动的距离所对应的圆环变化数N,根据,即可求出n。

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

迈克耳孙干涉仪实验报告

实验名称:迈克耳孙干涉仪 实验日期:2010.12.7 实验人:缪盈盈 实验目的: 1.了解迈克耳孙干涉仪的原理、结构及调节方法. 2.研究定域干涉、非定域干涉、等倾干涉、等厚干涉及光 源的时间相干性、空间相干性. 3.利用迈克耳孙干涉仪测量氦氖激光的波长. 实验原理: 迈克耳孙干涉仪主要由两个相互垂直的全反射镜M1、M2和一个45°放置的半反射镜M组成.不同的光源会形成不同的干涉情况. 1.当光源为单色点光源时,它发出的光被M分为光强大致相同的两束光(1)和(2),如图6-22所示.其中光束(1)相当于从虚像S’发出.再经M1反射,成像于S’1;光束(2)相当于从虚像S’发出,再经M’2反射成像于S’2(M’2是M2关于M所成的像).因此,单色点光源经过迈克耳孙干涉仪中两反射镜的反射光,可看作是从S’1和S’2发出的两束相干光.在观察屏上,S’1与S’2的连线所通过点P0的程差为2d,而在观察屏上其他点P的程差约为2dcosi (其中d是M1与M’2的距离,i是光线对M1或M’2的入射角).因而干涉条纹是以P0为圆心 的一组同心圆,中心级次高,周围级次低.若M1与M2的夹角偏离90°,则干涉条纹的圆心可偏出观察屏以外,在屏上看到弧状条纹;若偏离更大而d又很小,S’1与S’2的连线几乎与观察屏平行,则相当于杨氏双孔干涉,条纹近似为直线.无论干涉条纹形状如何,只要观察屏在S’1与S’2发出的两束光的交叠区,都可看到干涉条纹,所以这种干涉称为“非

2.如果改用单色面光源照明,情况就不同了,如图6-23所示.由于面光源上不同点所发的光是不相干的,若把面光源看成许多点光源的集合,则这些点光源所分别形成的干涉条纹位置不同,它们相互叠加而最终变成模糊一片,因而在一般情况下将看不到干涉条纹.只有以下两种情况是例外:①M1与M2严格垂直,即M1与M’2严格平行,而把观察屏放在透镜的焦平面上,如图6—23(a)所示.此时,从面光源上任一点S发出的光经M1和M2反射后形成的两束相干光是平行的,它们在观察屏上相遇的光程差均为2dcosi,因而可看到清晰而明亮的圆形干涉条纹.由于d是恒定的,干涉条纹是倾角i为常数的轨迹,故称为“等倾干涉条纹”.②M1与M2并不严格垂直,即M1与M’2有一个小夹角α.可 以证明,此时从面光源上任一点S发出的光经M1和M2反射后形成的两束相干光相交于M1或M2的附近.因此,若把观察屏放在M1或M2对于透镜所成的像平面附近,如图6—23(b)所示,就可以看到面光源干涉所形成的条纹.如果夹角α较大而i角变化不大,则条纹基本上是厚度d为常数的轨迹,因而称为“等厚干涉条纹”.显然,这两种情况部只在透 镜的焦平面或像平面上才能看到清 晰的条纹,因而是“定域干涉”. 3.如果用非单色的白光为光源,情 况更不相同.无论是点光源或面光 源,要看到干涉条纹,必须满足光 程差小于光源的相干长度的要求, 即2dcosi<ΔL.对于具有连续光谱的白光,ΔL极小,因而仅d≈0时,才能看到彩色的干涉条纹.这虽然为观察白光条纹带来了困难,却为正确判断d=0的位置提供了一种很好的实验手段.

实验6-5 迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?c o s 2 ② A 点为第k 级亮条纹。 由公式②知当i 增大时cosi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉 ②.M1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i=0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d 减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪(实验报告) 一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 P He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板①用1上后就将光分成了两束分别射到M1 和M2 上,反射后通过P1 、P2 就可以得到两束相关光,此时就会产生P和2干涉条纹。 ②产生干涉条纹的条件,如图2 所示,B 、C 是两个相干点光源,则到A 点的光程差δ=AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ=2dcosi=k λ(k 为亮条纹的级数) ,因为i 和k 均为不可测的量,所以取其差值,即λ=2 Δd/ Δk? 。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜P1 上,并调节激光的反射光照射到激光筒上。 2、调节M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在P 分光镜上,看显示屏上有没有产生同心圆的干涉1条纹图案。没有的话重复2 、3 步骤,直到产生同心圆的干涉条纹图案。 4、微调M 是干涉图案处于显示屏的中间。2 5、转动微量读数鼓轮,使M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进30 次则记一次数据,共记录10 次、d …d 。d数据即901 6、关闭激光电源,整理仪器,处理数据。 五、实验数据处理 数据记录: kd64.28079mm 0 0 64.29275mm kd1 1 64.30488mm kd 22 64.31539mm kd3 3 64.32544mm kd4 4

