文档库 最新最全的文档下载
当前位置:文档库 › 吸收扩散式制冷机工作原理

吸收扩散式制冷机工作原理

吸收扩散式制冷机工作原理
吸收扩散式制冷机工作原理

吸收扩散式制冷机工作原理

在吸收式冰箱系统中,采用三组分为循环工质,氨作为制冷剂,氨水溶液为吸收剂,氢气为平衡气体。从贮液器出来的浓溶液经溶液热交换器到达发生器,在发生器中被电热器(或其它热源)加热,一部分氨气从溶液中排出,蒸气形成气泡将液柱推向气泡泵的泵管。由于气泡的产生和溶液被加热,引起垂直方向出口浓溶液的密度下降,藉助于贮液器中溶液的静压头,迫使溶液流向气泡泵顶部。液柱流出泵管后下降,经发生器的外套管,被进一步变稀。从发生器出来的稀溶液,藉助于发生器顶部与吸收器之间的高度差,经溶液热交换器的内管流到吸收器上端。与此同时,将热量传给由贮液器出来的浓溶液,使进入发生器的浓溶液的温度升高。稀溶液由吸收器上端向下流动,与从贮液器顶部出来的逆流而上的氢、氨混合气接触,吸收其中的氨气,使溶液浓度不断增加,出吸收器后流入贮液器,又重新经溶液热交换器流入发生器。

从气泡泵出来离开发生器的氨气中含有较多水分,在精馏器(又称水分离器)内液滴因重力下降,氨蒸气和水蒸气上升时,因和外界环境空气环境空气进行热交换,温度降低,更多的水蒸气从氨蒸气中析出,凝为水珠流回发生器。浓度较高的氨蒸气出精馏器后流入带有翅片的风冷冷凝器,在环境空气的自然冷却下,氨气凝结成液体,依靠冷凝器本身的倾斜度,液氨流经过冷器后进入蒸发器,在蒸发器入口处与氢气相遇,由于氢气分压高,氨气分压低,因而液氨分子迅速向氢气中扩散。在液氨蒸发扩散过程中,从冰箱内部吸取热量,达到制取冷量的目的。开始时,由于氢、氨混合气中氨气分压较低,故蒸发温度较低。随着液氨不断地蒸发与扩散,混合气中氨气分压缓缓上升,蒸发温度随之升高。由于含氨较多的低温氢氨混合气密度较大,在重力作用下经下部气体热交换器进入贮液器,然后由吸收器下部向上流动,与自上而下的稀溶液接触,氨气不断地被稀溶液吸收。氢气因不溶解于水,密度又小,因而从吸收器上部上升,经气体热交换器降温后进入蒸发器入口,循环又重新开始。

吸收式系统这种吸收式冰箱采取先进的制冷技术。没有压缩机,没有氟立昂破坏大气层。全封闭系统设计不需要添加制冷剂,没有机械运动。被国际环境保护协会命名为绝对绿色产品。本产品的最大特征就是可以广泛的利用能量,如气体工作就被广泛运用。浓溶液离开水平舱通过液体加热转换器到泵管。通过加热使溶液温度上升,这时氨和水以水蒸汽的状态流动达到沸腾状态并且推动液体柱上升到泵管。此时的液体是弱氨溶液,溶液下降通过发电机流到液体加热转换器的外部,然后进入吸收圈的顶部。氨和水蒸气通过整流器降低温度引起所有水蒸气液化并且和弱溶液混合进入发电机,液体氨进入冷凝器转变成热的液体氨。液体氨进入线管蒸发使管子内部湿润,当氢气穿过管道表面就与液体氨结合。通过这个过程热量就被从蒸发器里抽出来也就是从冰箱里抽出来!氦和氨的混合液的重量比纯净的氦重,所以就通过气体加热转换器到达水平舱的顶部,从某个方向进入到吸收圈的底部。当混合液体向上流动到吸收器,它和弱溶液相接触,并从吸收器进入到发生器的顶部,当弱溶液通过吸收降下来吸收氦氨混合液中的氦。相对纯净的氦流到蒸发器。这样,浓溶液到达了水平舱的底部准备下一次运行!

5.2溴化锂吸收式制冷机制冷原理

5.2.1、溴化锂吸收式制冷机各部件作用与制冷循环

只要是利用液态制冷剂蒸发吸收载冷剂热量完成制冷任务的,无论什么型式的制冷系统,都不可能离开冷凝器和蒸发器。冷凝器的作用就是把制冷过程中产生的气态制冷剂冷凝成液体,进入节流装置和蒸发器中,而蒸发器的作用则是将节流降压后的液态制冷剂气化,汲取载冷剂的热负荷,使载冷剂温度降低,达到制冷的目的。

在吸收式制冷中,发生器和吸收器两个热交换装置所起的作用。相当于蒸气压缩式制冷系统中的压缩机的作用,因此,常把溴冷机吸收器和发生器及其附属设备所组成的系统,称为“热压缩机”。发生器的作用,是使制冷剂(水)从二元溶液中汽化,变为制冷剂蒸汽,而吸收器的作用,则是把制冷剂蒸汽重新输送回二元溶液中去,两热交换装置之间的二元溶液的输送,是依靠溶液泵来完成的。

由此可见,溴化锂吸收式制冷系统必须具备四大热交换装置,即:发生器、冷凝器、蒸发器和吸收器。这四大热交换装置,辅以其他设备连接组成各种类型的溴化锂吸收式制冷机。图

5-2为吸收式制冷循环原理框图。

图中上半部分,贯穿四个热交换装置,虚线所示为制冷剂循环,由蒸发器、冷凝器和节流装置(即调节阀10)组成,属于逆循环。图中下半部分,实线所示循环回路,是由发生器、吸收器、溶液泵及调节阀组成的热压缩系统的二元溶液循环,属于正循环。以上循环是不考虑传质、传热及工质流动的系统阻力等损失的理论循环。正循环为卡诺循环,具有最大的热效率,逆循环为逆卡诺循环,具有最大的制冷系数。因此由这样一个正循环与一个逆循环联合组成一个以热力为主要动力,辅以少量电能驱动溶液泵所构成的吸收式制冷机,具有最大的热力系数。

左图5-2吸收式制冷循环 1-冷凝器;2-蒸发器;3-发生;4-吸收

器5-冷却水管;

6-蒸汽管;7-载冷

剂管;8-溶液泵;

9-制冷剂泵;11-

调节阀

图5-3为单效溴冷机原理流程图

1-冷凝器;2-发生器;3-蒸发器;4-吸收器;5-热交换器6-U—形节流管;7-防结晶管(“J”形管);8-发生器泵;9-吸收器泵;10-蒸发器泵;11-抽真空装置;12-溶液三通阀

5.2.2、单效溴化锂吸收式制冷机工作原理

1、高、低压筒

通常将发生器和冷凝器密封在一个筒体内,称为高压筒,发生器产生的冷剂蒸汽,经挡液板直接进入冷凝器。为了便于冷剂蒸汽的吸收,缩短冷剂蒸汽的流程,将工作压力较低的蒸发器与吸收器密封于另一个筒体内,称为低压筒。高压筒在上,低压筒在下的布置,有利于浓溶液靠重力与压差自动从发生器回流至吸收器,减少动力消耗。

高、低压筒之间的压差平衡,由装在两筒之间管路上的节流装置来保持。在溴冷机系统中,这一压差相当小,一般只有6.5~8kPa,只要7.0~8.5kPa就可控制住上下筒的压力平衡。因此,节流装置多采用U形管就可满足需要。当然也可用节流短管或节流小孔做节流装置。

2、热交换器

为充分利用热能,提高整机热效率,更加完善制冷循环,需增添热交换器。因为从发生器流出的浓溶温度较高,离开吸收器的稀溶液温度又相当低。浓溶液在未被冷却到吸收器压力相对应的温度前,不能够很好地吸收冷剂水蒸气。而稀溶液又必须升温,加热到与发生器压力相对应的溶液饱和温度,方可开始沸腾。因此,通过增加溶液热交换器,使浓溶液和稀溶液在各自进入吸收器与发生器之前,高温液体与低温液体在热交换器中彼此进

行热量传递,冷热互换充分发挥热效应。稀溶液温度升高后进入发生器,就使制冷剂蒸汽在发生器内即刻发生。而浓溶液的温度下降,可使冷剂蒸汽在吸收器内很容易被吸收。如此就能保证溴冷机组的良性循环,提高整机的制冷效率(见图5-3中5)。

3、抽真空的必要性

由于溴冷机内部是处于真空状态下运行的,因此必须使蒸发器及吸收器在运行中保持稳定的真空度,所以对设备的气密性要求较高。全部溶液泵均采用结构紧凑、密封性能良好的屏蔽泵,调节阀门采用真空隔模阀,以及其他的密封性措施等等。尽管全部系统都采用严格的密封措施,但因制冷系统内的绝对压力很低,与系统外的大气压力存有较大的压差,外界空气仍有可能渗入系统内。同时,运行中因溴化锂对金属的腐蚀作用,也会产生一些不凝性气体。当不凝性气体积聚到一定数量,就会破坏机组的正常工作状况,严重时甚至会使制冷机组的制冷循环停止。故要及时地排除渗入机内的空气及不凝性气体,溴冷机组必须配备一套专门抽真空的装置(图14-8中11)。

