文档库 最新最全的文档下载
当前位置:文档库 › 第一章 半导体二极管及其应用典型例题

第一章 半导体二极管及其应用典型例题

第一章 半导体二极管及其应用典型例题
第一章 半导体二极管及其应用典型例题

第一章半导体二极管及其应用

【例1-1】分析图所示电路的工作情况,图中I为电流源,I=2mA。设20℃时二极管的正向电压降U D=660mV,求在50℃时二极管的正向电压降。该电路有何用途?电路中为什么要使用电流源?

【相关知识】

二极管的伏安特性、温度特性,恒流源。

【解题思路】

推导二极管的正向电压降,说明影响正压降的因素及该电路的用途。

【解题过程】

该电路利用二极管的负温度系数,可以用于温度的测量。其温度系数–2mV/℃。

20℃时二极管的正向电压降

U D=660mV

50℃时二极管的正向电压降

U D=660 –(2′30)=600 mV

因为二极管的正向电压降U D是温度和正向电流的函数,所以应使用电流源以稳定电流,使二极管的正向电压降U D仅仅是温度一个变量的函数。

【例1-2】电路如图(a)所示,已知,二极管导通电压。试画出u I与u O的波形,并标出幅值。

图(a)

【相关知识】

二极管的伏安特性及其工作状态的判定。

【解题思路】

首先根据电路中直流电源与交流信号的幅值关系判断二极管工作状态;当二极管的截止时,u O=u I;当二极管的导通时,。

【解题过程】

由已知条件可知二极管的伏安特性如图所示,即开启电压U on和导通电压均为0.7V。

由于二极管D1的阴极电位为+3V,而输入动态电压u I作用于D1的阳极,故只有当u I高于+3.7V时 D1才导通,且一旦D1导通,其阳极电位为3.7V,输出电压u O=+3.7V。由于D2的阳极电位为-3V,而u I作用于二极管D2的阴极,故只有当u I低于-3.7V时D2才导通,且一旦D2导通,其阴极电位即为

-3.7V,输出电压u O=-3.7V。当u I在-3.7V到+3.7V之间时,两只管子均截止,故u O=u I。

u I和u O的波形如图(b)所示。

图(b)

【例1-3】某二极管的反向饱和电流,如果将一只1.5V的干电池接在二极管两端,试计算流过二极管的电流有多大?

【相关知识】

二极管的伏安特性。

【解题思路】

(1)根据二极管的伏安特性求出流过二极管的电流。

(2)根据二极管两端的电压及流过二极管的电流求出二极管的等效直流电阻。

【解题过程】

如果将干电池的正、负极分别与二极管的阴极、阳极相接,二极管反向偏置,此时流过二极管的电流等于。反之,流过二极管的电流等于:

此时二极管的等效直流电阻为:

实际上电池的内阻、接线电阻和二极管的体电阻之和远远大于R D,流过二极管的电流远远小于计算值。电路中的电流值不仅仅是由二极管的伏安特性所决定,还与电路中的接线电阻、电池的内阻和二极管的体电阻有关。通常这些电阻都非常小,足以使二极管和干电池损坏。因此,实际应用时电路中必须串接适当的限流电阻,以防损坏电路元器件。

【例1-4】电路如图(a)所示,二极管的伏安特性如图(b)所示,常温下U T≈26mV,电容C对交流信号可视为短路;u i为正弦波,有效值为10 mV。试问:

(1)二极管在u i为零时的电流和电压各为多少?

(2)二极管中流过的交流电流有效值为多少?

【相关知识】

(1)二极管静态、动态的概念,小信号作用下动态电阻的求解。

(2)图解法。

【解题思路】

(1)首先分析静态电流和电压,即静态工作点Q。

(2)求出在Q点下的动态电阻,分析动态信号的作用。

【解题过程】

(1)利用图解法可以方便地求出二极管的Q点。在动态信号为零时,二极管导通,电阻R中电流与二

极管电流相等。因此,二极管的端电压可写成为

u D=V ? i D R

在二极管的伏安特性坐标系中作直线(u D=V?i D R),与伏安特性曲线的交点就是Q点,如(b)所示。读出Q点的坐标值,即为二极管的直流电流和电压,约为

U D≈0.7 V,I D≈26 mA

(2)Q点下小信号情况下的动态电阻为

r d≈U T/ I D = (26/2.6)Ω=10 Ω

根据已知条件,二极管上的交流电压有效值为10 mV,故流过的交流电流有效值为

I D = U i/ r d =(10/10) mA=1 mA

图(c)

【常见错误】

二极管静态、动态的概念不清楚。

(1)认为二极管两端的电压始终为0.7V,不会根据具体的伏安特性分析二极管的静态电压和电流。

(2)计算动态电阻时用直流电阻代替,即认为r d≈U D/ I D。

【例1-5】电路如图(a)所示。设输入信号,,二极管导通压降可以忽略

不计,试分别画出输出电压的波形。

图 (a)

【相关知识】

二极管的伏安特性及其工作状态的判断。

【解题思路】

(1)判断二极管的工作状态。

(2)当二极管导通时u O=V C;当二极管截止时u O=u I。.