【实验报告】迈克耳孙干涉仪

实验十一迈克耳孙干涉仪的调整与使用 【实验目的】 1.了解迈克耳孙干涉仪的原理、结构和调整方法。2.观察等倾和等厚干涉条纹,了解其形成条件、条纹分布特点及条纹的变化。 3.测量He-Ne 激光的波长。 【实验原理】 1.迈克耳孙干涉仪的光路 如图5.4-1 所示,图中M1 和M2 是二个精密磨光的平面镜,置于相互垂直的两臂上。 在两臂轴相交处,是一个与两臂成45°角且两面严格平行的平面玻璃板G1,其背面镀 有一层半透半反膜,称为分束板。G2与G1平行放置,其厚度和折射率与G1完全相同,但表面没有镀 图5.4-1 迈克耳孙干涉仪的简单光路 层,G2称为补偿板。从图中看出,光源S发出的光在G1后表面被分为光强近乎相等的反射光束(1)和透射光束(2),两束光经反射后,共同向E 处传播并发生干涉。反射镜M2是固定的,M1可沿臂轴方向移动,M2被G1反射所成的镜像M2 '位于M1附近,光束(2)也可以看作是从M2的虚像M2 '反射来的,用M2 '代替M2讨论问题,两束光光程不受影响。这样,可直观地看出两束光在到达观察屏E 处时的光程差与M1和 M2 '间的“空气薄膜”的厚度d有关,即M1所处位置是影响光程差的因素之一,这种干涉相当于“薄膜”干涉。 光束(1)到达E处时,共通过了G1三次,而光束(2)只在未分出前与光束(1)同时通过G1 一次,另外两次则由穿过G2 两次来得到补偿。这样,两束光在玻璃中的光程相等,因此计算两束光的光程差时,只需考虑它们在空气中的几何路程的差别。此外,用白光照明时,若只有G1,贝因为玻璃的色散,不同波长的光因折射率不同而产生的光程差无法用空气中行程弥补,而G2板的加入就能补偿各色光的光程差以获得白光的 零级干涉条纹。白光的干涉条纹在迈克耳孙干涉仪中极为有用,能够用于准确地确定零光程差的位置,进行长度的精确测量。在迈克耳孙干涉仪中,两束相干光分得较开,这便于在任一支光路里放进被研究的对象,通过白光零级条纹位置的改变来研究所放入物质的某些物理特性,如气体或其它透明物质的折射率、透明薄板的厚度等。2.各种干涉条纹的图样 (1 )点光源的非定域干涉 图5.4-2 点光源的非定域干涉 当用凸透镜对激光光束会聚后,得到的是一个线度小、强度足够大的点光源,它向空间传播的是球面波。在经M1和M2 '反射后,又得到相当于由两个虚光源S1、S2'发出 的两列满足干涉条件的球面波,S1为S经G1及M1反射后成的像,S2'为S经M2及 G1反射后成的像(等效于S经G1及M2 '反射后成的像)。两列球面波在它们相遇的空间处处相干,即在两束光相遇的全部空间内均能用观察屏接收到干涉图样,因此是非定 域干涉。非定域干涉条纹的形状随S1、S2'与观察屏E的相对位置的不同而不同。当 M1和M2 '大体平行时,E会与S1、S2'的连线垂直,此时得到圆条纹,圆心在S1、S2'连线与屏的交点O处;当M1和M2 '不平行时,S1与S2不会在一条竖直线上,则E不再与S1、S2'的连线垂直。若E 与S1、S2'的垂直平分线垂直,将得到直条纹,其它情况下则为椭圆或双曲线条纹。通常我们在测量时大都选取圆条纹的情况,下面就讨论这种非定域圆条纹的一些特性。