4、溴化锂吸收式制冷循环过程

1)发生过程

发生器泵8汲取吸收器4内的溴化锂稀溶液经热交换器5被高温浓溶液加热升温后,输送至发生器2内。发生器内的稀溶液被通过发生器管簇内的蒸汽加热,温度继续升高,并在发生器内沸腾,冷剂水不断地从稀溶液中以水蒸气的形式析出。溴化锂溶液被浓缩,溶液的浓度逐渐增加。

在发生器内,溴化锂稀溶液被升温加热产生冷剂蒸汽,变为溴化锂浓溶液,是有一定变化范围,单效溴化锂制冷机一般控制在3.5%~6%。这一溶液浓度的变化范围,称放气范围(也叫浓度差)。放气范围是溴冷机运转的经济性能指标,对制冷量控制及其能耗有重要意义。

2)冷凝过程

在发生器内,稀溶液中析出的冷剂水蒸气进入冷凝器1中,淋洒在冷凝器管簇外表面释放出凝结热,凝结成冷剂水,该凝结热通过流经管簇内的冷却水吸收,由冷却水将凝结热量携带排至制冷系统外。

3)节流过程

冷凝过程产生的冷剂水,通过U形管节流进入蒸发器3。U形管不仅起到控冷剂水流量和维持上下筒之间压力差的作用,而且还起到一定的水封,防止上下筒之间压力串通,破坏上下筒之间的压力差,影响制冷剂的蒸发与吸收。

4)蒸发过程

进入蒸发器3的冷剂水,由于压力急剧下降,一部分冷剂即刻闪发,温度降低。尚未闪发的冷剂水经蒸发器管簇外表面向下,积聚至蒸发器水盘与液囊内,由蒸发器泵10输送并喷淋在蒸发器管簇外表面下。吸收通过蒸发器管簇内载冷剂的热量而蒸发为制冷剂蒸汽,进入吸收器4。在蒸发器内被冷却后的载冷剂,由载冷剂泵送至使用低温水降温、去湿的空气调节室,或生产工艺过程冷却用低温水的设备。

5)吸收过程

发生器内的稀溶液由于发生出冷剂蒸汽而形成温度较高的浓溶液,依靠上下筒的压力差和溶液本身的重量,流经热交换器被低温稀溶液吸热降温后,自流进入吸收器4,与吸收器中的溶液混合成中间浓度的浓溶液,由吸收器泵9输送并喷淋到吸收器管簇外,吸收从蒸发器蒸发出来的冷剂蒸汽后使溶液浓度降低。由中间浓度的浓溶液变成稀溶液后集至发生器泵进口处的液囊中。吸收过程中放出的吸收热,被通过吸收器管簇内的冷却水汲取带到制冷系统外。液囊中的稀溶液再次经发生器泵压入发生器,溴化锂溶液从此进入第二个制冷循环。

吸收器和冷凝器所需要的冷却水,由冷却水系统输送。可采用直流式冷却水系统或采用冷却塔循环式冷却水系

统。冷却水通过冷凝器与吸收器的管路联接方式,采用串联或并联均可。目前溴化锂吸收式制冷机组采用串联流程方式的为多。

单效溴化锂吸收式制冷机,除了双筒式制冷机外,还有一种用于小型制冷量的单筒式溴化锂吸收式制冷机。就是将发生器、冷凝器、蒸发器、吸收器四部分均设置于同一筒体内。按压力大小分为高压舱,上部为高压舱,下部为低压舱。两舱之间采用真空绝热或隔层中填充绝热材料的方法,防止热量传递。如图5-4为单筒式溴化锂吸收式制冷机原理流程图

左图5-4单筒式溴化锂制冷机原理图

1-发生器;2-冷凝器;3-蒸发器;4-吸收器;5-热交换器;

6-U形管;7-蒸发器泵;8-发生器泵;9-吸收器泵

5.2.3、双效溴化锂吸收式制冷机制冷原理

双效溴化锂吸收式制冷机,比单效制冷机增加了一个高压发生器,

又称高压筒,低压部分与单效机的结构相近,也是由上下两筒组成,因此,双效机的一般形式为三筒式。图5-5为双效溴冷机原理图。

图5-5双效溴化锂吸收式制冷机原理图

1-高压发生器;2-冷凝器;3-低压发生器;4-蒸发器;5-吸收器;6-高温热交换器;7-低温热交换器; 8-凝水回热器;9-发生器泵;10-吸收器泵;11-蒸发器泵;12-抽真空装置;

为了提高热交换效率,更好地完成制冷循环,双效溴冷机设有两套溶液热交换器,从高压发生器流出的温度较高的浓溶液与来自吸收器低温的稀溶液进行热交换的热交换器称为高温热交换器。从低压发生器流出的浓溶液(温度比高压发生器出口的溶液温度低)与稀溶液进行热交换的换热器,同时,为使进入低压发生器的稀溶液温度再接近低压发生器内的发生温度,充分利用加热蒸汽的余热,在稀溶液离开低温热交热器进入低压发生器前,增设一套凝水回热器,把经过低温热交换器升温后的稀溶液,利用高压发生器发生过程使用的蒸汽余热,通过凝水回热器继续升温,使稀溶液进入低压发生器后,依靠高压发生器产生的高温冷剂水蒸气,足以让稀溶液在低压发生器内很快发生出冷剂水蒸气,进入冷凝器。

综上所述,与单效机相比,双效机增加了高压发生器、高温热交换器和凝水回热器,使热力系数有很大提高,有利于节约能耗和推广应用。

双效溴冷机制冷原理:吸收器5中的稀溶液,由发生器泵9分两路输送至高温热交换器6和低温热交换器7,进入高温热交换器的稀溶液,被从高压发生器1流出的高温浓溶液加热升温后,进入高压发生器,而进入低温热交换器的稀溶液,被从低压发生器3流出的浓溶液加热升温后,再经凝吕回热器8继续升温,然后进入低压发生器3。

进入高压发生器的稀溶液被工作蒸汽加热,溶液沸腾,产生高温冷剂蒸汽,导入低压发生器,加热低压发生器中的稀溶液后,经节流进入冷弹簧器2,被冷却凝结为冷剂水。

进入低压发生器的稀溶液被高压发生产生出的高温冷剂蒸汽所加热,产生低温冷剂蒸汽直接进入冷凝器,也被冷却凝结为冷剂水。高、低压发生器产生的冷剂水汇合于冷凝器集水盘中,混合后导入蒸发器4中。

加热高压发生器中稀溶液的工作蒸汽的凝结水,经凝水回热器进入凝水管路,而高压发生器中的稀溶液因被加热蒸发出了冷剂蒸汽,使浓度升高成浓溶液,又经高温热交换器导入吸收器5,低压发生器中的稀溶液,被加热升温放出冷剂蒸汽也成为浓溶液,再经低温热交换器进入吸收器,浓溶液与吸收器中原有溶液混合在中间浓度溶液,由吸收器泵汲取混合溶液,输送至喷淋系统,喷淋在吸收器管簇外表面,吸收来自蒸发器4蒸发出来的冷剂蒸汽,再次变为稀溶液进入下一循环,吸收过程所产生的吸收热被冷却水带到制冷系统外,完成溴化锂溶液从稀溶液到浓溶液,再回到稀溶液循环过程,即热压缩循环过程。

高、低压发生器所产生的冷剂蒸汽。凝结在冷凝器管簇外表面上,被流经管簇里面的冷却水吸收凝结过程产生的凝结热,带到制冷系统外,凝结后的冷剂水汇集起来经节流装置,淋洒在蒸发器管簇外表面上,因蒸发器内压力低,部分冷剂水闪发吸收冷媒水的热量,产生部分制冷效应,尚未蒸发的大部分冷剂水,由蒸发器泵11喷淋在蒸发器管簇外表面,吸收通过管簇内流经的冷媒水热量,蒸发成冷剂蒸汽,进入吸收器。

冷媒水的热量被吸收使水温降低,从而达到制冷目的,完成制冷循环,吸收器中喷淋中间浓度混合溶液吸收制冷剂蒸汽,使蒸发器处于低压状态,溶液吸收冷剂蒸汽后,靠热压缩系统再产生制冷剂蒸汽,保证了制冷过程的周而复始的循环。

双效溴冷机除用蒸汽作为加热热源外,燃烧油或液化气等直燃式双效溴冷机也广泛应用。

5.3溴化锂吸收式制冷机组主要部件的结构

5.3.1、高压发生器(如图5-6)

在蒸汽两效溴化锂吸收式制冷机中,高压发生器的作用是将0.2~0.8MPa(表压)工作蒸汽通入传热管内,加热管外的溴化锂溶液,使之沸腾并产生冷剂蒸汽;所产生的冷剂蒸汽则作为低压发生器的热源,用以加热低压发生器中的溴化锂溶液,产生第二股冷剂蒸汽。这就是两效的含意。因为能源得到了两次利用,所以蒸汽耗量降低,达到了节能效果。

图5-6高压发生器的结构

a)高压发生器的布置 b)膨胀节结构c)浮头结构d)U型管结构

高压发生器一般使用0.2~0.8MPa(表压)的工作蒸汽,其饱和温度较高,约为132~175℃。通常高压发生器的壳体用碳钢、传热管用紫铜管或铜镍合金管制作。这两种材料间膨胀系数相差甚大,在高温下将产生很大的热应力。管子与管板间采用胀管联接,由于热应力,可能造成管子被“拉脱”。所以消除热应力是设计时首先应考虑的问题。降低或消除热应力的方法一般有下列几种。