【解题过程】

在图(a)所示电路中,当二极管断开时,二极管两端的电压等于。所以当时,二极管截止,

当时,二极管导通,

由此画出输出电压的波形如图(b)所示。

图 (b)

【例1-6】在图示电路中,设二极管正向导通时的压降为0.7V,试估算a点的电位。

【相关知识】

(1)二极管的线性等效模型。

(2)二极管的工作状态判断方法。

【解题思路】

(1)要先判定二极管的工作状态(导通、截止)。

(2)选用合适的二极管线性等效模型。

(3)利用线性电路的方法进行分析计算。

【解题过程】

首先分析二极管开路时,管子两端的电位差,从而判断二极管两端加的是正向电压还是反向电压。

若是反向电压,则说明二极管处于截止状态;若是正向电压,但正向电压小于二极管的死区电压,则说明二极管仍然处于截止状态;只有当正向电压大于死区电压时,二极管才能导通。

在图示电路中,当二极管开路时,二极管两端的正向电压,二极管反向偏置,处于

截止状态,故。

【例1-7】电路如图(a)所示。设电路中的二极管为硅管,输入信号,,

电容器C对交流信号的容抗可以忽略不计,试计算输出电压的交流分量。

图 (a)

【相关知识】

(1)二极管的微变等效模型。

(2)二极管电路的分析方法。

【解题思路】

(1)对二极管电路进行直流分析。

(2)对二极管电路进行交流分析。

【解题过程】

因为二极管电路中同时存在较大的直流电源和微变的交流信号,应首先假设交流信号为零

(),对电路进行直流分析。

在图(a)电路中,当令、电容器C开路时,采用二极管的恒压模型计算出流过二极管的直流电流

由此可估算出二极管的动态电阻

然后利用二极管的微变等效模型分析计算其交流分量。在进行交流分析时,令直流电源和电容器C短路,二极管D用交流等效电阻r d代替。此时,图(a)电路的交流等效电路如图(b)所

示。

图 (b) 由图(b)可得输出电压交流分量为

【例1-8】设本题图所示各电路中的二极管性能均为理想。试判断各电路中的二极管是导通还是截止,并求出A、B两点之间的电压UAB值。

【相关知识】

二极管的工作状态的判断方法。

【解题思路】

(1)首先分析二极管开路时,管子两端的电位差,从而判断二极管两端加的是正向电压还是反向电压。若是反向电压,则说明二极管处于截止状态;若是正向电压,但正向电压小于二极管的死区电

压,则说明二极管仍然处于截止状态;只有当正向电压大于死区电压时,二极管才能导通。

(2)在用上述方法判断的过程中,若出现两个以上二极管承受大小不等的正向电压,则应判定承受

正向电压较大者优先导通,其两端电压为正向导通电压,然后再用上述方法判断其它二极管的工作状态。

【解题过程】

在图电路中,当二极管开路时,由图可知二极管D1、D2两端的正向电压分别为10V和25V。二极管D2两端的正向电压高于D1两端的正向电压,二极管D2优先导通。当二极管D2导通后,U AB=-15V,二极管 D1两端又为反向电压。故D1截止、D2导通。U AB=-15V。

【例1-9】硅稳压管稳压电路如图所示。其中硅稳压管D Z的稳定电压U Z=8V、动态电阻r Z可以忽略,U I=20V。试求:

(1) U O、I O、I及I Z的值;

(2) 当U I降低为15V时的U O、I O、I及I Z值。

【相关知识】

稳压管稳压电路。

【解题思路】

根据题目给定条件判断稳压管的工作状态,计算输出电压及各支路电流值。

【解题过程】

(1) 由于

>U Z

稳压管工作于反向电击穿状态,电路具有稳压功能。故

U O=U Z=8V

I Z= I-I O=6-4=2 mA

(2) 由于这时的

<U Z

稳压管没有被击穿,稳压管处于截止状态。故

I Z=0

【例1-10】电路如图(a)所示。其中未经稳定的直流输入电压U I值可变,稳压管D Z采用2CW58型硅稳压二极管,在管子的稳压范围内,当I Z为5mA时,其端电压U Z为10V、为20Ω,且该管的I ZM为26mA。

(1) 试求当该稳压管用图(b)所示模型等效时的U Z0值;

(2) 当U O =10V时,U I应为多大?

(3) 若U I在上面求得的数值基础上变化±10%,即从0.9U I变到1.1U I,问U O将从多少变化到多少?相对于原来的10V,输出电压变化了百分之几?在这种条件下,I Z变化范围为多大?

(4) 若U I值上升到使I Z=I ZM,而r Z值始终为20Ω,这时的U I和U O分别为多少?

(5) 若U I值在6~9V间可调,U O将怎样变化?

图 (a) 图 (b)

【相关知识】

稳压管的工作原理、参数及等效模型。

【解题思路】

根据稳压管的等效模型,画出等效电路,即可对电路进行分析。

【解题过程】

(1) 由稳压管等效电路知,

(2)

(3) 设不变。当时

当时

(4)

(5) 由于U I<U Z0,稳压管D Z没有被击穿,处于截止状态

故U O将随U I在6~9 V之间变化

【例1-11】电路如图(a)、(b)所示。其中限流电阻R=2,硅稳压管D Z1、D Z2的稳定电压U Z1、U Z2分别为6V和8V,正向压降为0.7V,动态电阻可以忽略。试求电路输出端A、B两端之间电压U AB的值。

图(a) 图(b)

【相关知识】

稳压管的伏安特性。

【解题思路】

(1)判断稳压管能否被击穿。

(2)若稳压管没有被击穿,判断稳压管是处于截止状态还是正向导通状态。

【解题过程】

判断稳压管的工作状态:

(1)首先分析二极管开路时,管子两端的电位差,从而判断二极管两端所加的是正向电压还是反向电压。若是反向电压,则当反向电压大于管子的稳定电压时,稳压管处于反向电击穿状态。否则,稳压管处于截止状态;若是正向电压,但当正向电压大于其的死区电压时,二极管处于正向导通状态。

(2)在用上述方法判断的过程中,若出现两个以上稳压管承受大小不等的电压时,则应判定承受正向电压较大者优先导通,或者在同样的反向电压作用下,稳定电压较小者优先导通,然后再用上述方法判断其它二极管的工作状态。

根据上述稳压管工作状态的判断方法:

在图(a)示电路中,当管开路时,二个管子两端的反向电压均为20V。由于稳压管D Z1的稳定电压低,所以D Z1优先导通。当稳压管D Z1导通后,U AB= U Z1 =6 V,低于稳压管D Z2的击穿电压。故D Z1导通、

