文档库 最新最全的文档下载
当前位置:文档库 › 共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及其应用
共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及应用

贵州织金一中 龙瑞华

最近几年的高考试题中,很多题目都是以向量知识为背景,向量知识成高考的热点。在高二下册B 版本的课本第九章第五节中讲到共线向量定理的推论。下面就该推论的推广在解题中的应用加以探究。 一、推论的叙述及变式。

如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式:

(1)OP OA ta

=+

在l 上取AB a =,则(1)式可化为

OP OA t AB =+因为AB OB OA =- ∴(1)(2)OP t OA tOB

=-+

由(2)式可看出等号的左边向量OP 的系数1刚好等于右边的向量OA 与OB 的系数之和1-t +t ,由推论易知此时A 、B 、P 三点同在一条直线上。O 为直线外一点,即P 为△OAB 边AB 上的点,线段OB 、OP 、OA 是有共同端点的三条线段,另外的三个端点都在同一条线上。线段OP 刚好是三条线段中的中间一条,它所表示的向量(1)OP t OA tOB =-+,在等式中,左边系数之和=右边系数之和。

图(一)

a

二、推论的推广

由共线向量定理的推论,我们可以得到如下结论: 结论一:在△ABC 中,D 为BC 边上的点,如果

BD x =

DC

y

,则以A 点为起点的三个向量的中间一个向量

AD =

AC AB x y x y x y

+++。 证明:

BD BC,BD=AD AB,BC=AC-AB x

x y

=

-+即可证明。 结论二:共起点的三个向量如果它们的终点在同一条直线上,那么用其中二个向量表示另一个向量时,左边系数之和等于右边系数之和。

结论三:在结论一中如果点D 不在边BC ,是在三角形ABC 的内部或外部,在图(三)中,AD=xAC+yAB ,则 1x y +<,在图(四)中AD AC AB x y =+,则 1x y +>,证明先找到AD 与BC 的交点,转化为第一种情形,即三点在同一条直线上,再应用向量共线定理a b λ=进行转化。

三、应用举例

例1、(2010年全国卷二)△ABC 中,点D 在边

AB 上,

图(二)

B x D y C

图(三)

图(四)

CD 平分∠ACB ,若,,1,2CD a CA b a b ====,则CD =( )

A 、1233a b +

B 、2133a b +

C 、3455a b +

D 、4355

a b +

分析:本题就是考查共线向量定理推论的一道典型题目,只要画出图,应用上面的结论一,便可解之,迅速得出正确答案。由题目可知,A 、D 、B 三点共线,满足推论,所以左边系数之和等于右系数之和,向量CD 系数为1,所以排出C 、D 答案。

解析:如图由角平分线性质定理知:

21

21

1212

AC AD CB DB CD CB CA

==∴=+++

即2133

CD a b =+ 技巧点拨:本题应用了两个重要的知识点,一、共线向量定理的推论,即:x y

AD AC AB x y x y

=

+++,二、角平分线的性质定理,即△ABC 中,D 在AB 上,如果CD 平分∠ACB ,则

CA AD

CB DB

=

. 例2:(2010年湖北卷)已知△ABC 和点M 满足

M A M B M C O

++=,若存在实数m 使得AB AC mAM +=成立,则m=

A 、2

B 、3

C 、4

D 、5 分析:此题最易犯错选择A 答案。应用左边系数之和等于右边系数之和的条件是:三点要共线,但此题的B 、C 、M

三点不共线,因此不能选择A 答案,但我们可以延长AM 与BC 相交,找到交点,从而出现三点共线,从而迅速解决问题。

解析:如图,由AM MB MC O ++=

知M 为△ABC 的重心,延长AM 交BC 于D ,易知D 为BC 中点,因B 、D 、C 共线。

所以112

2

AD AB AC =+

由重心性质知32

AD AM =

所以311222

AM AB AC =+

33

AM AB AC

m ∴=+∴=

所以选B 答案。

例3、(2009年湖南卷)如图,两块斜边长相等的直角三角板,拼在一起,若AD x AB y AC =+,则x= ,y=

分析:因B 、C 、D 三点不共线 所以不能直接使用共线定理的 推论,延长CA 与DB 相交于C 1 点便可解之。

解析:延长CA 与DB 相交于C 1

不妨设,则

CB=2=DE

因为∠DEB=60°∴BE=1,

由平面几何知识可知,AC 1,C 1B=2

∴13

AB AD AC =

又因1AC AC =- 1

3

AD AB AC =+ 33

1AD AB AC ∴=+

+

12x ∴=+

2

y =

例4:已知等差数列{}n a 的前n 项和为n S ,若12

0O B

aO A a O C =+且

A 、

B 、

C 三点共线,(该直线不过点O ),则200S =( )