1、采用膨胀节结构

如图5-6b所示,在壳体靠中间部位设置膨胀节,使壳体可以自由伸长,从而减少热应力的影响。

2、采用浮头结构

如图5—6c所示,将管子的一端与管板联接,另一端与一个浮动管板联接。浮头管板、浮头室及其下面的滑板,组成一个可以自由滑动的浮头,使高压发生器的传热管一端固定,另一端可自由活动。这样,可彻底消除热应力。

3、采用U型管结构

如图5-6d所示为U型管结构,是把传热管作成U型管,其进出口均联接在同一块管板上。这样,管子热膨胀与壳体热膨胀互不相干,均可自由伸长。这种结构的工艺性较差,弯头多,制作比较复杂。

高压发生器工作时,由于工作蒸汽压力以及冷凝压力的波动,将引起高压发生器中溴化锂溶液液位的波动。对于这种液位波动,要设法控制,否则将会造成液位过高或过低。液位过高会增大静液柱对沸腾的影响,降低发生过程的发生效果,甚至造成冷剂污染。液位过低会使上部传热管暴露于液体之外,引起管子的破损。为此,结构设计时,发生器的上部必须留有一个足够大的空间和高度。足够大的空间可降低冷剂蒸汽的流速,并防止因溶液飞溅而带液。为防止冷剂污染,高压发生器的上部通常设有汽罩,其中装有简易的挡液装置。实践证明,高压发生器最上一排管子与壳体顶部的距离H为280~400mm,冷剂蒸汽在最小截面处的流速不超过10m/s时,可有效防止冷剂的污染。

4、强度与稳定性

高压发生器的封盖要承受0.2~0.8MPa(表)的工作蒸汽,一般应作为压力容器考虑其强度。

高压发生器的壳体在工作时处于真空状态,其真空度约为8~40kPa。作为受外压容器,其稳定性应予充分注意。尤其是作为整机,在真空检漏或停机期间,它处于更高的真空状态,所以必须考虑稳定性问题。

在高压(以及低压)发生器中,使溶液适当扰动是强化传热的措施之一。一般有左右扰动与上下扰动两种方式,如图5-7所示。其中,左右扰动是一种传统的扰动方式。根据试验研究,上下扰动时溶液温度趋于均匀,静液柱高度对沸腾的影响较小,容易形成汽化核心,有利于提高发生过程的传热效果。

图5-7 溶液在发生器中的扰动方式

a)低压发生器-冷凝器的布置 b)溶液左右扰动方式 c)溶液上下扰动方式

5.3.2、低压发生器与冷凝器

图5-8示出了低压发生器-冷凝器呈上下布置的结构:低压发生器3与冷凝器1置于同一壳体内,工作时属同一真空状态。

在蒸汽两效机中,低压发生器依靠高压发生器的冷剂蒸汽来加热,其温度较低,一般为80~98℃。为扩大放汽范围,强化传热特别重要,应尽可能减少静液柱高度。经验表明,静液柱高度以不超过200mm为宜。管排数与管间距需要综合考虑确定,管排数以不超过15排为好。溶液的扰动方式,在低压发生器中采用上下扰动方式比高压发生器更具有意义。

左图5-8低压发生器-冷凝器的结构

与沉浸式换热相比,喷淋式可完全消除静液柱高度对传热的影响。

对低压发生器来说,更具有使用价值,是今后低压发生器设计的

一个方向。但在结构设计时,要充分考虑喷淋溶液在传热管上的

均匀分布,避免管子局部温度过高。

冷凝器是令低压发生器产生的冷剂蒸汽与冷却水进行热交换,使之凝结成冷剂水。冷剂水汇集于冷凝器下部的水盘,再经节流装置进入蒸发器。由于发生器与冷凝器之间有较大的温差,会出现热量传递,这对发生过程和冷凝过程都是不利的。为此,在水盘下方设有隔热层。

低压发生器中的压力较低,发生过程中溶液的沸腾飞溅更为严重;同时,冷剂蒸汽的流速较大,容易夹带液滴,造成冷剂水污染,故挡液问题更为重要。

5.3.3、蒸发器与吸收器

图5-9为蒸发器-吸收器的结构示意图。蒸发器与吸收器处于同一工作压力,一般置于同一壳体之中,组成蒸发器-吸收器筒体。在制冷机工作过程中,该部分压力最低,一般约为0.001MPa(绝对压力)。结构设计时,

强化传热与传质的问题比高、低压发生器更为突出。

图5-9 蒸发器-吸收器结构

1、强化传质

从蒸发器蒸发出来的冷剂蒸汽,通过传热管簇及挡液装置,进入吸收器管间,由于沿途的阻力损失,其压力由

p0变p0′。若吸收器喷淋溶液的饱和蒸汽压为pa(称吸收压力),则吸收过程的传质推动力为(p′0-pa)。由此可见,为了增大传质推动力,以便强化吸收器中的传质过程,在不改变吸收压力pa的条件下,应尽可能增大p0′,这就需要在结构上减少制冷剂蒸汽的流动阻力损失。

2、强化传热

就结构而言,喷淋换热是强化传热的有效手段。尤其在高真空下,对于蒸发器将消除静液柱的影响,使蒸发过程增强。对于吸收器采用喷淋换热,还可增大冷剂蒸汽与喷淋溶液的接触面积,增强传热。

强化传热的结果,将使吸收器喷淋溶液的温度更接近于冷却水的温度,从而降低喷淋溶液的温度,以降低吸收液的饱和蒸汽压,达到增大传质推动力的目的。显然,为了获得较好的传热效果,在强化喷淋侧传热的同时,还应注意提高传热管内水侧的流速。通常取水侧的流速1.5~3.0m/s为宜。

3、溶液浓度的影响

对应于某一温度和压力,喷淋溶液有一相应的饱和浓度。溶液达到饱和时,就不再吸收了。若要使其进一步吸收,就需要采取措施,改变其饱和状态,使之处于不饱和,如用冷却水对溴化锂溶液进行冷却,或者提高喷淋溶液的浓度。喷淋溶液的温度与冷却水的温度有关。喷淋溶液的浓度除了与发生器出口浓溶液的浓度有关外,还与稀溶液的混合量有关。因此,为了提高喷淋溶液的浓度,在结构上也有用浓溶液直接喷淋的。但务必从结构上解决溶液在管子表面的均匀浸润及分布问题。

蒸发器与吸收器除了上下叠置以外,还有左右平行布置等方式。不论那种布置方式,都要防止吸收器的喷淋溶液,因结构不当进入蒸发器引起污染,特别是平行布置,更要慎重。

5.3.4、热交换器

不论是单效机型还是两效机型,热交换器都是为了回收热量以提高其经济性。两效机比单效机还增加了一个高温热交换器和一个凝水回热器,其回收热量,提高热效率的意义比单效机更大。

溶液热交换的换热方式,一般有对流换热(图5-10a)和横掠管簇换热(图5-10b)两种。在溶液热交换器的结构设计中,由于传热系数较低,因而换热面积较大。此外,确定流速时,既要考虑有较高的流速,以提高传热系数;又要考虑流速升高时,不仅流动阻力增大,而且在结构上也会给制造带来困难。通常,管内稀溶液的流速取0.6~1.0m/s;管外浓溶液的流速取0.3~0.6m/s。溶液热交换器一般为壳管式结构,传热管用光管或低肋片管,材质可用碳钢或紫铜。

图5-10 溶液换热器 a)对流换热 b)横掠管簇换热

5.3.5、节流装置

节流装置是一个重要部件。它有多种型式。可以是针状节流阀,浮球阀、U形管或小孔节流元件。溴化锂吸收式制冷机中最常用的是U形管和小孔节流元件。

1、U形管节流装置

U形管节流装置结构简单、工作可靠、流量调节幅度宽,是溴化锂吸收式制冷机中应用最早、最广的节流装置。我国生产的单效机或两效机都采用这种节流方式。由图5-11可知,U形管的高度是保证节流的关键,其值与冷凝器、蒸发器间的压力差(pk-pO)有关。一般情况下,冷凝器与蒸发器的压差大约为9.8kPa,因此,U形管的高度略高于1m即可。其管径则是根据机组的制冷量而定。这种节流装置的缺点是外形尺寸较大,结构不够紧凑,对于压差较大的两侧,如高压发生器与冷凝器之间不宜采用。

左图5-11U形管节流装置

2、小孔节流装置

该装置是在冷凝器通往蒸发器的管道中,设置一个节流小孔,如图5-12

所示。这种节流方式结构紧凑,特别适宜于单筒型结构的机器。小孔节

流装置的缺点是自平衡能力较差。小孔的通径是保证节流的关键。通径

过大,在低负荷时难于形成液封,可能使高低压两侧相通,影响制冷机

正常运行。通径过小,中高负荷时无法保证足够的流量,使制冷机的制冷量受到限制。所以设计这种节流装置时,应充分考虑高低压侧的压力差,最高或最低负荷时的流量范围等因素。

