文档库 最新最全的文档下载
当前位置:文档库 › 电磁阀换向阀DNCAZ英文.pdf

电磁阀换向阀DNCAZ英文.pdf

电磁阀换向阀DNCAZ英文.pdf
电磁阀换向阀DNCAZ英文.pdf

4-way, 2-position, solenoid-operated directional spool valve with closed transition and position switch

Capacity: 8 gpm (30

L/min.)

Functional Group:

Products : Cartridges : Directional : 4 Way : 2 Position, Closed Transition, Solenoid Operated with Position Indicating Switch

Model: DNCAZ

Product Description

This solenoid-operated, 4-way, 2-position cartridge is a direct-acting, balanced spool directional valve. The transition between positions is closed. The closed transition greatly reduces the loss of oil when shifting which can be of particular importance in pilot control circuits.

The position switch provides confirmation that the valve is in the spring biased position.

A-Spool Download

B-Spool

Download

C-Spool

Download

J-Spool Download

L-Spool

Download

S-Spool

Download

T-Spool Download

W-Spool

Download

X-Spool

Download

Z-Spool Download

Technical Features

A coil must be ordered with this cartridge. This cartridge is supplied as a sealed, factory set unit and is not field serviceable. If the assembly requires changes or service it needs to be returned to the factory.

Any tampering will violate the product warranty. This valve utilizes a wet armature design. This means that the working fluid surrounds the armature and is exposed to the heat generated by the coil. This can be a factor if the coil is energized for long periods of time. Some fluids, notably water/glycol mixtures, break down at these temperatures over time and form varnishes that will affect the function of the cartridge.

Position switch is CE approved. A wide variety of coil termination and voltage options are available.

When torquing this cartridge into its cavity, a crow's foot wrench or similar will be required since the position switch precludes the use of a deep socket wrench. The solenoid's unique magnetic design results in a high efficiency solenoid, yielding high spool actuating force per Watt expended, leading to reliable valve shifting.

The solenoid tube assembly is fatigue rated for 5000 psi (350 bar) service. Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

This valve is direct actuated and requires no minimum hydraulic pressure for operation.

DNCA-ZXN-224$593.90

Recommended List Price Spool Configuration Seal Material Coil

Preferred Options

C Closed, Shift to Through +0.00 X Cross, Shift to Through +0.00 Standard Options

A A to T, Shift to Through +5.00

B B to T, Shift to Through +5.00 J Open, Shift to Through +0.00 L Cross, Shift to P to A, B

and T Blocked

+0.00 S Regen, Shift to Through +0.00 T Tandem, Shift to

Through

+0.00

W A and B Bleed to T, Shift

to Through

+9.00 Z Motor, Shift to Through +0.00Standard Options

N Buna-N +0.00

V Viton +6.00

***See Coil Options Below

Standard Coil Options (View All)

DIN 43650 3 pin

(Hirschman)

AMP Junior Timer Twin Lead Metri-Pack Deutsch DT04-2P

211DIN 43650 3 pin

(Hirschman) 115 VAC +36.40 612AMP Junior Timer 12 VDC +19.90 812N Metri-Pack 12 VDC no

transient voltage

suppression (TVS) diodes

+24.40

212DIN 43650 3 pin

(Hirschman) 12 VDC +20.40 612N AMP Junior Timer 12 VDC no

transient voltage

suppression (TVS) diodes

+19.40 824Metri-Pack 24 VDC +24.90

212N DIN 43650 3 pin

(Hirschman) 12 VDC no

transient voltage

suppression (TVS) diodes

+19.90 624AMP Junior Timer 24 VDC +19.90 912Deutsch DT04-2P 12 VDC +26.20

214N

DIN 43650 3 pin

(Hirschman) 14 VDC no

transient voltage +22.70 624N AMP Junior Timer 24 VDC no

transient voltage

suppression (TVS) diodes

+19.40 912N Deutsch DT04-2P 12 VDC no

transient voltage

suppression (TVS) diodes

+25.70

suppression (TVS) diodes

223DIN 43650 3 pin

(Hirschman) 230 VAC +36.40 724N Twin Lead 24 VDC no

transient voltage

suppression (TVS) diodes

+22.00 924Deutsch DT04-2P 24 VDC +26.20

224DIN 43650 3 pin

(Hirschman) 24 VDC +20.40 812Metri-Pack 12 VDC +24.90 924N Deutsch DT04-2P 24 VDC no

transient voltage

suppression (TVS) diodes

+25.70

224N DIN 43650 3 pin

(Hirschman) 24 VDC no

transient voltage

suppression (TVS) diodes

+19.90

Stainless options not available for this model

Related Models

DNCA

Copyright ? 2002-2012 Sun Hydraulics Corporation. All rights reserved.