A 、100

B 、101

C 、200

D 、201 解析:由结论二知,∴,1200200200()1002

a a S ?+∴==

∴选择A

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

共线向量

+9.5共线向量与共面向量 一、知识点 1、空间向量的定义 2、空间向量的加减与数乘运算 3、平行六面体的定义和性质 4、共线向量的定义或平行向量的概念、向量与平面平行(共面)意义及它们的表示 法 5、共线向量定理及推论、空间直线的向量参数方程和线段中点的向量公式 6、共面向量及推论、空间平面的向量参数方程(即点在平面内的充要条件) 7、空间向量基本定理及其推论 8、空间向量夹角和模的概念和表示方法 9、两个向量数量积的概念、性质和计算方法及运算律 10、两个向量的数量积的主要用途,用它解决立体几何中的一些简单问题。 二、课时安排5课时 第一课时:空间向量及其加减与数乘运算 教学目标: 1、理解空间向量的概念,掌握空间向量的几何表示法和字母表示法; 2、会用图形说明空间向量的加法、减法和数乘向量及它们的运算律; 3、了解平行六面体的定义和性质; 4、能运用空间向量的运算意义及运算律解决简单的立体几何中的问题。 教学重点: 空间向量的加法、减法和数乘运算及运算律 教学难点: 应用向量解决立体几何问题 教学过程: 复习回顾 在第五章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? 既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. 数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向

量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下. 长度相等且方向相同的向量叫相等向量. 学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? 向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 今天我们将在第五章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P26~P27. 探索研究 1、空间向量的概念 ⑴定义:在空间,我们把具有大小和方向的量叫做向量。 注:①“空间的一个平移就是一个向量”,即“将图形上的所有点沿相同方向移动相同的长度”。 ②向量不能比较大小。 ⑵向量的表示: ①几何表示:用有向线段表示 ②字母表示:用黑体小写英文字母表示

2021届新高考数学二轮培优点8 向量共线定理的应用(解析版)

培优点8 向量共线定理的应用 【方法总结】 向量共线定理可以解决一些向量共线,点共线问题,也可由共线求参数;对于线段的定比分点问题,用向量共线定理求解则更加简洁. 【典例】1 (1)若点M 是△ABC 所在平面内一点,且满足|3AM →-A B →-AC →|=0,则△ABM 与△ ABC 的面积之比等于( ) A.34 B.14 C.13 D.12 【答案】 C 【解析】 ∵|3AM →-AB →-AC →|=0,∴3AM →-AB →-AC →=0,∴AB →+AC →=3AM →. 设BC 的中点为G ,则AB →+AC →=2AG →, ∴3AM →=2AG →,即AM →=23 AG →, ∴点M 在线段AG 上,且|A M →||A G →| =23. ∴S △ABM S △ABG =|AM →||AG →|=23,易得S △ABG S △ABC =|BG →||BC →| =12, ∴ S △ABM S △ABC =S △ABM S △ABG ·S △ABG S △ABC =23×12=13, 即△ABM 与△ABC 的面积之比等于13 . (2)在△ABC 中,AN →=12AC →,P 是BN 上的一点,若AP →=mAB →+38 AC →,则实数m 的值为________. 【答案】 14

【解析】 方法一 ∵B ,P ,N 三点共线, ∴BP →∥PN →,∴存在实数λ,使得BP →=λPN →(λ>0), ∴AP →-AB →=λ(AN →-AP →), ∵λ>0,∴AP →=11+λ AB →+λ1+λ AN →. ∵AN →=12AC →,AP →=mAB →+38 AC →, ∴AP →=mAB →+34 AN →, ∴????? 11+λ=m , λ1+λ=34,解得????? λ=3,m =14. 方法二 ∵AN →=12AC →,AP →=mAB →+38 AC →, ∴AP →=mAB →+34 AN →. ∵B ,P ,N 三点共线,∴m +34=1,∴m =14 . 【典例】2 (1)(2020·河北省石家庄一中质检)在△ABC 中,D 为线段AC 的中点,点E 在边 BC 上,且BE =12 EC ,AE 与BD 交于点O ,则AO →等于( ) A.12AB →+14 AC → B.14AB →+14AC → C.14AB →+12 AC → D.12AB →+12 AC → 【答案】 A 【解析】 如图,设AO →=λAE →(λ>0),