左图5-12小孔节流装置

5.3.6、抽气装置

溴化锂吸收式制冷机是在高真空状态下工作的,空气极易通过密封不良的联

接处渗漏到机中。同时,由于溴化锂溶液对金属材料的腐蚀,机器本身也会

产生如氢气等不凝性气体。这些不凝性气体的存在,不仅损害了机器的性能,

严重时将使机器无法运转。同时,空气的存在,还会加剧溴化锂溶液对金属

材料的腐蚀,影响机组的寿命。为此,机组中必须装设抽气装置,及时将聚集在机组中的不凝性气体及漏入机内的空气抽除掉。常用的抽气装置有如下几种:

1、机械真空泵抽气装置

如图5-13所示为机械真空泵抽气装置。它由制冷剂分离器、阻油器、真空泵及连接管件、阀门等组成。从冷凝器或吸收器中抽出的不凝性气体,夹带着一定量的制冷剂蒸汽。若将制冷剂蒸汽抽出机外,不仅会使机组中的制冷剂减少,影响机器的性能;而且制冷剂蒸汽进入真空泵后,还会使真空泵油乳化,粘度降低,抽气效果恶化,甚至丧失抽气能力。为此设有制冷剂分离器1。制冷剂分离器一般为一圆筒形容器,其中装设有冷却盘管与喷嘴。冷却盘管中通以冷媒水或从蒸发器泵排出的冷剂水,以造成比吸收器更好的吸收条件。带有制冷剂蒸汽的不凝性气体由制冷剂分离器1的底部进入,其中的制冷剂蒸汽被喷淋溶液吸收。吸收了制冷剂蒸汽的溶液,重新回流到吸收器。不凝性气体经抽气管、截止阀2、电磁阀3与阻油器4进入真空泵5,被真空泵排出。阻油器为一圆筒形容器,其中装有两块阻油挡板,以防止真空泵停止运转时,将真空泵油压入机内,引起油对溶液的污染。电磁阀3与真空泵5接同一电源。真空泵5停止运转时,电磁阀3动作,一方面切断制冷机的通气口,另一方面使真空泵的抽气口与大气相通,防止真空泵油倒流到阻油器或抽气管中。

图5-13 机械真空泵抽气装置

1—冷剂分离器 2—手动截止阀 3—电磁阀 4—阻油室

5—真空泵 6—电动机

2、自动抽气装置

自动抽气装置的型式有多种,但基本原理大致相同,如图5-14所示,都是利用溶液泵6排出的高压液流作为引射抽气的动力。这种装置的抽气量比较小,但在机器运转中能自行连续不断地抽气,操作方便。随着机器密封性能的提高及防腐措施的加强,机器内部不凝性气体大为减少,提供了使用这种抽气装置的可能性。

从图5-14所示自动抽气装置原理图可知,溶液泵6排出端引出的稀溶液,进入引射器3,在喷嘴喉部速度升高,压力降低,形成低压区,以抽出吸收器中的不凝性气体。被抽出的不凝性气体随同溶液进入储气室2,并与溶液分离后上升至储气室顶部,溶液则经过回流阀5回到吸收器。当不凝性气体在储气室2上部愈积愈多时,关闭回流阀5。依靠溶液泵6的压力,将不凝性气体压缩,使压力升高。当不凝性气体被压缩到高于大气压时,

打开放气阀1,即可将不凝性气体排出机外。

图5-14 自动抽气装置原理图

1-放气阀 2-储气室 3-引射器 4-抽气管5-回流阀 6-溶液泵

自动抽气装置的抽气量都比较小,只能在机组正常运转时使用。因此无论选用何种自动抽气装置,均需配置一套机械真空泵抽气系统,在机组初始抽真空或长时间停机后第一次启动或应急时使用。

5.4 溴化锂吸收式制冷机的操作

溴化锂吸收式制冷机运转过程中,机房内应有操作人员值班,并要严格遵守操作规程,确保机组安全正常运行。

5.4.1、运转前的准备

在制冷机组启动运转前,要求对制冷机组脱离辅助设备的状况进行一番检查,方能启动制冷机组运转。

1、外围的检查

在机组进入运转前,要求外围的辅助设备及提供的动力源等处于正常状态,所以要做以下例行检查。

1)检查所提供的电源、蒸汽源是否满足机组的要求。

2)检查冷媒水泵、冷却水泵、冷却塔风机的运转是否正常,连接的管道是否漏水等。

2、机组检查

1)机组的气密性检查。每年启用前应检查主机真空度,不符合要求的应开启真空泵抽气至合格为止,一般真空度下降量一昼夜不超过66.7Pa(0.5mmHg)。

2)真空泵的抽气性能。检查真空泵是否处于完好状态,油位、油质是否正常,要求确认极限抽真空性能不低于5Pa。

3)溴化锂溶液的PH值在9.0~10.5范围内,溶液浓度处于正常范围,铬酸锂含量不低于0.1%,且没有锈蚀等污物存在。

4)安全保护动作正常,尤其是冷媒水和冷却水的压力值和压差值调整要恰当,当其实际压力值小于调整限定值时,应能实现报警和保护。检查各指示仪表值是否正确,机组上各阀门开关状态是否符合要求。

5)检查蒸发器、冷凝器、吸收器中的传热管结垢情况,不允许有杂物堵塞。

对于这些制冷机组运转前的例行检查,当在每年首次启动运行时,更应仔细和全面。

5.4.2、运转操作

1)启动冷却水泵、冷媒水泵、慢慢打开它们的出口阀门,把水流量调整到设计值或设计值±5%范围内,同时,根据冷却水温状况,启动冷却塔风机,控制温度通常取22℃,超过此值,开启风机,低于此值,风机停止。

2)在机组电控箱合上电源开关。

3)启动发生器泵,通过调节发生器泵出口的蝶阀,向高压发生器,低压发生器送液,低压发生器的溶液液位稳定在一定的位置上,通常高压发生器在顶排传热管处,低压发生器在视镜的中下部即可。

4)启动吸收泵。

5)吸收器液位到达可抽真空时启动真空泵,对机组抽真空10~15分钟。

6)打开凝水回热器前疏水器的阀。

7)慢慢打开蒸汽阀门徐徐向高压发生器送汽,机组在刚开始工作时蒸汽表压力控制在0.02MPa,使机组预热,经30分钟左右慢慢将蒸汽压力调至正常给定值,使溶液的温度逐渐升高。同时,对高压发生器的液位应及时调整,使其稳定在顶排铜管,对装有蒸汽减压阀的机组,还应调整减压阀,使出口的蒸汽压力达到规定值。蒸汽在供入高压发生器前,还应将管内的凝水排净,以免引起水击。

8)随着发生过程的进行,冷剂水不断由冷凝器进入蒸发器,录蒸发器液囊中的水位到达视镜位置后,启动蒸发器泵,机组便逐渐投入正常运转。同时需调节蒸发泵蝶阀,保证泵不吸空和冷却水的正常喷淋。

机组启动后,要使机组能正常运转,通常还需做好下列工作:

1)溶液循环量的调整。机组运转后,在外界条件如加热蒸汽压力,冷却水进口温度和流量,冷媒水出口温度和流量基本稳定时,应对高、低发生器的溶液量进行调整,以获得较好的运转效率。因为溶液循环量过小,不仅会影响机组的制冷量,而且可能因发生器的放汽范围过大,浓溶液的浓度偏高,产生结晶而影响制冷机的正常运行。反之,溶液循环量过大,同样也会使制冷量降低,严重时还可能出现因发生器中液位过高而引起冷剂水污染,影响制冷机的正常运行。因此,要调节好溶液的循环量,使浓溶液和稀溶液的浓度处于设定范围,保证良好的吸收效果。

2)测溶液浓度。在机组运转中,为了分析制冷机组的运行情况,需对溶液的浓度进行测定。测定吸收器出口稀

溶液的浓度和高、低压发生器出口浓溶液的浓度情况。测定稀溶液浓度时,打开发生器泵出口的取样阀,即可

用量筒直接取样,测定高、低压发生器出口浓溶液时,由于取样部位处于真空状态,不能直接取出,必须利用图5-15所示的娶样器。取样时,先用取样器同取样阀和真空泵连接起来,然后起动真空泵将取样器抽至真空,然后缓缓打开取样阀,将浓溶液抽至取样器。把取样器取出的溶液倒入量杯中,通过测量溶液的比重和温度,

便可以从溴化锂溶液的比重图表中查到相应的浓度。

左图5-15 取样器示意图

通常高、低压发生器的放汽范围为3.5~5.5%。放汽范围偏小,可关小阀门减少进入发生器的溶液循环量,放汽范围偏大,则开大阀门,增大进入发生器的稀溶液循

环量。溶液的浓度调整,一般在低负荷时,高压发生器出口的溶液浓度为60%,低压

发生器出口的溶液浓度为60.5%,稀溶液浓度为56%。高负荷时,高压发生器出口的

溶液浓度为62%,低压发生器出口的浓度为62.5%,稀溶液浓度为58%。

3)测冷剂水比重。冷剂水的比重是制冷机运行是否正常的重要指标之一。要注意观

察,及时测量。由于冷剂水泵的扬程较低,即使关闭冷剂水泵的出口阀门,仍无法从

取样阀直接取出,还是应该利用取样器,通过抽真空取出。抽取冷剂水后,用比重计直接测量,机组在正常运转时,一般冷剂水的比重小于1.02。若取出的冷剂水比重大于1.02时,说明冷剂水已受污染,应进行冷剂水再生处理,并寻找污染的原因,及时加以排除。