D Z2截止。U AB=6V。

在图(b)示电路中,当管开路时,二个管子两端的反向电压均为20V。由于稳压管D Z1与D Z2的稳定电压之和为6+8=14V。故D Z1和 D Z2同时导通。U AB=14V。

第1章 半导体二极管及其应用习题解答教学文稿

第1章半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 1.1 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表1.1所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表1.1 第1章教学内容与要求 1.2 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体

(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。N 型半导体呈电中性。 (2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。P 型半导体中的多子是空穴,少子是自由电子。P 型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN 结及其特性 1.PN 结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。

二极管种类及应用

二极管 一、二极管的种类 二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。下面以用途为例,介绍不同种类二极管的特性。 1.整流二极管 整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。 因为整流二极管正向工作电流较大,工艺上多采用面接触结构。南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。 整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。通常情况下额定正向T作电流LF在l A以上的整流二极管采用金属壳封装,以利于散热;额定正向工作电流在lA以下的采用全塑料封装。另外,由于T艺技术的不断提高,也有不少较大功率的整流二极管采用塑料封装,在使用中应予以区别。 由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封 装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。常见整流二极管的外形如图2所示。 选用整流二极管时,主要应考虑其最大整流电流、最大反向丁作电流、截止频率及反向恢复时间等参数。 普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管(例如l N 系列、2CZ系列、RLR系列等)即可。 开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、

第一章 半导体二极管

第一章半导体二极管 内容提要:本章介绍半导体二极管的工作原理、特性曲线和参数。半导体器件的基础是PN结,为此对PN结的形成和电特性也给予了必要的介绍。 目前最基本的电子器件主要有三大类: 电子管 半导体器件 集成电路

本章主要介绍现代电子器件——集成电路的基础器件,半导体二极管和三极管的基本知识,工作原理,特性曲线和参数。 1.1 半导体的基本知识 物体有导体、半导体和绝缘体之分,它们是根据物体的导电能力来划分的。导电能力往往用电阻率来表示,单位是Ωcm。一般规定半导体的电阻率在10-3~109Ωcm之间。典型的半导体有硅Si和锗Ge,以及砷化镓GaAs等。硅和锗在元素周期表上是四价元素,砷化镓则属于半导体化合物。 1.1.1 本征半导体 1.1.1.1 本征半导体的定义 是化学成分纯净的半导体,它在物理结构上有多晶体和单晶体两种形态,制造半导体器件必须使用单晶体,即整个一块半导体材料是由一个晶体组成的。制造半导体器件的半导体材料纯度要求很高,要达到99.9999999%,常称为"九个9"。 1.1.1.2 本征半导体的共价键结构 硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。根据化学的知识可以知道,最外层的价电子受原子核的束缚力最小,容易脱离原子核的束缚而参与导电。在半导体晶体中,最外层的价电子分别与周围的四个原子的价电子形成共价健。 1.1.1.2 电子空穴对 当半导体处于热力学温度0 K时,导体中没有自由电子。当温度升高大于0 K时,或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,成为自由电子,从而可能参与导电。这一现象称为本征激发(也称热激发)。本征激发会产生如下物理过程:在自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈

二极管练习题

《二极管及其应用》章节测验 一、选择 1、本征半导体又叫() A、普通半导体 B、P型半导体 C、掺杂半导 体 D、纯净半导体 2、锗二极管的死区电压为() A、0.3V B、0.5V C、1V D、0.7V 3、如下图所示的四只硅二极管处于导通的是() D C B A -5.3V -6V -6V -5.3V -5V -5V 0V -0.7V

4、变压器中心抽头式全波整流电路中,每只二极管承受的最高反向电压为() A、U2 B、 U2 C、1.2 U2 D、2 U2 5、在有电容滤波的单相半波整流电路中,若要使输出的直流电压平均值为60V,则变压器的次级低电压应为() A、50V B、60V C、 72V D、27V 6、在下图所示电路中,正确的稳压电路为()

7、电路如图7所示,三个二极管的正向压降均可忽略不计,三个白炽灯规格也一样,则最亮的白炽灯是( ) A.A B.B C.C D.一样亮 8、图8所示电路,二极管导通电压均为0.7V,当V1=10V,V 2=5V时, (1)判断二极管通断情况( ) A.VD1导通、VD2截止 B.VD1截止、VD2 导通 C.VD1、VD2均导通 D.VD1、VD2均截 (2)输出电压VO为( ) A.8.37V B.3. 87V C.4.3V D.9.3V 9.分析图9所示电路,完成以下各题

(1)变压器二次电压有效值为10 V,则V1为( ) A.4.5V B.9V C.12V D.14V (2)若电容C脱焊,则V1为( ) A.4.5V B.9V C.12V D.14V (3)若二极管VD1接反,则( ) A.VD1、VD2或变压器烧坏 B.变为半波整流C.输出电压极性反转,C被反向击穿 D.稳压二极管过流而损坏 (4)若电阻R短路,则( ) A.VO将升高 B.变为半波整流 C.电容C因过压而击穿 D.稳压二极管过流而损坏 二、判断 ()1、本征半导体中没有载流子。 ()2、二极管的反向电流越大说明二极管的质量越好。

半导体二极管-练习题1

半导体二极管练习题1 一、单选题(每题1分) 1.用模拟指针式万用表的电阻档测量二极管正向电阻,所测电阻是二极管的__电阻,由于不同量程时通过二极管的电流,所测得正向电阻阻值。 A. 直流,相同,相同 B. 交流,相同,相同 C. 直流,不同,不同 D. 交流,不同,不同 2.杂质半导体中()的浓度对温度敏感。 A. 少子 B. 多子 C. 杂质离子 D. 空穴 3. PN结形成后,空间电荷区由()构成。 A. 电子和空穴 B. 施主离子和受主离子 C. 施主离子和电子 D. 受主离子和空穴 4.硅管正偏导通时,其管压降约为()。 A 0.1V B 0.2V C 0.5V D 0.7V 5.在PN结外加正向电压时,扩散电流漂移电流,当PN结外加反向电压时,扩散电流漂移电流。 A. 小于,大于 B. 大于,小于 C. 大于,大于 D. 小于,小于 6.杂质半导体中多数载流子的浓度主要取决于()。 A. 温度 B. 掺杂工艺 C. 掺杂浓度 D. 晶体缺陷 7.当温度升高时,二极管正向特性和反向特性曲线分别()。 A. 左移,下移 B. 右移,上移 C. 左移,上移 D. 右移,下移 8.设二极管的端电压为U,则二极管的电流方程为()。 A. U I e S B. T U U I e S C. )1 e( S - T U U I D. 1 e S - T U U I 9.下列符号中表示发光二极管的为()。 A B C D