数学中如何证明向量共面

数学中如何证明向量共面 共面向量定理是数学学科的基本定理之一,那它该怎么被证明呢?证明的过程是怎样的呢?下面就是给大家的证明向量共面内容,希望大家喜欢。 已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线 但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=? 写详细点怎么做谢谢了~明白后加分!!! 我假定你的O-A表示向量OA。 由O的任意性,取一个不在ABCD所在平面的O,这时若 OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。 (证明:设O在该平面上的投影为P,那么对平面上任何一点X,OX=OP+PX,然后取X=A、B、C、D代你给的关系式并比较OP分量即可。) 你给的右端向量都反向,所以2x+3y+4z=-1。 充分不必要条件。 如果有三点共线,则第四点一定与这三点共面,因为线和直线 外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。 而有四点共面,不一定就其中三点共线,比如四边形的四个顶 点共面,但这四个顶点中没有三个是共线的。 “三点共线”可以推出“四点共面”,但“四点共面”不能推 出“三点共线”。因此是充分不必要条件

任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积 (AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。 已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线 ,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=? 写详细点怎么做谢谢了我假定你的O-A表示向量OA。 由O的任意性,取一个不在ABCD所在平面的O,这时若 OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。 (证明:设O在该平面上的投影为P,那么对平面上任何一点X,OX=OP+PX,然后取X=A、B、C、D代你给的关系式并比较OP分量即可。) 你给的右端向量都反向,所以2x+3y+4z=-1。 4Xa-Yb+Yb-Zc+Zc-Xa=0 ∴Xa-Yb=-(Yb-Zc)-(Zc-Xa) 由共面判定定理知它们共面。 简单的说一个向量能够用另外两个向量表示,它们就共面。 1.若向量e1、e2、e3共面, (i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是 λe1+μe2-e3=0.

平面向量中三点共线定理探究

平面向量中“三点共线向量定理”探究 三点共线定理在教材中没有作为定理使用,但在各级考试中却应用广泛,笔者尝试通过 聚焦结论,优化思路,多维度揭示定理的价值所在. () 0.a b b a b a b λλ≠=r r r r r r r r 向量共线定理:对平面内的任意两个向量 、 , // 的充要条件是:存在唯一的 实数 ,使由该定理可以得到平面内三点共线定理: ()121212+= OA OB OP OP OA OB R λλλλλλ=+∈u u u r u u u r u u u r u u u r u u u r u u u r 三点共线定理:已知平面内一组基底 , 及任一向量 ,, , 则A ,B ,P 三点共线,当且仅当 1. ()() ()1122121,,1,=1,,+= A B P AP AB OP OA OB OA OP OA O OP OA O B B λλλλλλλλλλλλλ=?-=-?=-+-=+=u u u r u u u r u u u r u u u r u u u r u u u u u u r u u u r u u u r u u u r u u u r u u u r r 证明:如图 , 三点共线,当且仅当有唯一一个实数 , ,且使令则 1. ()()()()()() 1212112212=1,1;2+= OA OP OP OA OB OP OA OB OA AP AB OB OP OA OB λλλλλλλλλλλλλλ?-===-+?-=-?=+u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u r r u ur 的系数之和等于1 即为向量,的变化而变化的定理特.如图, 且1征:向量, 的系数点P 的位置是随着令 , 当点P 在线段AB 内()() ()() ()() 12121212121,1,,=10,10,1=1,01,0=10,,0=0=110 =1=10 1. λλλλλλλλλλλλλλλλλλλλλλλλλ-∈=∈-∈-∞=∈+∞<-<<>∈+∞=∈-∞-===-===此时 此时,0,当点P 在线段AB 的延长线上时, ,点P 在线段AB 反向延长线上时, ,当点P 与点A , ,当点P 与点B 重合时, 时此时此时此时,, ,重合时, 111AP PB OP OA OB λλλλ ?==+++u u u r u u u r u u u r u u u r u u u r 推论:在OAB 中,P 为直线AB 上的一点,且则 O 1()