4)及时抽除不凝性气体。由于整台溴化锂吸收式制冷机是处于真空中运行的,蒸发器和吸收器的绝对压力只有几毫米汞柱,矿外界空气很容易渗入,即使是少量的不凝性气体,也会大大地降低机组的制冷量。为了及时抽除漏入系统的空气以及系统内因腐蚀而产生的不凝性气体,机且中一般均装有一套专门的自动抽气装置。如果未装自动抽气装置,则应经常启动机械真空泵把不凝性气体抽除。

5)防止结晶。由溴化锂溶液性质可知,当溶液的浓度过浓或温度过低时,溶液就会产生结晶,堵塞管道,破坏机组的正常运行。在操作中要经常检查防晶管的发热情况,判断机组性能的下降是否由于结晶引起。

6)溶液管理。机组在运转初期,溶液中所含的铬酸锂,因生成保护膜会逐渐下降。当铬酸锂的含量低于0.1%时,应添加到0.1~0.2%。溶液的PH值应保持在9.5~10.3之间,PH值过高,可用氢溴酸(HBr),调整,PH 值过低,可以用氢氧化锂(LiOH)调整,调整时应把HBr或LiOH稀释,通过取样阀慢慢加入,溶液在机内含有空气,即使是极微量,也会促使化学反应,引起机器的腐蚀,并使溶液的碱度增大。因此,制冷机运行一段时间后,应取样分析溶液的PH值以及铁、铜、氯离子等杂质的含量。

为了提高溴化锂吸收式制冷机的性能,目前运转的机器,一般都在溶液中加入辛醇,而在机组运转较长时间后,由于启用真空泵,辛醇会随同机内的不凝性气体被排出机外,使辛醇量减少,影响机组的性能,因此当制冷量下降时,应酌情添加辛醇。

7)屏蔽泵的管理。屏蔽泵是溴化锂吸收式制冷机的“心脏”,在制冷机运行时要特别注意屏蔽泵的工作情况,要经常检查屏蔽泵的工作电流,泵壳温度及冷却管温度检查屏蔽泵工作有无异常运转的声音。当泵壳温度高于80℃时,应停止运行,检查屏蔽泵冷却管中的滤网有没有堵塞,或查打出引起温度过高的其他原因,以免屏蔽泵的损坏。

8)真空泵的管理。真空泵应采用真空泵油,真空泵在运行中,应注意观察真空泵油的状况,若油中含有水分已产生乳化,就及时更换,以保持良好的抽真空性能,真空泵运转时,油温应不超过70℃。另外,还要定期检查带放气真电磁阀动作的可靠性和密封性。使用真空泵抽气,打开抽气阀前,先使真空泵运转1分钟。抽气完毕,关闭抽气总阀后,方可停止真空泵运行,然后让阻油器通大气,以免再次启动时将真空泵油吸入机内。若真空泵长时间运转(如1小时以上),应打开气镇阀。

9)水质管理。冷却水、冷媒水的水质必须符合溴化锂吸收式制冷机组技术条件中对水质管理的要求,水质差,容易在传热管内形成水垢,影响机组的传热性能,因此对水质也应作定期检查。在冬季不需要开机时,必须把冷却水、冷媒水全部放净,以防止冻结。

10)运转记录。运转记录是制冷机组运行情况的重要资料,在制冷机组运转过程中,应作好记录,以便分析运转情况,提高运转管理水平。运转记录的内容包括制冷机各种参数,运转中出现的不正常情况及其排除过程,一般为每小时或每2小时记录一次。

5.4.3、停机操作

1.溴化锂吸收式制冷机组的暂时停机操作通常按如下程序进行:

1)关闭蒸汽截止阀、停止向高压发生器供汽加热,并通知锅炉房停止送汽。

2)关闭加热蒸汽后,冷剂水不足时可先停冷剂水泵的运转,而溶液泵,发生泵、冷却水泵,冷媒水泵应继续运转,使稀溶液与浓溶液充分混合,15~20分钟后,依次停止溶液泵、发生泵、冷却水泵、冷媒水泵和冷却塔风机的运行。

3)若室温较低,而测定的溶液浓度较高时,为停止停车后结晶,应找开冷剂水旁通阀,把一部分冷剂水通入吸收器,使溶液充分稀释后再停车。若停车时间较长、环境温度较低(如低于15℃)时,一般应把蒸发器中的冷剂水全部旁通入吸收器,再经过充分的混合、稀释、判定溶液不会在停车期间结晶后方可停泵。

4)停止各泵运转后,切断控制箱电源和冷却水泵、冷媒水泵、冷却塔风机的电源。

5)检查制冷机组各阀门的密封情况,防止停车时空气泄入机组内。

6)记录下蒸发器与吸收器液面的高度,以及停车时间。

2.若溴化锂吸收式制冷机当环境温度在0℃以下或者长期停车,除必须依上述操作法之外,还必须注意以下几点:

1)在停止蒸汽供应后,应打开冷剂水再生阀,关闭冷剂水泵的排出阀,把蒸发器出冷剂水全部导向吸收器,使溶液充分稀释。

2)打开冷凝器、蒸发器、高压发生器、吸收器、蒸汽凝结水排出管上的放水阀,冷剂蒸汽凝水旁通阀,放净存水,防止冻结。

3)若是长期停车,每天应派专职负责人检查机组的真空情况,保证机组的直空度。有自动抽气装置的机组可不派人管理,但不能切断机组、真空泵电源,以保真空泵自动运行。

3.溴化锂吸收式制冷机组的自动停机操作:

1)通知锅炉房停止送汽。

2)按“停止”按钮,机器自动切断蒸汽调节阀,机器转入自动稀释运行。

3)发生泵、溶液泵以及冷剂水泵稀释运行大约15分钟之后,稀释低温自动停车温度断电

器动作,溶液泵、发生泵和冷剂泵自动停止。

4)切断电气开关箱上的电源开关,切断冷切水泵、冷媒水泵,冷却塔风机的电源、记录下蒸发器与吸收器液面高度,记录下停机时间,必须注意,不能切断真空泵的自动启停的电源。

5)若需长期停机,在按“停止”按钮之前,应打开冷剂水再生阀,让冷剂水全部导向吸收器,使溶液充分稀释。并把机组内可能存有的存水放净,防止冻结。

必须指出,在上述所介绍的溴化锂吸收式制冷机组的启动、运行管理与停机方法并非是唯一的,在实际操作中应根据具体使用的机器型号,性能特点加以调整。

溴化锂吸收式制冷机的工作原理讲解

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃.以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0。85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0。87kPa)为止. 图1 吸收制冷的原理

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: https://www.wendangku.net/doc/7b16899056.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

溴化锂吸收式制冷原理

溴化锂吸收式制冷原理 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 溴化锂吸收式制冷原理同蒸汽压缩式制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、气化吸收载冷剂(冷水)的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是利用“溴化 锂一水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质对中,水是制冷剂。在真空(绝对压力:870Pa)状态下蒸发,具有较低的蒸发温度(5℃),从而吸收载冷剂热负荷,使之温度降低,源源不断地输出低温冷水。 工质对中溴化锂水溶液则是吸收剂,可在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。制冷剂在二元溶液工质对中,不断地被吸收或释放出来。吸收与释放周而复始,不断循环,因此,蒸发制冷循环也连续不断。制冷过程所需的热能可为蒸汽,也可利用废热,废汽,以及地下热水(75'C以上)。在燃油或天然气充足的地方,还可采用直燃型溴化锂吸收式制冷机制取低温水。这 些特征充分表现出溴化锂吸收式制冷机良好的经济性能,促进了溴化锂吸收式制冷机的发展。 因为溴化锂吸收式制冷机的制冷剂是水,制冷温度只能在o℃以上,一般不低于5℃,故溴化锂吸收式制冷机多用于空气调节工程作低温冷源,特别适用于大、中型空调工程中使用。溴化锂吸收式制冷机在某些生产工艺中也可用作低温冷却水。 第一节吸收式制冷的基本原理 一、吸收式制冷机基本工作原理 从热力学原理知道,任何液体工质在由液态向气态转化过程必然向周围吸收热量。在汽化时会吸收汽化热。水在一定压力下汽化,而又必然是相应的温度。而且汽化压力愈低,汽化温度也愈低。如一个大气压下水的汽化温度为100~C,而在o.05大气压时汽化温度为33℃等。如果我们能创造一个 压力很低的条件,让水在这个压力条件下汽化吸热,就可以得到相应的低温。 一定温度和浓度的溴化锂溶液的饱和压力比同温度的水的饱和蒸汽压力低得多。由于溴化锂溶液和水之间存在蒸汽压力差,溴化锂溶液即吸收水的蒸汽,使水的蒸汽压力降低,水则进一步蒸发并吸收热量,而使本身的温度降低到对应的较低蒸汽压力的蒸发温度,从而实现制冷。 蒸汽压缩式制冷机的工作循环由压缩、冷凝、节流、蒸发四个基本过程组成。吸收式制冷机的基本工作过程实际上也是这四个过程,不过在压缩过程中,蒸汽不是利用压缩机的机械压缩,而是使用另一种方法完成的。如图2—1所示,由蒸发器出来的低压制冷剂蒸汽先进人吸收器,成在吸收器中用一种液态吸收剂来吸收,以维持蒸发器内的低压,在吸收的过程中要放出大量的溶解热。热量由管内冷却水或其他冷却介质带走,然后用溶液泵将这一由吸收剂与制冷剂混合而成的溶液送人发生器。溶液在发