迈克耳孙干涉仪测光波波长

迈克耳孙干涉仪 1881年迈克耳孙(Michelson,1852—1931)制成可以测定微小长度、折射率和光波波长的第一台干涉仪。后来,他又用干涉仪做了3个闻名于世的重要实验:迈克耳孙—莫雷(Morley,1838—1923)“以太”漂移实验,实验结果否定了“以太”的存在,解决了当时关于“以太”的争论,并确定光速为定值,为爱因斯坦(Einstein,1879—1955)发现相对论提供了实验依据;迈克耳孙与莫雷最早用干涉仪观察到氢原子光谱中巴耳末系的第一线为双线结构,并以此推断光谱线的精细结构;迈克耳孙首次用干涉仪测得镉红线波长(λ=643.84696nm),并用此波长测定了标准米的长度(1m=1553164.13镉红线波长)。此外,迈克耳孙于1920年用一台高分辨率的干涉仪测量猎户星座一等变光星的直径约为太阳直径的3倍,这是人类首次精确测量太阳之外的恒星的大小。 迈克耳孙干涉仪在近代物理和近代计量技术中起了重要作用。今天迈克耳孙干涉仪已被更完善的现代干涉仪取代,但它的基本结构仍然是许多现代干涉仪的基础。 【预习重点】 (1)迈克耳孙干涉仪的构造原理和调节使用方法。 (2)薄膜的等倾干涉和等厚干涉。 (3)如何利用迈克耳孙干涉仪测量光的波长。

参考书:《光学》,母国光、战元龄编,第八章;《光学》上册,赵凯华、钟锡华编,第三章。 【仪器】 迈克耳孙干涉仪、低压钠灯、白炽灯、带“T”标志的毛玻璃片。 图33—1迈克耳孙干涉仪 1—分束器G1;2—补偿板G2;3—可动反射镜M1;4—固定反射镜M2;5—反射镜调节螺丝;6—导轨;7—水平拉簧螺丝;8—垂直拉簧螺丝;9—微调手轮;10—粗调手轮;11—读数窗口;12—光屏 迈克耳孙干涉仪是根据分振幅干涉原理制成的精密实验仪器,主要由4个高品质的光学镜片和一套精密的机械传动系统装在底座上组成(图33—1)。其中作为分束器的G1是一面镀有半透膜的平行平面玻璃板,与相互垂直的M1和

迈克耳孙干涉仪的调节和使用实验报告

实验十四 迈克耳孙干涉仪的调节和使用 迈克耳孙干涉仪在近代物理学的发展中起过重要作用。19世纪末,迈克耳孙 (A.A.Michelson )与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。迈克耳孙发现镉红线(波长λ=643.84696nm )是一种理想的单色光源。可用它的波长作为米尺标准化的基准。他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。 今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。 【实验目的与要求】 1.学习迈克耳孙干涉仪的原理和调节方法。 2.观察等倾干涉和等厚干涉图样。 3.用迈克耳孙干涉仪测定He -Ne 激光束的波长和钠光双线波长差。 【实验仪器】 迈克耳孙干涉仪,He -Ne 激光束,钠光灯,扩束镜,毛玻璃 迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。 从氦氖激光器发出的单色光s ,经扩束镜L 将光束扩束成一个理想的发散光束,该光束射到与光束成45?倾斜的分光板G 1上,G 1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。这两束光沿着不同的方向射到两个平面镜M 1和M 2上,经两平面镜反射至G 1后汇合在一起。仔细调节M 1和M 2,就可以在E 处观察到干 S-激光束;L-扩束镜;G 1-分光板;G 2-补偿板;M 1、M 2-反射镜;E-观察屏。 图7-1 迈克耳孙干涉仪光路图

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

迈克耳孙干涉仪测光波波长

迈克耳干涉仪 1881年迈克耳(Michelson,1852—1931)制成可以测定微小长度、折射率和光波波长的第一台干涉仪。后来,他又用干涉仪做了3个闻名于世的重要实验:迈克耳—莫雷(Morley,1838—1923)“以太”漂移实验,实验结果否定了“以太”的存在,解决了当时关于“以太”的争论,并确定光速为定值,为爱因斯坦(Einstein,1879—1955)发现相对论提供了实验依据;迈克耳与莫雷最早用干涉仪观察到氢原子光谱中巴耳末系的第一线为双线结构,并以此推断光谱线的精细结构;迈克耳首次用干涉仪测得镉红线波长(λ=643.84696nm),并用此波长测定了标准米的长度(1m=1553164.13镉红线波长)。此外,迈克耳于1920年用一台高分辨率的干涉仪测量猎户星座一等变光星的直径约为太阳直径的3倍,这是人类首次精确测量太阳之外的恒星的大小。 迈克耳干涉仪在近代物理和近代计量技术中起了重要作用。今天迈克耳干涉仪已被更完善的现代干涉仪取代,但它的基本结构仍然是许多现代干涉仪的基础。 【预习重点】 (1)迈克耳干涉仪的构造原理和调节使用方法。 (2)薄膜的等倾干涉和等厚干涉。 (3)如何利用迈克耳干涉仪测量光的波长。 参考书:《光学》,母国光、战元龄编,第八章;《光学》上册,凯华、钟锡华编,第三章。 【仪器】 迈克耳干涉仪、低压钠灯、白炽灯、带“T”标志的毛玻璃片。