向量共线定理及其扩展应用

向量共线定理及其扩展应用 例题1 设两个非零向量a与b不共线。 (1)若AB=a+b,=2a+8b,=3(a-b), 求证:A,B,D三点共线; (2)试确定实数k,使k a+b和a+k b共线。 (1)证明:∵AB=a+b,=2a+8b,=3(a-b),∴BD=+=2a+8b+3(a-b) =2a+8b+3a-3b=5(a+b)=5AB, ∴AB,BD共线。

又∵它们有公共点B ,∴A ,B ,D 三点共线。 (2)假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b 。 又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0。 消去λ,得k 2-1=0,∴k =±1。 总结提升: (1)证明三点共线,通常转化为证明由这三点为起点、终点的两个向量共线,向量共线定理是解决向量共线问题的依据。 (2)注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线。 (3)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线。 【三点共线定理】 已知,PA PB 为平面内两个不共线的向量,设PC xPA yPB =+,则A ,B ,C 三点共线的充要条件为x +y =1。 特别地有:当点P 在线段AB 上时,x>0,y>0; 当点P 在线段AB 之外时,xy<0。 证明:充分性 如图,因为A ,B , C 三点共线,设AC AB λ=,则 ()=(1)PC PA AC PA AB PA PB PA PA PB λλλλ=+=+=+--+, 又由PC xPA yPB =+,所以1x y λ λ=-??=? ,所以x+y=1。 必要性

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解 一、平面向量中三点共线定理的扩展及其应用 一、问题的提出及证明. 1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是: .O A xOB yOC =+(O 为平面内任意一点),其中1x y +=. 那么1x y +<、1x y +>时分别有什么结证?并给予证明. 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+ 且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1 O A m O B n O C =+ 且1m n += 则 OA mOB nOC λ=+ m n OA OB OC λ λ ?=+ m x λ ∴= 、n y λ = 1 m n x y λ λ ++= = (1)1λ> 则 1x y +< 则 11 1 OA OA OA λ = < ∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1 01x y λ +=<<,此时OA 与1OA 反向 A 与O 在直线BC 的同侧(如图[2]) 图[2] B C A 1 O A O A 1 B C A 图[1]

(3)1o λ<<,则1x y +> 此时 111 OA OA OA λ => ∴ A 与O 在直线BC 的异侧(如图[3]) 图[3] 2、如图[4]过O 作直线平行AB , 延长BO 、AO 、将AB 的O 侧区 域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:0001x y x y ??<+??>??<+?? ????-<+

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

平面向量共线定理题型总结

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(,≠的充要条件是:存在唯一的实数λ,使b a λ= 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=. 特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy < 例1已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设 直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S += =,故选A. 例2 已知P 是ABC ?的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则y x 4 1+的最小值是 解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线 x>0,y>040,0y x x y ∴ >> 由基本不等式可知:4424y x y x x y x y +≥?=,取等号时4y x x y =224y x ∴=2y x ∴=±0,0x y >> 2y x ∴=1x y +=12 ,33 x y ∴==,符合 所以 y x 4 1+的最小值为9

例3如图,在△ABC中,1 3 AN NC =,点P是BC上的一点,若 2 11 AP mAB AC =+,则实数m的值为() A. 9 11 B. 5 11 C. 3 11 D. 2 11 解:,, B P N三点共线,又228 4 111111 AP mAB AC mAB AN mAB AN =+=+?=+ 8 1 11 m ∴+= 3 11 m ∴=,故选C 例4如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若AB=m AM,AC=n AN,则m+n的值为. 解:因为O是BC的中点,故连接AO,如图4,由向量加法的平行四边形法则可知: 1 () 2 AO AB AC ∴=+m AB AM =,AC nAN =又,, M O N三点共线, ∴由平面内三点共线定理可得:1 22 m n +=2 m n ∴+= 例5 如图所示:点是△的重心,、分别是边、上的动点,且、、三点共线. 设,,证明:是定值; 证明:因为G是OAB的重心,211 ()() 323 OG OA OB OA OB ∴=?+=+ 又,, P G Q三点共线,111 33 x y ∴+= 11 3 x y ∴+= 11 x y ∴+为定值3 G OAB P Q OA OB P G Q OA x OP=OB y OQ= y x 1 1 +

平面向量中“三点共线定理”妙用教学文稿

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使 b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且 1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线,(设直线不过点O ),则S 200= ( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选 A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则 y x 4 1

(完整版)平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r () D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为 21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标. 4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有: OM =________________,M 点的坐标为_____________. 5.两个向量平行的充要条件是:向量形式:_____________)0(//?≠ρ ρρρb b a ; 坐标形式: _____________)0(//?≠ρ ρρρb b a .