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

溴化锂吸收式制冷机参数

溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利 用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、 无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调 节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84) X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔 范围内稳定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。 可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机 组的维修保养工作,主要在于保持其气密性。 二、缺点 (一)在有空气的情况下,溴化锂溶液对普通碳钢具有强烈的腐蚀性。这不仅影响机组的寿命, 而且影响机组的性能和正常运转。

吸收式制冷机组

溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。 为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来的高温浓溶液加热温度提高后,进入发生器。在发生器中受到传热管内热源蒸汽加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。 单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入冷凝器。冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。 积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。如:当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。 U 冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。因蒸发器为喷淋式热交换器,喷淋量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。 蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器 由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样作用的冷凝、蒸发和节流装置。而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所采用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发生器等设备来实现的。 从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。因此设置溶液

冷冻机工作原理

冷冻机工作原理 冷冻机工作原理1.单级制冷循环系统 单级制冷机是应用比较广泛的一类制冷机,它可以应用于制冰、空调、食品冷藏及工业生产过程等方面。单级制冷循环是指制冷剂在制冷系统内相继经过压缩、冷凝、节流、蒸发四个过程,便完成了单级制冷机的循环,即达到了制冷的目的。 制冷系统由蒸发器、单级压缩机、油分离器、冷凝器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子联接成一个封闭系统。其中,蒸发器是输送冷量的设备,液态制冷剂蒸发后吸收被冷却物体的热量实现制冷;压缩机是系统的心脏,起着吸入、压缩、输送制冷剂蒸汽的作用;油分离器用于沉降分离压缩后的制冷剂蒸汽中的油;冷凝器将压缩机排出的高温制冷剂蒸汽冷凝成为饱和液体;贮氨器用来贮存冷凝器里冷凝的制冷剂氨液,调节冷凝器和蒸发器之间制冷剂氨液的供需关系;氨液分离器是氨重力供液系统中的重要附属设备;节流阀对制冷剂起节流降压作用同时控制和调节流入蒸发器中制冷剂液体的流量,并将系统分为高压侧和低压侧两部分。 单级流程示意图 相关图片

2.双级制冷循环系统 双级制冷循环是在单级制冷循环的基础上发展起来的,其压缩过程分两个阶段进行,来自蒸发器的制冷剂蒸汽先进入低压级汽缸压缩到中间压力,经过中间冷却后再进入高压级汽缸,压缩到冷凝压力进入冷凝器中。一般蒸发温度在-25℃~-50℃时,应采用双级压缩机进行制冷。制冷系统由蒸发器、双级压缩机、油分离器、冷凝器、中间冷却器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子

联接成一个封闭系统。其中,中间冷却器利用少量液态制冷工质在中间压力下汽化吸热,使低压级排出的过热蒸汽得到冷却,降低高压级的吸气温度,同时还使高压液态制冷工质得到冷却。 双级流程示意图 相关图片: 3.蒸发式冷凝器运行原理 进入冷凝盘管的高温气态制冷剂通过盘管壁与盘管外侧喷淋水和空气进行热交换,制冷剂气体的温度随着在管内的时间加长而下降,由气态逐渐变成液态。用风机超强风力,使喷淋水充分覆盖在盘管外表面上,从而提高了换热效率。喷淋水和空气吸收盘管壁的热量后温度升高,部分水由液态变成气态,带走管壁上大量热量,湿热空气中的水份被挡水板截住引入PVC热交换层中,热空气排出。PVC热交换层中的水被流过的新风冷却,温度降低,流入集水槽中,再由水泵送入喷淋系统中,继续循环。散失到空气中的水份由水位控制装置自动调节补充。 运行原理图 相关图片:

吸收式制冷机的现状与发展

合肥通用职业技术学院毕业设计论文 题目:吸收式制冷机的现状与发展 系别:机械工程系 专业:制冷与冷藏技术 学制:三年制 姓名: 学号: 指导教师:管梦瑶 二O一五年四月五日

摘要 简单回顾了吸收式制冷技术的发展背景;较详细地介绍了国内外吸收式制冷技术的研究热点,主要包括对新工质对、吸收循环、传热与传质、智能化控制方式等几方面的研究。目前,溴化锂吸收式机组已经被广泛地应用于空调系统,本文对其在国内外的应用现状进行了详细介绍,主要包括热电冷联产、直燃型吸收式冷热水机组、蒸汽型吸收式冷水机组、热水型吸收式冷水机组、太阳能吸收式机组等。最后对吸收式制冷技术的前景进行了展望。 关键词:吸收式制冷技术;溴化锂;节约能源;保护环境

目录 前言 (5) 第1章吸收式制冷技术的主要种类 (6) 1.1氨水吸收式制冷机 (6) 1.2溴化锂吸收式制冷机 (7) 第2章吸收式制冷技术的研究 (9) 2.1 新工质对的研究 (9) 2.2 吸收循环的研究 (9) 2.3 传热与传质的研究 (10) 2.4 智能化控制方式的研究 (11) 第3章吸收式制冷技术的应用 (12) 3.1 热电冷联产 (12) 3.2直燃型吸收式冷热水机组 (13) 3.3蒸汽型吸收式冷水机组 (13) 3.4 热水型吸收式冷水机组 (13) 3.5太阳能吸收式机组 (13) 结语 (15) 参考文献 (16)

前言 能源与环境是现代经济与技术发展的基础与推动力。吸收式技术也是在能源与环境问题日益突出的情况下得以迅速发展。吸收式制冷机组,因为能够利用廉价能源和低品位热能解决电力供应不足、不含 CFC类对臭氧层有破坏的物质,而得到广泛的推广应用。 1973 年的中东石油危机,推动了能源利用技术的发展,使利用低品位热能的吸收式热泵技术、热电冷联产技术等吸收式冷热源设备的研究,进入了实用化的开发阶段。1987 年蒙特利尔协议签订后,由于吸收式制冷技术可采用对环境无破坏作用的天然制冷剂,它作为一种现实可行的替代制冷技术得到了进一步的发展。氨-水工质对也随之得到了科学界的重新认识和推广应用。在 20 世纪 90 年代,随着吸收式制冷机性能的显著提高,直燃型多效溴化锂吸收式制冷机、高效氨-水GAX 循环吸收式制冷机,以及小型氨-水吸收式制冷机进入了商业化开发阶段。各种吸收式机组在余热利用、总能系统和区域集中供热(冷)方面得到了进一步推广应用。

冷冻式干燥机工作原理.

◎冷冻式干燥机工作原理 喷涂的原材料是否干净(可现场试验) 喷枪是否有问题(可现场操作) 清洗喷枪的清洗剂是否的问题(可现场操作) 现场喷漆人员的操作是否有问题(可向用户了解) 一、工况条件与技术指标 Working condition and technical data 进气温度(Inlet temperature): ≤80℃ 冷却方式(Cooling method): 风冷(Air-cooling) 进气压力(Inlet pressure): 0.4~1.0MPa 压力损失(Pressure drop): ≤0.03MPa 压力露点(Dew point): 2~10℃ 制冷剂(Refrigerant): R22 二、伽利略冷冻式干燥机产品特点: 1)人性化设计:科学合理结构设计,外型新颖,美观大方,操作、维护、保养方便,安装简便(无基础)。2)机器制冷系统及空气系统经专家结合全国各地不同工况的差异性进行综合准确计算,设计参数留20%以上的裕量。 3)制冷压缩机:采用国际知名品牌,如:松下、谷轮、泰康、美优乐公司等高性能制冷压缩机,低震动、低噪音、性能可靠、节能高效,确保整机的使用寿命长。压缩机防护等级为IP54级。 4)特殊热交换设计,可降低入口温度,并提高出口空气温度,可避免管路产生水滴,影响生产环境。5)多种形式(单、集、联控、PLC、变频等)的控制线路。适合不同用户的选用。 6)完善的智能保护装置:特设冷媒高低压保护、相序缺相保护、过低温保护以及自动融霜、故障自动停机、自动报警、电机过热保护等保护功能。 7)自动排水器按需设置,除水效率高。浮球式、电子定时可根据机器工况选择设置。 8)本机组采用独特的旋风式分离器。可将冷凝水从空气中彻底分离出来,并在各种气流条件下防止液态水份随压缩空气带出,保持高效的运行,达到最佳之干燥除水目的。 三、型号规格与性能参数 Model,size & technical data

溴化锂吸收式机组介绍

溴化锂吸收式机组介绍 一、制冷基础知识 电制冷与溴化锂吸收式制冷的不同 二、溴化锂吸收式制冷机的特点 在当前制冷、空调设备突飞猛进的发展过程中,溴化锂吸收式制冷机组。以其显著的优点,成为发展速度最快的一种主机设备。它具备以下的几种优缺点。 1、优点 1)耗电量小。用热能作为动力,只需极小的电能就能正常工作。