Terms and Conditions - ISO Certification - Statement of Privacy

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

数字信号处理基础综合复习题

数字信号处理模拟试题1(2014年秋季学期) 1. 已知模拟信号013()cos()cos()4 a x t t t =Ω+Ω, 其中,44012210/, 10/63 rad s rad s ππΩ= ?Ω=? 以f s =10kHz 进行采样,得到()x n 。 (1)判断是否满足采样定理要求并说明原因; (2)写出序列()x n 的表达式,并求其周期; (3)截取N 点长序列利用DFT 进行频谱分析,要分辨出各个频率分量,N 的最小值为多少? 2. 一个15点长序列x(n)和6点长序列y(n)(第一个非零点均从n=0开始),各作15点DFT ,得到X(k)和Y(k),再求X(k)Y(k)的IDFT ,得到f(n),问 f(n)的哪些点对应于 x(n)*y(n)应该得到的点? 3.序列x(n)长度为N (N 为偶数),且满足()(2),0,1,...,21x n x n N n N =-+=-,证明: x(n)的N 点DFT X(k)仅有奇次谐波,即:X(k)=0,k 为偶数 4. 设()j X e ω为序列1()()2n x n u n ??= ???的傅里叶变换。令()y n 表示一个长度为10的有限长序列,其10点DFT 用()Y k 表示,已知21010()()()j k Y k X e R k π=,即()Y k 对应于()j X e ω的(0,2)π区间上的10个等间隔样本。求()y n 。 5. 设有一谱分析用的信号处理器,抽样点数必须为2的整数幂,假定没有采用任何特殊数据处理措施,要求频率分辨力≤10Hz ,如果采用的抽样时间间隔为0.1ms ,试确定 (1)最小记录长度; (2)允许处理的信号的最高频率; (3)在一个记录中的最少点数。 6.已知某系统的系统函数为12112921123()11111423 z z H z z z z -------=?+-+ (1)画出级联型的结构流图: (2)画出直接Ⅱ型的结构流图。 (3)级联型结构与直接型结构相比有什么特点? 7. 下图为某FIR 系统的级联型流图。 x

数字信号处理基础实验(Laboratory Exercise 1)

Laboratory Exercise1(2class hours) DISCRETE-TIME SIGNALS:TIME-DOMAIN REPRESENTATION Project1.1Unit impulse and unit step sequences A copy of Program P1_1is given below. %Program P1_1 %Generation of a Unit impulse Sequence clf; %Generate a vector from-10to20 n=-10:20; %Generate the unit impulse sequence delta=[zeros(1,10)1zeros(1,20)]; %Plot the unit impulse sequence stem(n,delta); xlabel('Time index n');ylabel('Amplitude'); title('Unit Impulse Sequence'); axis([-10200 1.2]); Answers: Q1.1The unit impulse sequenceδ[n]generated by running Program P1_1is shown below:

Q1.2The modified Program P1_1to generate a delayed unit sample sequenceδd[n]with a delay of11samples is given below along with the sequence generated by running this program. %Program Q1.2 %Generation of a Unit impulse Sequence with a delay of11samples clf; n=-10:20; delta=[zeros(1,21)1zeros(1,9)]; stem(n,delta); xlabel('Time index n');ylabel('Amplitude'); title('Unit Impulse Sequence with a delay of11samples'); axis([-10200 1.2]); Q1.3The modified Program P1_1to generate a unit step sequence u[n]is given below along with the sequence generated by running this program. %Program Q1.3 %Generation of a unit step sequence clf; n=-10:20; delta=[zeros(1,10),ones(1,21)]; stem(n,delta); xlabel('Time index n');ylabel('Amplitude'); title('Unit Step Sequence'); axis([-10200 1.2]);