10.在25oC时,某二极管的死区电压U th≈0.5V,反向饱和电流I S≈0.1pA,则在35oC 时,下列哪组数据可能正确:()。 A U th≈0.525V,I S≈0.05pA B U th≈0.525V,I S≈0.2pA C U th≈0.475V,I S≈0.05pA D U th≈0.475V,I S≈0.2pA 11.稳压二极管工作于正常稳压状态时,其反向电流应满足( )。 A. I D = 0 B. I D < I Z且I D > I ZM C. I Z > I D > I ZM D. I Z < I D < I ZM 12.从二极管伏安特性曲线可以看出,二极管两端压降大于()时处于正偏导通状态。 A. 0 B. 死区电压 C. 反向击穿电压 D. 正向压降 二、判断题(每题1分) 1.因为N型半导体的多子是自由电子,所以它带负电。() 2. PN结在无光照、无外加电压时,结电流为零。() 3.在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。() 4.稳压管正常稳压时应工作在正向导通区域。() 5.二极管在工作电流大于最大整流电流I F时会损坏。() 6.二极管在反向电压超过最高反向工作电压U RM时会损坏。() 7.二极管在工作频率大于最高工作频率f M时会损坏。() 三、填空题(每题1分) 1.二极管反向击穿分电击穿和热击穿两种情况,其中是可逆的,而会损坏二极管。 2.温度升高时,二极管的导通电压,反向饱和电流。 3.普通二极管工作时通常要避免工作于,而稳压管通常工作于。 4.硅管的导通电压比锗管的,反向饱和电流比锗管的。 5.本征半导体掺入微量的五价元素,则形成型半导体,其多子为,少子

第一章半导体二极管极其电路

第一章 半导体二极管极其电路 1、 什么是本征半导体?什么是杂质半导体(N 型、P 型)? 本征半导体是非常纯净的半导体晶体,而在单晶半导体内,原子按晶体结构排列得非常 整齐。杂质半导体:掺入微量元素的本征半导体,例:N 型掺入五价元素磷,P 型掺入三价 元素硼。 2、在半导体中有几种载流子?半导体的导电方式与金属的导电方式有什么不同? 答:在半导体中有两种载流子,电子和空穴。而金属导体中只有自由电子参与导电。 3、如何理解电子-空穴对的产生和复合? 电子空穴对的产生与复合是由于自由电子的移动,空穴并不是真正存在的粒子,电子填充空穴位置即复合。电子离开空穴即产生。 4、在PN 结中什么是扩散电流?什么是漂移电流? 答:PN 结两侧的P 型半导体、N 型半导体掺入的杂质元素不同,其载流子浓度也不相同。由于存在载流子浓度的差异,载流子会从浓度高的区域向浓度低的区域运动,通常把这种运动称为扩散运动,把扩散运动产生的电流称为扩散电流。 在内电场的作用下,N 区的少数载流子(空穴)会向P 区做定向运动,同样P 区的少数载流子(自由电子)会向N 区做定向运动,这种运动称为漂移运动,由漂移运动产生的电流称为漂移电流。 5、说明扩散运动、漂移运动对空间电荷区(耗尽层)的影响。 答:扩散运动会使空间电荷区变宽、内电场加大;内电场的产生和加强又阻止了多子的扩散, 有助于少子的漂移,结果使空间电荷区变窄,削弱了内电场,如此反复,在P 区和N 区之间,多子的扩散和少子的漂移会形成动态平衡,扩散电流等于漂移电流,总电流等于零,空间电荷区宽度一定,内电场强度一定,PN 结呈电中性。 6、写出PN 结的伏安特性表达式并绘出响应的曲线。 答:PN 结的伏安特性可用下式描述:)1e (T D /s D -=nV v I i 7、 解释雪崩击穿、齐纳击穿、热击穿形成的原因,并说明热击穿与电击穿的异同。 雪崩击穿:当加在PN 结两端反向电压足够大时 PN 结内的自由电子数量激增导致反向电流迅速增大,导致击穿。 齐纳击穿:在PN 结两端加入高浓度的杂质,在不太高的反向电压作用下同样会使反向电流迅 迅增大产生击穿 热击穿:加在PN 结两端的电压和流过PN 结电流的乘积大于PN 结允许的耗散功率,PN 结会因为热量散发不出去而被烧毁