2)对大气无污染,符合环保要求。制冷工质为溴化锂溶液,制冷机在真空状态下运行,无臭、无毒、无爆炸危险、不破坏大气层,安全可靠。 3)噪音低、振动小、运行平稳。整个制冷机除屏蔽泵外,没有别的运动部件,特别适合用于医院、写字楼、宾馆等场所。 4)调节范围宽。在外界条件发生变化时,可在10%-100%范围内进行冷量的无级调节。 5)机组安装要求低。因机组运行时振动极小,故不需要特殊的基础,可安装在中间楼层或屋顶,也可安装在室外。 6)维护保养方便。由于机组主要由换热器组成,维护保养的主要工作就是维持机组内的真空度。 7)直燃机可实现一机多用。更加适合城市对烟气排放的要求 2、缺点 1)腐蚀性强。在有空气的情况下,溴化锂溶液对金属具有较强的腐蚀性。这不仅影响机组的寿命,而且直接影响机组的性能和正常运行。 2)冷却水耗量大。由于溴化锂溶液吸收冷剂蒸汽是放热过程,冷剂蒸汽的冷凝和吸收都需要冷却,因此冷却负荷较大。 3)体积较大。溴冷机基本上是由多个换热器组成,所以占据空间较多。 4)不能制取低温。由于用水做制冷剂,不能制取0℃以下的低温。 三、溴化锂吸收式机组工作原理 3.1溴冷机组型式 溴化锂吸收式制冷按使用能源可分为: 1、蒸汽型使用蒸汽作为能源。根据做工蒸汽品味高低,还可以分为:单效和双效; 单效的工作压力范围为0.03~0.15MPa(表压) 双效的工作压力范围为0.4MPa,0.6MPa,0.8MPa(表压) 2、直燃型一般以油、气等可燃物质为燃料或空气源热泵。不仅夏天能制冷,而且冬天可以供热及提供生活用卫生热水。 3、热水型使用热水为热源的溴化锂机组。通常以工业余热、废热、地热

吸收式制冷机介绍

吸收式制冷机在氮肥行业节能降耗方面的应用 1 氮肥行业能耗现状 中国是世界上最大的化肥生产和消费国,到2004年年底,我国合成氨年产能达到42220kt,但吨氨能耗却与国际先进水平相差了600~700kg标煤。国内化工行业的五大高耗能产业中,合成氨耗能占总量的40%,单位能耗比国际先进水平高31.2%。 2005年,国家发改委颁布的《国家节能中长期规划》,已将合成氨列为节能降耗的重点领域和重点工程。根据规划要求,未来15年,国家一方面将加快推进以洁净煤或天然气替代石油合成氨的工业改造,以节约宝贵的石油资源;另一方面将大力推动节能降耗技术的开发和推广应用,将大型合成氨单位能耗由目前的1372 kg标准煤/t降低到1000kt标准煤/t。到2010年,合成氨行业节能目标是:能源利用效率由目前的42%提高到45.5%,实现节能5700~5850kt标煤,减少排放二氧化碳13770~14130kt。因此,进一步加快合成氨装置的节能改造,已成为众多大化肥生产企业节能降耗的必经之路。 2 吸收式制冷机在氮肥行业节能降耗方面的可行性 余热是在一定生产工艺条件下,系统中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热,冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等。 合成氨及尿素合成过程都是放热反应,都会生产大量的废(余)热,目前行业内已采用余热锅炉,热交换器热回收等方式利用了部分高温废热源。而部分低温热源由于品位较低没有有效利用。 合成氨和尿素生产过程中,氨分离、半水煤气降温、碳丙液冷却等工艺都需要大量低温冷水,有些企业采用氨压缩制冷机或冰机提供冷水,消耗了大量的电能,增加了企业生产成本,而如果不采用冰机提供冷水,生产效率低,尤其在夏季会严重影响产能,同样也造成生产能耗高,生产成本高。 而溴化锂吸收式制冷机可以利用低品位的热能,通过机组制取5℃以上的低温冷水。将溴化锂吸收式制冷机车合成氨和尿素生产工艺中使用,一方面可以充分利用生产过程的大量废热,另一方面则可以提供生产工艺需要的冷水,减少冰机电耗,提高产量。因此在氮肥行业利用溴化锂吸收式制冷机进行节能降耗是完全可行的。 3 吸收式制冷机在氮肥行业节能降耗中的应用 由于溴化锂吸收式制冷可利用废热制取低温冷水,国内部分企业已在实际生产工艺中进行了应用。 3.1 河南心连心化工有限公司利用热水两段型吸收式制冷机进行节能降耗

制冷系统节流机构及工作原理

节流机构 节流是压缩式制冷循环不可缺少的四个主意过程之一。节流机构的作用有两点:一是对从冷凝器中出来的高压液体制冷剂进行节流降压为蒸发压力;二是根据系统负荷变化,调整进入蒸发器的制冷剂液体的数量。 常用的节流机构有手动膨胀阀、浮球式膨胀阀、热力膨胀阀以及阻流式膨胀阀(毛细管)等。它们的基本原理都是使高压液态制冷剂受迫流过一个小过流截面,产生合适的局部阻力损失(或沿程损失),使制冷剂压力骤降,与此同时一部分液态制冷剂汽化,吸收潜热,使节流后的制冷剂成为低压低温状态。 一、手动节流阀手动膨胀阀和普通的截止阀在结构上的不同之处主要是阀芯的结构与阀杆的螺纹形式。通常截止阀的阀芯为一平头,阀杆为普通螺纹,所以它只能控制管路的通断和粗略地调节流量,难以调整在一个适当的过流截面积上以产生恰当的节流作用。而节流阀的阀芯为针型锥体或带缺口的锥体,阀杆为细牙螺纹,所以当转动手轮时,阀芯移动的距离不大,过流截面积可以较准确、方便地调整。 节流阀的开启度的大小是根据蒸发器负荷的变化而调节,通常开启度为手轮的1/8至1 /4周,不能超过一周。否则,开启度过大,会失去膨胀作用。因此它不能随蒸发器热负荷的变动而灵敏地自动适应调节,几乎全凭经验结合系统中的反应进行手工操作。 目前它只装设于氨制冷装置中,在氟利昂制冷装置中,广泛使用热力膨胀阀进行自动调节。 二、浮球节流阀 1、浮球节流阀的工作原理浮球节流阀是一种自动调节的节流阀。其工作原理是利用一钢制浮球为启闭阀门的动力,*浮球随液面高低在浮球室中升降,控制一小阀门开启度的大小变化而自动调节供液量,同时起节流作用的。当容器内液面降低时,浮球下降,节流孔自行开大,供液量增加;反之,当容器内液面上升时,浮球上升,节流孔自行关小,供液量减少。待液面升至规定高度时,节流孔被关闭,保证容器不会发生超液或缺液的现象。 2、浮球节流阀的结构型式与安装要求浮球节流阀是用于具有自由液面的蒸发器,液体分离器和中间冷却器供液量的自动调节。在氨制冷系统中广泛应用的是一种低压浮球阀。低压浮球阀按液体在其中流通的方式,有直通式和非直通式两种。直通浮球节流阀的特点是,进入容器的全部液体制冷剂首先通过阀孔进入浮球室,然后再进入容器。因此,结构和安装比较简单,但浮球室的液面波动大。非直通式浮球节流阀的特点是,阀座装在浮球室外,经节流后的制冷剂不需要通过浮球室而沿管道直接进入容器。因此,浮球室的液面较平稳,但其结构与安装均较复杂。 目前我国冷冻机厂生产的浮球节流阀都是这种非直通式的。这种浮球节流阀的结构是由壳体、浮球、杠杆、阀座、平衡管、阀芯和盖等组成。 浮球节流阀在安装时的要求是浮球室的气体平衡管应接在筒身上,而不应接在液体分离器的吸气管上。液体平衡管不应接在液体分离器与蒸发器之间的供液管上,也不应接在低

溴化锂吸收式制冷机特点及相关比较

溴化锂吸收式制冷机特点及相关比较 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力 5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84)X 105Pa(2.0~8.0kgf /cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15℃的宽阔范围内稳定运转。

压缩式和吸收式制冷机比较

蒸汽压缩式和吸收式制冷系统的火用分析 摘要:通过对吸收式和蒸气压缩式制冷系统的火用分析,揭示了系统中真正的能量损失所在,提出了减少火用损、合理用能的途径,并对系统的优化提供有力的理论参考。 关键词:火用压缩式制冷吸收式制冷火用效率火用损失系数 Exergy analysis of the Screw Shell and the Absorption refrigerating system Li-tiejun,Li-xiaodong (Heating company of handan in hebei;handan;056038) Abstract:The paper appears where is the real energy loss,according to the exergy analysis of the Screw Shell and the Absorption refrigerating machine.It also points out the way of reducing exergy loss and utilizing energy rationally.In a word,the paper peovides the theory reference for improvement and optimization of the system. Key werds: exergy; screw shell; absorption refrigerating; exergy efficiency; exergy loss coefficient 1.前言 能源问题已受到全世界的普遍关注,能源的利用和发展关系着整个国民经济的发展和人类的生产和生活,节约能源更加受到人们的重视。所谓节能,就是采用技术上可行、经济上合理以及环境和社会可以接受的措施,减少能源的损失和浪费,提高能源利用率和能源的经济效益。以前人们的节能观念只停留在尽量减少能量利用环节中的跑、冒、滴、漏现象,而忽视了能量利用中的能量匹配问题。本文通过分析两种制冷系统的火用损失、火用损失系数的对比,指出在系统中火用损最大的环节,找出火用损产生的原因,并提出了改进措施。2.火用分析法概述[1] 火用是指在周围环境条件下任一形式的能量中理论上能够转变为有用功的那部分能量。代表了能量中“质”与“量”的统一,不仅反映了能量中“量”的大小,还反映了能量“质”的高低。它可以评价某一能量利用系统的能量利用程度,但它只可以比较相同条件下的热工设备或装置。更合理的评价某一设备和某一循环系统的能量利用程度的是火用效率或火用损失系数。火用效率是指收益火用和耗费火用用的比值,火用损失系数是是耗费火用的损失份额,在评价某一循环系统时往往采用火用损失系数:收益火用占整个循环火用代价的份额。 3.压缩式制冷机的火用分析模型 3.1压缩机的火用分析模型(图1) 由火用平衡方程有: 压缩机火用损失为:E XL1=G1[(h1’-h2)-T0(S1’-S2)]+w c :进入压缩机的制冷剂蒸汽的焓、熵 式中:h1’、S1’ 、、 h2、S2:离开压缩机的制冷剂蒸汽的焓、熵 w c:压缩机输入的轴功 G1:制冷剂的质量流量 T0:环境温度图1 3.2冷凝器火用分析模型(图2)