图33—1迈克耳干涉仪 1—分束器G 1;2—补偿板G 2 ;3—可动反射镜M 1 ;4—固定反射镜M 2 ;5 —反射镜调节螺丝;6—导轨;7—水平拉簧螺丝;8—垂直拉簧螺丝;9—微调手轮;10—粗调手轮;11—读数窗口;12—光屏 迈克耳干涉仪是根据分振幅干涉原理制成的精密实验仪器,主要由4个高品质的光学镜片和一套精密的机械传动系统装在底座上组成(图33—1)。其中 作为分束器的G 1是一面镀有半透膜的平行平面玻璃板,与相互垂直的M 1 和M 2 两个反射镜各成45°角,它使到达镀镆处的光束一半反射一半透射,分为两个 支路Ⅰ和Ⅱ(图33—2所示),又分别被M 1和M 2 反射返回分束器会合,射向 观察位置E。补偿板G 2平行于G 1 ,是一块与G 1 的厚度和折射率都相同的平行 平面玻璃。它用来补偿光束Ⅱ在分束器玻璃中少走的光程,使两光路上任何波长 的光都有相同的程差,于是白光也能产生干涉。M 2是固定的,M 1 装在拖板上。 转动粗调手轮,通过精密丝杠可以带动拖板沿导轨前后移动,导轨的侧面有毫米直尺。传动系统罩读数窗口的圆分度盘每转动1格,M 1 镜移动0.01mm,右 侧的微调手轮每转动1个分格,M 1镜只移动10-4mm,估计到10-5mm。M 1 和 M 2的背后各有3个调节螺丝,可以调节镜面的法线方位。M 2 镜水平和垂直的拉 簧螺丝用于镜面方位的微调。

迈克尔逊干涉仪实验报告南昌大学

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:迈克尔逊干涉仪 学院:机电工程学院专业班级:能源与 动力工程162班 学生姓名:韩杰学号: 51 实验地点:基础实验大楼座位号:

再分别经过透射和反射后,来到观察区域E。如到达E处的两束光满足相干条件,可发生干涉现象。 G2为补偿扳,它与G1为相同材料,有相同的厚度,且平行安装,目的是要使参加干涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个 微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前 后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。 (2)粗动手轮:每转一圈可动全反镜移动1mm,读数窗口内刻度盘转动一圈共100个小格,每小格为0.01mm,□□由读数窗口内刻度盘读出。 (3)微动手轮:每转一圈读数窗口内刻度盘转动一格,即可动全反镜移动0.01mm,微动手轮有100格,每格0.0001mm,还可估读下一位。△△△由微动手轮上刻度读出。 注意螺距差的影响。 激光器激光波长测试原理及方法

光程差为: 2cos d δθ= (2cos (21) ()2 k d k λδθλ ==+?? ???明纹)暗纹 当θ=0时的光程差δ最大,即圆心所对应的干涉级别最高。转动手轮移动M 1,当d 增加时,相当于增大了和k 相应的θ角(或圆锥角),可以看到圆环一个个从中心“冒出” ;若d 减小时,圆环逐渐缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是M 1与M 2 ’之间距离变化了半个波长。 若将M 1与M 2 ’之间距离改变了△d 时,观察到N 个干涉环变化,则 2 d N λ ?=? 或 2d N λ?= 由此可测单色光的波长。 4.钠双线波长差的测量原理和测量方法 从条纹最清晰到条纹消失由于M 1移动所附加的光程差: 1212()m L k k λλ==+ 钠双线波长差:2 2m L λλ?= L m 是视场中的条纹连续出现两次反衬度最低时M 1所移动的距离。 二、 实验仪器: 迈克尔逊干涉仪、He-Ne 激光器、钠光灯、扩束镜

相关文档
相关文档 最新文档