第1章__半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 自测题 判断下列说法是否正确,用“√”和“?”表示判断结果填入空内 1. 半导体中的空穴是带正电的离子。(?) 2. 温度升高后,本征半导体内自由电子和空穴数目都增多,且增量相等。(√) 3. 因为P型半导体的多子是空穴,所以它带正电。(?) 4. 在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。(√) 5. PN结的单向导电性只有在外加电压时才能体现出来。(√) 选择填空 1. N型半导体中多数载流子是 A ;P型半导体中多数载流子是B。 A.自由电子 B.空穴 2. N型半导体C;P型半导体C。 A.带正电 B.带负电 C.呈电中性 3. 在掺杂半导体中,多子的浓度主要取决于B,而少子的浓度则受 A 的影响很大。 A.温度 B.掺杂浓度 C.掺杂工艺 D.晶体缺陷 4. PN结中扩散电流方向是A;漂移电流方向是B。 A.从P区到N区 B.从N区到P区 5. 当PN结未加外部电压时,扩散电流C飘移电流。 A.大于 B.小于 C.等于 6. 当PN结外加正向电压时,扩散电流A漂移电流,耗尽层E;当PN结外加反向电压时,扩散电流B漂移电流,耗尽层D。 A.大于 B.小于 C.等于 D.变宽 E.变窄 F.不变 7. 二极管的正向电阻B,反向电阻A。 A.大 B.小 8. 当温度升高时,二极管的正向电压B,反向电流A。 A.增大 B.减小 C.基本不变 9. 稳压管的稳压区是其工作在C状态。 A.正向导通 B.反向截止 C.反向击穿有A、B、C三个二极管,测得它们的反向电流分别是2?A、0.5?A、5?A;在外加相同的正向电压时,电流分别为10mA、 30mA、15mA。比较而言,哪个管子的性能最好【解】:二极管在外加相同的正向电压下电流越大,其正向电阻越小;反向电流越小,其单向导电性越好。所以B管的性能最好。 题习题1 试求图所示各电路的输出电压值U O,设二极管的性能理想。

半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表第1章教学内容与要求 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体 (1)N型半导体本征半导体中,掺入微量的五价元素构成N型半导体,N型半导体中的多子是自由电子,少子是空穴。N型半导体呈电中性。 (2) P型半导体本征半导体中,掺入微量的三价元素构成P型半导体。P型半导体中的多子是空穴,少子是自由电子。P型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN结及其特性

1.PN 结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。 (1) 正向特性 0>U 的部分称为正向特性,如满足U ??U T ,则T S U U e I I ≈,PN 结的正向电流I 随正向电压U 按指数规律变化。 (2) 反向特性 0>,则S I I -≈,反向电流与反向电 压的大小基本无关。 (3) 击穿特性 当加到PN 结上的反向电压超过一定数值后,反向电流急剧增加,这种现象称为PN 结反向击穿,击穿按机理分为齐纳击穿和雪崩击穿两种情况。 4. PN 结的电容效应 PN 结的结电容C J 由势垒电容C B 和扩散电容C D 组成。C B 和C D 都很小,只有在信号频率较高时才考虑结电容的作用。当PN 结正向偏置时,扩散电容C D 起主要作用,当PN 结反向偏置时,势垒电容C B 起主要作用。 1.2.3 半导体二极管 1. 半导体二极管的结构和类型 半导体二极管是由PN 结加上电极引线和管壳组成。 二极管种类很多,按材料来分,有硅管和锗管两种;按结构形式来分,有点接触型、面接触型和硅平面型几种。 2. 半导体二极管的伏安特性 半导体二极管的伏安特性是指二极管两端的电压u D 和流过二极管的电流i D 之间的关系。它的伏安特性与PN 结的伏安特性基本相同,但又有一定的差别。在近似分析时,可采用PN 结的伏安特性来描述二极管的伏安特性。 3. 温度对二极管伏安特性的影响 温度升高时,二极管的正向特性曲线将左移,温度每升高1o C ,PN 结的正向压降约减小(2~)mV 。 二极管的反向特性曲线随温度的升高将向下移动。当温度每升高10 o C 左右时,反向饱和电流将加倍。 4. 半导体二极管的主要参数 二极管的主要参数有:最大整流电流I F ;最高反向工作电压U R ;反向电流I R ;最高工作频率f M 等。由于制造工艺所限,即使同一型号的管子,参数也存在一定的分散性,因此手册上往往给出的是参数的上限值、下限值或范围。 5. 半导体二极管的模型 常用的二极管模型有以下几种:

二极管及整流电路练习题

二极管及整流电路练习题 一、填空 1、纯净的半导体称为,它的导电能力很。在纯净的半导体中掺入少 量的价元素,可形成P型半导体,又称型半导体,其中多数载流子为, 少数载流子为。 2、在本征半导体中掺入价元素,可形成N型半导体,其中多数载流子 为,少数载流子为,它的导电能力比本征半导体。 3、如图,这是材料的二极管的____ 曲线,在正向电压超过 V 后,二极管开始导通,这个电压称为 电压。正常导通后,此管的正向压降约 为 V。当反向电压增大到 V时, V 即称为电压。其中 稳压管一般工作在区。 4、二极管的伏安特性指和 _____后,二极管导通。正常导通后,二极管的正向压降很小,硅管约为 V, 为 V。 5、二极管的重要特性是,具体指:给二极管加电压,二极管 导通;给二极管加电压,二极管截止。 6、PN结的单向导电性指,当反向电压增大到 时,反向电流会急剧增大,这种现象称。 7、二极管的主要参数有 ________、_________和,二极管的主要 特性是。 8、用模拟式万用表欧姆档测二极管的正、反向电阻时,若两次测得的阻值都较 小,则表明二极管内部;若两次测得的阻值都较大,则表明二极管内部。 两次测的阻值相差越大,则说明二极管的性能越好。 9、整流是指_______________________________________,整流电路分可为: 和电路。将交流电转换成较稳定的直流电,一般要经过以下过程: ___________ →____________ →____________ →____________ 10、有一直流负载R L=9Ω,需要直流电压V L=45V,现有2CP21(I FM=3000mA,V RM=100V) 和2CP33B(I FM=500mA, V RM=50V) 两种型号的二极管,若采用桥式整流电路,应选用 型二极管只。 11、稳压二极管的稳压特性指,动态电阻r Z越大,说明稳 压性能越。 12、滤波器的作用是将整流电路输出的中的成分滤去, 获得比较的直流电,通常接在电路的后面。它一般分为、 和三类。 13、有一锗二极管正反向电阻均接近于零,表明该二极管已_______ ,又有一硅二

半导体二极管及其应用习题解答

半导体二极管及其应用 习题解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第1章半导体二极管及其基本电路 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表第1章教学内容与要求 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体