太阳能吸收式制冷原理和特点

太阳能吸收式制冷原理和特点 太阳能吸收式制冷是利用溶液浓度的变化来获取冷量的装置,即制冷剂在一定压力下蒸发吸热。再利用吸收剂吸收制冷剂蒸汽。自蒸发器出来的低压蒸汽进入吸收器并被吸收剂强烈吸收,吸收过程中放出的热量被冷却水带走,形成的浓溶液由泵送入发生器中被热源加热后蒸发产生高压蒸汽进入冷凝器冷却,而稀溶液减压回流到吸收器完成一个循环。它相当于用吸收器和发生器代替压缩机,消耗的是热能。热源可以利用太阳能、低压蒸汽、热水、燃气等多种形式。 吸收式制冷系统的特点与所使用的制冷剂有关。常用于吸收式制冷机中的制冷剂大致可分为水系、氨系、乙醇系和氟里昂系四个大类。水系工质对是目前研究最热门的课题之一,对它的研究主要是针对现今大量生产的商用LiBr吸收式制冷机依然存在的易结晶、腐蚀性强及蒸发温度只能在零度以上等缺陷。氨系工质对中包括了最为古老的氨水工质对和近期开始受重视的以甲氨为制冷剂的工质对,由于氨水工质对具有互溶极强、液氨蒸发潜热大等优点,它至今仍被广泛用于各类吸收式制冷机。人们对氨水工质对的研究主要是针对它的一些致命的缺陷,如:COP较溴化锂小、工作压力高、具有一定的危险性、有毒、氨和水之间沸点相差不够大、需要精馏等。吸收式空调采用溴化锂或氨水 制冷机方案,虽然技术相对成熟,但系统成本比压缩式高,主要用于大型空调,如中央空调等。 太阳能吸收式制冷的研究现状及发展 太阳能吸收式制冷是最早发展起来的,起源于1932年,但因成本高,效率低,没什么商业价值。后来随着科技的进步,吸收式制冷研究逐渐得到了发展。由于1992年世界性能源危机的影响,吸收制冷受到了发达国家的重视,吸收式制冷产业也得到了普及和发展。 太阳能吸收式制冷由于利用太阳能,所以其发生温度低,即便采用特殊的集热器,也只有100℃多一些。因此,其制冷循环方式都是采用单效方式。再细分下去,有单效单级和单效双级两种。迄今为止,国外的太阳能制冷空调系统通常都采用热水型单级吸收式溴化锂制冷机。该类制冷机在热源温度足够高及冷却水温度比较低的场合,性能良好:若热源温度降低而冷却水温度较高,它的效率将大大下降,甚至不能正常制冷。因此国外太阳能空调制冷系统普遍采用高温运行的方式,有的甚至在120℃一13O℃下运行,需要采用聚光式集热器,这就影响了太阳能制冷空调的推广使用。单级吸收式制冷机还有一个很大的缺点,就是热源的可利用温差小,一般只有6℃一8℃,为了适应低温余热 和太阳能的利用,W.B.Ma等人对双级溴化锂一水吸收式制冷机进行了理论分析和初步的实验研究,指出双级溴化锂一水吸收式制冷机可有效利用太阳能,有着广阔的市场前景。这种新型的两级吸收式制冷机有两个显著的特点: 一是所要求的热源温度低,在75℃到85℃之间都可运行,当冷凝水温为32℃时,COP 值可达到0.38; 二是热源的可利用温差大,热源出口温度低至64℃时。此系统对热源温度有较宽的适应范围,有利于制冷机在较低的太阳辐射强度和不稳定的太阳能输入情况下,适应其引起的温度波动,实现稳定的运行。 陈滢等人提出了一种新型的单效双级吸收式制冷循环,该循环采用增大热源温差的思路,增加了一个发生器和一个换热器。模拟计算表明,其COP值可达到O.42—0.62之间,

冷冻机的工作原理及分类

冷冻机的分类及工作原理 摘要:工业冷水机组通过液态冷冻剂在蒸发器中的汽化吸收冷冻循环水中的热量,实现制冷目的。汽化的冷冻剂通过压缩机压缩,经冷凝器冷凝成液态供下个制冷循环使用。压缩机由电动机驱动,通过电气控制系统实现整台冷水机组的工况调节。 关键字:压缩机制冷水循环电气控制

0引言 近年随着我国生产制造业进入一个新的快速发展时期,市场竞争激烈对产品质量的要求亦有较大程度的提高。在生产过程中,由于机械、模具及工业反应不断产生热量,影响产品质量的问题屡屡发生。当温度超过物料之承受程度产品质量就不稳定,以塑料产品和电镀生产为例,塑料产品生产中冷却时间占全周期80%以上,冷却时间减少之重要性由此可见,冷冻水能及时吸收热量,使模腔温度快速降低,加速产品定型,缩短开面。电镀生产中冷冻水能将电镀溶液温度降低并将温度恒定在某一范围内,使金属分子随着稳定电流快速附向镀件表面,使产品平滑和密度增加。 因此工业冷水机广泛应用于多种工业生产,如:1.化工(学)工业 2.塑料制品、塑料容器、制膜、塑钢型材、管材、电线、电缆护套、轮胎行业3.电镀及机床切削液冷却行业4.制药行业5.电子行业6.五金工业7. 食品及饮料行业8.制鞋行业9.实验室10.医疗设备11.光学仪器等。 1工业冷水机组组成 工业冷水机组系统的运作是通过制冷剂循环系统、水循环系统、电器自控系统三个相互联系的系统实现的。 制冷剂循环系统: 蒸发器中的液态制冷剂吸收水中的热量并开始蒸发,最终制冷剂与水之间形成一定的温度差,液态制冷剂亦完全蒸发变为气态,后被压缩机吸入并压缩(压力和温度增加),气态制冷剂通过冷凝器(风冷/水冷)吸收热量,凝结成液体。通过膨胀阀(或毛细管)节流后变成低温低压制冷剂进入蒸发器,完成

溴化锂吸收式制冷机的工作原理及设计计算

溴化锂吸收式制冷机的工作原理是: 令狐采学 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水

蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为 0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如: 0.87kPa)为止。 图1 吸收制冷的原理 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差,如图1所示。水

简述冷水机冷水机组的工作原理

简述冷水机冷水机组的 工作原理 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

简述冷水机、冷水机组的工作原理 文章来源:凯德利冷机 制冷行业中分为风冷式冷水机组和水冷式冷水机组两种,根据压缩机又分为螺杆式冷水机组和涡旋式冷水机组,在温度控制上分为低温工业冷水机和常温冷水机,常温机组温度一般控制在0度-35度范围内。低温机组温度控制一般在0度至-100度左右。 冷水机组又称为:冷冻机、制冷机组、冰水机组、冷却设备等,因各行各业的使用比较广泛,所以对冷水机组的要求也不一样。其工作原理是一个多功能的机器,除去了液体蒸气通过压缩或热吸收式制冷循环。 冷水机组包括四个主要组成部分:压缩机,蒸发器,冷凝器,膨胀阀,从而实现了机组制冷制热效果。 冷水机俗称冷冻机、制冷机、冰水机、冻水机、冷却机等,因各行各业的使用比较广泛,所以名字也就多得不计其数。随着冷水机组行业的不断发展越来越多的人类开始关注冷水机组行业任何选择对人类来说越来越重要,在产品结构上“高能效比水冷螺杆机组”、“水源热泵机组”、“螺杆式热回收机组”、“高效热泵机组”、“螺杆式低温冷冻机组”等为主的极具竞争力的产品结构其性质原理是一个多功能的机器,除去了液体蒸气通过压缩或热吸收式制冷循环。蒸汽压缩冷水机组包括四个主要组成部分的蒸汽压缩式制冷循环压缩机,蒸发器,冷凝器,部分计量装置的形式从而实现了不同的制冷剂。吸收式冷水机利用水作为制冷剂,并依靠之间的水和溴化锂溶液,以达到制冷效果很强的亲和力。冷水机一般使用在空调机组和工业冷却。在空调系统,冷冻水通常是分配给换热器或线圈在空气处理机组或其他类型的终端设备的冷却在其各自的空间,然后冷却水重新分发回冷凝器被冷却了。在工业应用,冷冻水或其它液体的冷却泵是通过流程或实验室设备。工

相关文档