1_数字信号处理基础知识

数字信号处理基础知识 Digital Signal Processing 编写:刘馥清

模拟信号与数字信号 (基本术语) 过程:物理量(位移、速度、加速度、声压、声强、压强、应力、应变、温度…)随时间变化的历程。 信息:研究问题所关心的过程特征。 信号:通常指物理过程通过传感器(也称换能器)转换成电信号。 信号是信息的载体。信号处理即从信号获取有用信息。 连续信号:幅值随时间连续变化的信号。 离散信号:只在离散时刻取值的信号。通常对连续信号“采(抽)样” 而得到。 模拟信号:未经数字化处理的连续信号。 数字信号:数字化的离散信号,适用于计算机处理。 A/D:Analog to Digital Conversion

物理过程与信号的分类 (一)

简谐过程两种数学表达形式 1 三角函数形式 ()()?ω+=t A t x sin A —振幅 ?—初相角 ω—角频率 ω=2πf = 2π/T 2 复指数形式 ()()1?===+j e A Ae t x t j t j ω?ω ? j Ae A = —复振幅 (相量—Phasor) 相互关系:()t A t A t A ω?ω??ωsin cos cos sin sin +=+ t A t A ωωsin cos 21+=

() ()t j t j t j t j e A e A e e A t A ωωωωω??+=+= 222cos 1111 () ? ???? ? ??? ???? ? ??? =?= 21 22222 2 2sin πωπωωωωt j t j t j t j e A e A e e j A t A ?? ?????=?=21 πj e j j 2 221A A A += 21 A A arctg =? 欧拉公式的几何意义

毕业设计106 数字信号处理基础

3 数字信号处理 动态应变产生的原因有载荷随时间变化,也有因构件运动,按动态应变随时间变化的性质可分为确定性和非确定性两类。对动态应变信号进行数据分析要分析其频谱,从频域的角度来反映和揭示信号的变化规律。 将信号的时域描述通过数学处理变换为频域分析的方法称为频谱分析。根据信号的性质及变换方法的不同,可以表示为幅值相位谱、功率谱、幅值密度谱、能量谱密度以及功率谱密度。频谱是人们认识信号最重要的手段之一,根据频谱的组成,人们很容易抓住信号与系统的特征,据此可以有效地对信号进行分析、处理、合成以及设计特定的系统。傅立叶变换和信号的采样是进行动态应变信号分析时用到的最基本的技术,只有将被测信号先进行采样,然后才能对信号进行下一步的分析与处理。 3.1 信号的采样[15-17] 用计算机对信号进行分析处理,由于许多信号都是连续变化的模拟量,而计算机只能识别和处理离散型的数字量,所以必须建立模拟量转换为数字量的装置,才能发挥计算机的一系列性能。把连续的时间信号转换为离散的数字信号的过程称为模/数(D A /)转换过程,这是数字信号分析的必要过程。D A /转换过程包括采样、量化和编码,其工作原理如图3.1所示。 图3.1 A/D 转换过程 Fig.3.1 Conversion process of A/D 信号)(t x 经过上述变换后,变成为时间上离散,幅值上量化的数字信号,通过接口电路输入计算机,这样,计算机才能进行进一步的处理。 1101

(1)采样过程 采样,又称为抽样,是利用采样脉冲序列)(t p ,从连续时间信号)(t x 中抽取一系列离散样值,使之成为采样信号)(t n x ?的过程,其中,△t 称为采样周期, s f t =?/1称为采样频率,n=0,1,2, …。 则采样信号为: )()()(t p t x t x s = (3.1) 设)()]([ωX t x F =, )()]([ωP t p F = 那么根据时域相乘频域卷积定理,有 )(*)(21)(ωωπ ωP X X s = (3.2) 又因为采样脉冲序列是一个周期函数,所以 )(2)(s n n C P ωωδπω-=∑∞ ∞- (3.3) C n 为p(t)的傅立叶系数。当p(t)为脉冲序列时,有 t T C s n ?==1 (3.4) 所以,采样信号的频谱为 )()(s n s n X C X ωωω-=∑∞ ∞- =)(1s n s n X C T ωω-∑∞ ∞ - (3.5) 可见,信号在时域的离散化导致了频域的周期化,采样后信号频谱的变化与信号的最高频率max f 及采样频率s f 之间的关系有关。 (2)采样定理 采样周期s T 决定了采样信号的质量和数量,s T 太小,显然信息不易丢失,但使)(s nT x 的数量增加,占用大量的内存单元,数据处理速度变慢;s T 太大,采集的数据太少,会使某些信号丢失,难以恢复原来的信号,造成失真现象。因此,选择一个合理的采样频率s s T f /1=就显得十分重要。 采样定理是C.E.Shannon 在1948年提出的,其具体表述为:一个具有有限能量的带限信号)(t x ,其最高频率分量为max f ,则该信号在频域内完全可由一系列时间间隔T 的等于或小于2/max f 的采样点所确定,即