(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。N 型半导体呈电中性。 (2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。P 型半导体中的多子是空穴,少子是自由电子。P 型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN 结及其特性 1.PN 结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。

半导体二极管及其应用

第1章半导体二极管及其应用 本章要点 ●半导体基础知识 ●PN结单向导电性 ●半导体二极管结构、符号、伏安特性及应用 ●特殊二极管 本章难点 ●半导体二极管伏安特性 ●半导体二极管应用 半导体器件是近代电子学的重要组成部分。只有掌握了半导体器件的结构、性能、工作原理和特点,才能正确地选择和合理使用半导体器件。半导体器件具有体积小、重量轻、功耗低、可靠性强等优点,在各个领域中得到了广泛的应用。半导体二极管和三极管是最常用的半导体器件,而PN结又是组成二极管和三极管及各种电子器件的基础。本章首先介绍有关半导体的基础知识,然后将重点介绍二极管的结构、工作原理、特性曲线、主要参数以及应用电路等,为后面各章的学习打下基础。 1.1 PN结 1.1.1 半导体基础知识 1. 半导体特性 自然界中的各种物质,按其导电能力划分为:导体、绝缘体、半导体。导电能力介于导体与绝缘体之间的,称之为半导体。导体如金、银、铜、铝等;绝缘体如橡胶、塑料、云母、陶瓷等;典型的半导体材料则有硅、锗、硒及某些金属氧化物、硫化物等,其中,用来制造半导体器件最多的材料是硅和锗。 半导体之所以用来制造半导体器件,并不在于其导电能力介于导体与绝缘体之间,而在于其独特的导电性能,主要表现在以下几个方面。 (1) 热敏性:导体的导电能力对温度反应灵敏,受温度影响大。当环境温度升高时,其导电能力增强,称为热敏性。利用热敏性可制成热敏元件。 (2) 光敏性:导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为光敏性。利用光敏性可制成光敏元件。 (3) 掺杂性:导体更为独特的导电性能体现在其导电能力受杂质影响极大,称为掺杂性。这里所说的“杂质”,是指某些特定的纯净的其他元素。在纯净半导体中,只要掺入极微量的杂质,导电能力就急剧增加。一个典型的数据是:如在纯净硅中,掺入百万分之

半导体二极管及其应用习题解答

半导体二极管及其应用习题解答 自测题(一) 判断下列说法是否正确,用“√”和“?”表示判断结果填入空内 1. 半导体中的空穴是带正电的离子。() 2. 温度升高后,本征半导体内自由电子和空穴数目都增多,且增量相等。() 3. 因为P型半导体的多子是空穴,所以它带正电。() 4. 在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。() 5. PN结的单向导电性只有在外加电压时才能体现出来。() 选择填空 1. N型半导体中多数载流子是;P型半导体中多数载流子是。 A.自由电子 B.空穴 2. N型半导体;P型半导体。 A.带正电 B.带负电 C.呈电中性 3. 在掺杂半导体中,多子的浓度主要取决于,而少子的浓度则受的影响很大。 A.温度 B.掺杂浓度 C.掺杂工艺 D.晶体缺陷 4. PN结中扩散电流方向是;漂移电流方向是。 A.从P区到N区 B.从N区到P区 5. 当PN结未加外部电压时,扩散电流飘移电流。 A.大于 B.小于 C.等于 6. 当PN结外加正向电压时,扩散电流漂移电流,耗尽层;当PN结外加反向电压时,扩散电流漂移电流,耗尽层。 A.大于 B.小于 C.等于 D.变宽 E.变窄 F.不变 7. 二极管的正向电阻,反向电阻。 A.大 B.小 8. 当温度升高时,二极管的正向电压,反向电流。 A.增大 B.减小 C.基本不变 9. 稳压管的稳压区是其工作在状态。 A.正向导通 B.反向截止 C.反向击穿 有A、B、C三个二极管,测得它们的反向电流分别是2?A、0.5?A、5?A;在外加相同的正向电压时,电流分别为10mA、 30mA、15mA。比较而言,哪个管子的性能最好 试求图所示各电路的输出电压值U O,设二极管的性能理想。 5V VD + - 3kΩ U O VD 7V 5V + - 3kΩ U O 5V1V VD + - 3kΩ U O (a)(b)(c)

半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 1.1教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内 容与教学要求如表1.1所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温 度的关系以及PN 结的形成过程。主要掌握半导体二极管在电路中的应用。 表 第章教学内容与要求 1.2内容提要 1.2.1半导体的基础知识 1 ?本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅 (Si)和锗 (Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为 电子空穴 对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指 数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2 ?杂质半导体 (1) N 型半导体 本征半导体中,掺入微量的五价元素构成 的多子是自由电子,少子是空穴。 N 型半导体呈电中性。 (2) P 型半导体 本征半导体中,掺入微量的三价元素构成 多子是空穴,少子是自由电子。 P 型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度, 大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 N 型半导体,N 型半导体中 P 型半导体。P 型半导体中的 掺入杂质越多,多子浓度就越