数字信号处理基础答案第四章sol

Chapter 4 Solutions 4.1 (a) The pass band gain for this filter is unity. The gain drops to 0.707 of this value at 2400 Hz and 5200 Hz. Thus, the frequencies passed by the filter lie in the range 2400 to 5200 Hz. (b) The filter is a band pass filter. (c) The bandwidth is the range of frequencies for which the gain exceeds 0.707 of the maximum value, or 5200 –2400 = 2800 Hz. 4.2 A low pass filter passes frequencies between DC and its cut-off frequency. The bandwidth is identical to the cut-off frequency. Thus, the cut-off frequency is 2 kHz. 4.3 The maximum pass band gain of the filter is 20 dB. The bandwidth is defined as the range of frequencies for which the gain is no more than 3 dB below the pass band gain, or 17 dB. This gain occurs at the cut-off frequency of 700 Hz. For a high pass filter, the bandwidth is the range of frequencies between the cut-off frequency, 700 Hz, and the Nyquist frequency (equal to half the sampling rate), 2 kHz. The bandwidth is 1300 Hz. 4.4 The low pass filter has a cut-off frequency of 150 Hz and bandwidth 150 Hz. The band pass filter has cut-off frequencies at 250 Hz and 350 Hz for a bandwidth of 100 Hz. The high pass filter has a cut-off frequency of 400 Hz and a bandwidth of 100 Hz, which extends from its cut-off frequency to the Nyquist limit at half the sampling rate. 4.5 (a) The low pass filter output is on the left. The high pass filter output is on the right. (b) An approximation to the original vowel signal can be found by adding the high and low pass waveforms together. 4.6 (a) linear (b) non-linear (c) non-linear (d) linear 4.7 Since the new input is shifted to the right by two positions from the original input, the new output is shifted to the right by two positions from the original output. 4.8 (a) y[n] = –0.25y[n –1] + 0.75x[n] – 0.25x[n –1] (b) y[n] = y[n –1] – x[n] – 0.5x[n –1] x[n] n y[n] n

数字信号处理基础答案第十二章sol

Chapter 12 Solutions 12.1 Von Neumann architectures rely on one address bus and one data bus, so activities requiring bus usage must wait until the bus is free. Harvard architectures have multiple address and data buses. As a result, less bus contention occurs, and items can be collected from memory in parallel. Also, Harvard architectures have several memories that can contain program instructions, data, or both; von Neumann architectures feature only one memory that must contain both program instructions and data. 12.2 Pipelining refers to the overlapping of processor tasks made possible by multiple buses and multiple memories. A program instruction can be fetched from one memory while a piece of data is collected from another, all while a previous instruction is being executed. 12.3 (a) 4480310 = 1010 1111 0000 00112 29910 = 0000 0001 0010 10112 (b) The product of the two numbers is 10 = 1100 1100 0110 1000 1000 00012. At least twenty-four bits are needed to represent the product. (c) Rounded to its sixteen most significant bits, the product becomes 1100 1100 0110 1001 0000 00002, where bit 8 changes to one because the lower eight bits, 1000 0001 are greater than 1000 0000. The rounded product equals 10, for an error of 12710. (d) The 32-bit product is 0000 0000 1100 1100 0110 1000 1000 00012. Rounded to the sixteen most significant bits, the product becomes 0000 0000 1100 1100 0000 0000 0000 00002 = 10. An error of –2675310 is committed. 12.4 causes a “one” bit to be lost at the right, precision is lost. For example, half of 41 is 20.5, which cannot be represented. Instead, the result is a truncated 20. 12.5 (a) 23745 (b) –18468 (c) –1 (d) –32768 (e) 32767 12.6 (a) 0000 1100 (b) 1011 0001 (c) 1000 0000 (d) 1111 1111 (e) 0111 1111 12.7 Before shifting, 0110 11102 = 11010. After shifting, 1101 11002 = 22010. 12.8 Before shifting, 0110 11102 = 11010. After shifting, 1101 11002 = –3610. The sign of the number changes as a result of shifting. 12.9 (a) An exponent of –4 can be used to normalize all numbers in the block. This choice of exponent ensures one sign bit remains in each number.

相关文档
相关文档 最新文档