1.2.2 PN结及其特性 1.PN结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N型半导体,另一边形成P型半

导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为 构成其它半导体器件的基础。 2. PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数 值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小, PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: I =ls(e UUT _1) 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从 P 区指向N 区;I s 在数值上等于 反向饱和电流; 5=KT /q ,为温度电压当量,在常温下, U T ~ 26mV 。 与反向电压的大小基本无关。 (3) 击穿特性 当加到PN 结上的反向电压超过一定数值后,反向电流急剧增加,这种 现象称为PN 结反向击穿,击穿按机理分为齐纳击穿和雪崩击穿两种情况。 4. PN 结的电容效应 PN 结的结电容 C j 由势垒电容C B 和扩散电容C D 组成。C B 和C D 都很小,只有在信号频 率较高时才 考虑结电容的作用。当 PN 结正向偏置时,扩散电容 C D 起主要作用,当 PN 结 反向偏置时,势垒电容 C B 起主要作用。 1.2.3半导体二极管 1. 半导体二极管的结构和类型 半导体二极管是由PN 结加上电极引线和管壳组成。 二极管种类很多,按材料来分,有硅管和锗管两种;按结构形式来分,有点接触型、 面接触型和硅平面型几种。 2. 半导体二极管的伏安特性 半导体二极管的伏安特性是指二极管两端的电压 U D 和流过二极管的电流 i D 之间的关 系。它的伏安特性与 PN 结的伏安特性基本相同,但又有一定的差别。在近似分析时,可采 用PN 结的 伏安特性来描述二极管的伏安特性。 3. 温度对二极管伏安特性的影响 温度升高时,二极管的正向特性曲线将左移,温度每升高 10 C , PN 结的正向压降约减 小(2~2.5) mV 。 二极管的反向特性曲线随温度的升高将向下移动。当温度每升高 10 o C 左右时,反向饱 和电流将加倍。 4. 半导体二极管的主要参数 二极管的主要参数有:最大整流电流 I F ;最高反向工作电压 U R ;反向电流I R ;最高工 作频率f M 等。由于制造工艺所限,即使同一型号的管子,参数也存在一定的分散性,因此 手册上往往 给出的是参数的上限值、下限值或范围。 5. 半导体二极管的模型 常用的二极管模型有以下几种: PN 结。PN 结是 (1)正向特性 U 0的部分称为正向特性,如满足 U U T ,则 I : - I S e U U T , PN 结的 正向电流I 随正向电压 U 按指数规律变化。 (2)反向特性 U 0的部分称为反向特性,如满足 U R U T ,则 I 「I s ,反向电流

半导体二极管-练习题1

半导体二极管 练习题1 一、单选题(每题1分) 1. 用模拟指针式万用表的电阻档测量二极管正向电阻,所测电阻是二极管的__ 电阻,由于不同量程时通过二极管的电流 ,所测得正向电阻阻值 。 A. 直流,相同,相同 B. 交流,相同,相同 C. 直流,不同,不同 D. 交流,不同,不同 2. 杂质半导体中( )的浓度对温度敏感。 A. 少子 B. 多子 C. 杂质离子 D. 空穴 3. PN 结形成后,空间电荷区由( )构成。 A. 电子和空穴 B. 施主离子和受主离子 C. 施主离子和电子 D. 受主离子和空穴 4. 硅管正偏导通时,其管压降约为( )。 A 0.1V B 0.2V C 0.5V D 0.7V 5. 在PN 结外加正向电压时,扩散电流 漂移电流,当PN 结外加反向电压时,扩 散电流 漂移电流。 A. 小于,大于 B. 大于,小于 C. 大于,大于 D. 小于,小于 6. 杂质半导体中多数载流子的浓度主要取决于( )。 A. 温度 B. 掺杂工艺 C. 掺杂浓度 D. 晶体缺陷 7. 当温度升高时,二极管正向特性和反向特性曲线分别( )。 A. 左移,下移 B. 右移,上移 C. 左移,上移 D. 右移,下移 8. 设二极管的端电压为U ,则二极管的电流方程为( ) 。 A. U I e S B. T U U I e S C. )1e (S -T U U I D. 1e S -T U U I 9. 下列符号中表示发光二极管的为( )。 A B C D 10. 在25oC 时,某二极管的死区电压U th ≈0.5V ,反向饱和电流I S ≈0.1pA ,则在35oC 时,下列哪组数据可能正确:( )。 A U th ≈0.525V ,I S ≈0.05pA B U th ≈0.525V ,I S ≈0.2pA C U th ≈0.475V ,I S ≈0.05pA D U th ≈0.475V ,I S ≈0.2pA 11. 稳压二极管工作于正常稳压状态时,其反向电流应满足( )。 A. I D = 0 B. I D < I Z 且I D > I ZM C. I Z > I D > I ZM D. I Z < I D < I ZM 12. 从二极管伏安特性曲线可以看出,二极管两端压降大于( )时处于正偏导 通状态。

第1章__半导体二极管及其应用习题解答xx汇总

第1章半导体二极管及其基本电路 1.1 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表1.1所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表1.1 第1章教学内容与要求 1.2 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体 (1) N型半导体本征半导体中,掺入微量的五价元素构成N型半导体,N型半导体中的多子是自由电子,少子是空穴。N型半导体呈电中性。 (2) P型半导体本征半导体中,掺入微量的三价元素构成P型半导体。P型半导体中的多子是空穴,少子是自由电子。P型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN结及其特性 1.PN结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N型半导体,另一边形成P型半

导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。 (1) 正向特性 0>U 的部分称为正向特性,如满足U >>U T ,则T S U U e I I ≈,PN 结的 正向电流I 随正向电压U 按指数规律变化。 (2) 反向特性 0>,则S I I -≈,反向电流与反向电压的大小基本无关。 (3) 击穿特性 当加到PN 结上的反向电压超过一定数值后,反向电流急剧增加,这种现象称为PN 结反向击穿,击穿按机理分为齐纳击穿和雪崩击穿两种情况。 4. PN 结的电容效应 PN 结的结电容C J 由势垒电容C B 和扩散电容C D 组成。C B 和C D 都很小,只有在信号频率较高时才考虑结电容的作用。当PN 结正向偏置时,扩散电容C D 起主要作用,当PN 结反向偏置时,势垒电容C B 起主要作用。 1.2.3 半导体二极管 1. 半导体二极管的结构和类型 半导体二极管是由PN 结加上电极引线和管壳组成。 二极管种类很多,按材料来分,有硅管和锗管两种;按结构形式来分,有点接触型、面接触型和硅平面型几种。 2. 半导体二极管的伏安特性 半导体二极管的伏安特性是指二极管两端的电压u D 和流过二极管的电流i D 之间的关系。它的伏安特性与PN 结的伏安特性基本相同,但又有一定的差别。在近似分析时,可采用PN 结的伏安特性来描述二极管的伏安特性。 3. 温度对二极管伏安特性的影响 温度升高时,二极管的正向特性曲线将左移,温度每升高1o C ,PN 结的正向压降约减小(2~2.5)mV 。 二极管的反向特性曲线随温度的升高将向下移动。当温度每升高10 o C 左右时,反向饱和电流将加倍。 4. 半导体二极管的主要参数 二极管的主要参数有:最大整流电流I F ;最高反向工作电压U R ;反向电流I R ;最高工作频率f M 等。由于制造工艺所限,即使同一型号的管子,参数也存在一定的分散性,因此手册上往往给出的是参数的上限值、下限值或范围。 5. 半导体二极管的模型 常用的二极管模型有以下几种:

第一章半导体二极管极其电路

第三章 场效应管及其放大电路 1. JEFT 有两种类型,分别是N 沟道结型场效应管和P 沟道结型场效应管 2. 在JFET 中: (1) 沟道夹断:假设0=DS v ,如图所示。由于 0=DS v ,漏极和源极间短路,使整个沟道内没有压降,即整个沟道内的电位与源极的相同。令反偏的栅-源电压GS v 由零向负值增大,使PN 结处于反偏状态,此时,耗尽层将变宽;由于在结型场效应管制作中,P 区的浓度远大于N 区的浓度,所以,耗尽层主要在N 沟道内变宽,随着耗尽层宽度加大,沟道变窄,沟道内的电阻增大。继续反响加大GS v ,耗尽层将在沟道内合拢,此时,沟道电阻將变的无穷大,这种现象成为沟道夹断 (2)在DS v 较小时,DS v 的加大虽然会增大沟道内的电阻,但这种影响不是很明显,沟道仍处于比较宽的状态,即沟道的电阻在DS v 比较小的时候基本不变,此时加大DS v ,会使D i 迅速增加,D i 与DS v 近似为线性关系。加大DS v ,沟道内的耗尽层会逐渐变宽,沟道电阻增加,D i 随DS v 的上升,速度会变缓。当||P DS V v =时,楔形沟道会在A 点处合拢,这种现象称为预夹断。 3. 解: (1)(a )为N 沟道场效应管 (b )为P 沟道场效应管 (2)(a )V V P 4-= (b )V V P 4= (3)(a )A I DSS 5= (b )A I DSS 5-= (4)电压DS v 与电流D i 具有相同的极性且与GS v 极性相反,因而,电压DS v 的极性可根据D i 或GS v 的极性判断 4.解:

当JFET 工作在饱和区时,有关系式:2)1(P GS DSS D V V I i -= 5. 解:在P 沟道JFET 中,要求栅-源电压GS v 极性为正,漏源电压DS v 的极性为负,夹断电源P V 的极性为正 6. 解:MOS 型场效应管的详细分类 7. 解: 耗尽型是指,当0=GS v 时,即形成沟道,加上正确的GS v 时,能使对数载流子流出沟道, 因而“耗尽”了载流子,使管子转向截止。 增强型是指, 当0=GS v 时管子是呈截止状态,加上正确的GS v 后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。 8. MOS 管工作时一定要保证PN 结反偏。因此输入电阻非常大。 9. a.N 沟道耗尽型MOS 管 VP=-3V b P 沟道耗尽型 VP=4V c N 沟道增强型MOS 管 VT=2V d P 沟道增强型MOS 管 VP=-4V 10. id=id0(vgs/vt -1)(vgs/vt-1) Vgs=2vt 11. 对所有的N 沟道场效应管Vds>0 对于所有的P 沟道场效应管 Vds<0 N 沟道耗尽型VGS 可正可负 N 沟道增强型Vgs>0 P 沟道耗尽型Vgs 可正可负 P 沟道增强型Vgs<0 12 N 沟道增强型: VT 为正 N 沟道耗尽型:VP 为负

第6章 半导体二极管及其应用电路习题答案

6.1选择正确答案填入空内。 (1)在本征半导体中加入 A 元素可形成N 型半导体,加入 C 元素可形成P 型半导体。 A. 五价 B. 四价 C. 三价 (2)PN 结加正向电压时,空间电荷区将 A 。 A. 变窄 B. 基本不变 C. 变宽 (3)设二极管的端电压为v D ,则二极管的电流方程是 c 。 A. D v I e S B. T D V v I e S C. )1e (S -T D V v I (4)当温度升高时,二极管的反向饱和电流将 a 。 A. 增大 B. 不变 C. 减小 (5)稳压管的稳压区是其工作在 c 。 A. 正向导通 B.反向截止 C.反向击穿 (6)稳压二极管稳压时,其工作在(c ),发光二极管发光时,其工作在( a )。 A .正向导通区 B .反向截止区 C .反向击穿区 6.2将正确答案填入空内。 (1)图P 6.2(a )所示电路中二极管为理想器件,则D 1工作在 状态,D 2工作在 状态,V A 为 V 。 解:截止,导通,-2.7 V 。 (2)在图P6.2(b)所示电路中稳压管2CW5的参数为:稳定电压V z = 12 V ,最大稳定电流I Zmax = 20 mA 。图中电压表中流过的电流忽略不计。当开关S 闭合时,电压表V 和电流表A 1、A 2的读数分别为 、 、 ;当开关S 断开时,其读数分别为 、 、 。 解:12 V ,12 mA ,6 mA ,12 V ,12 mA ,0 mA 。 6.3 电路如图P 6.3所示,已知v i =56sin ωt (v),试画出v i 与v O 的波形。设二极管正向导通电压可忽略不计。 6.4 电路如图P6.4所示,已知v i =5sin ωt (V),二极管导通电压V D =0.7V 。试画出电路的传输特性及v i 与v O 的波形,并标出幅值。 图 P6.3 图P6.4 _ o + 图P6.2 (a) 图 P6.2 (b) D 1 V i

相关文档 最新文档