平面向量基本定理(教案)

《2.3.1 平面向量基本定理》教案 【教材】人教版数学必修4(A版)第105-106页【课时安排】1个课时 【教学对象】高一学生【授课教师】华南师范大学数学科学学院陈晓妹 【教材分析】 1.向量在数学中的地位 向量是近代数学中重要的概念,它不仅是沟通代数与几何的桥梁,还是解决许多实际问题的重要工具,因此具有很高的教育价值。 2.本节在教学中的地位 平面向量基本定理是向量进行坐标表示,并由此进一步将向量运算转化为坐标运算的重要基础;该“定理”以二维向量空间为依托,可以推广到n维向量空间,是今后引出空间向量用三维坐标表示的基础。因此本节知识在本章中起承上启下的作用。 3.本节在教学思维方面的培养价值 平面向量基本定理蕴含了转化的数学思想。它是用基本要素用基本要素(基底、元)表达事物(向量空间、具有某种性质的对象的集合),并把对事物的研究转化为对事物基本要素研究的典型范例,这是人们认识事物的一种重要方法。 【目标分析】 知识与技能 1.理解平面向量的基底的意义与作用,学会选择恰当的基底,将简单图形中的任一向量表 示为一组基底的线性组合; 2.了解平面向量的基本定理,初步利用定理解决问题(如相交线交成线段比的问题等)。过程与方法 1.通过平面向量基本定理,认识平面向量的“二维”性,并由此进一步体会“某一方向上 的向量的一维性”,培养“维数”的基本观念; 2.通过对平面向量基本定理的探究过程,让学生体会数学定理的产生、形成过程,体验定 理所蕴含的转化思想。 情感态度价值观 1.培养学生主动探求知识、合作交流的意识,感受数学思维的全过程; 2.与物理学科之间的渗透,改善数学学习信念,提高学生学习数学的兴趣。 【学情分析】 有利因素 1.学生在前面已经掌握了向量的基本概念和基本运算(特别是向量加法平行四边形法则和 向量共线的充要条件)都为学生学习本节内容提供了知识准备; 2.学生在物理学科的学习中已经清楚了力的合成和力的分解,同时作图习惯已经养成,这 为我们学习向量分解提供了认知准备。 不利因素 1.学生对向量加减法及数乘运算的意义与作用认识不够,可能增加向量用基底表示时的难 度;

推荐-新人教版高中数学 2.2.4 向量共线定理教案必修四

高中数学 2.2.4 向量共线定理教案 新人教版必修4 教学目标: 1.理解两个向量共线的含义,并能运用它们证明简单的几何问题; 2.培养学生在学习向量共线定理的过程中能够相互合作,在不断探求新知识中,培养学生抽象概括能力和逻辑思维能力. 教学重点: 共线向量定理的应用. 教学难点: 共线向量定理的应用. 教学方法: 问题探究式学习. 教学过程: 一、问题情境 问题1 上一节中蚂蚁自西向东3秒钟的位移对应的向量为3a ,记b =3a ,b 与a 共线吗? a (给出线性表示:如果b λ=a (a ≠0),则称向量b 可以用非零向量a 线性表示) 二、学生活动 问题2 对于向量a 和b ,如果有一个实数λ,使得b λ=a ,那么a 与b 共线吗? (可以引导学生从λ的不同取值来探讨) (若有向量a 和b ,实数λ,使b λ=a ,则由实数与向量积的定义知:a 与b 为共线向量) 问题3 如果向量a 和b 共线,是否存在一个实数λ,使b λ=a ? (若a ≠0,a 与b 共线且|b |:|a |μ=,则当a 与b 同向时b μ=a ;当a 与b 反向时b μa , 从而向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b λ=a .) 三、构建教学

1.整理归纳向量共线定理. 如果有一个实数λ,使b λ=a (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使b λ= a. 2.对定理的理解与证明 问题4 为什么要求a 是非零的?b 可以为0吗? 若a =0,则a , b 总共线,而b ≠0时,则不存在实数λ,使b λ=a 成立;而b = a =0时,不管λ取什么值,b λ=a 总成立,λ不唯一. 问题5:结合问题2,3的探求,能不能完善定理证明(可以让学生大胆尝试证明,对证明的程序和方法老师要及时给予指导)? 四、教学运用 1. 例题. 例1 如图,E D ,分别为ABC ?的边AB 和AC 中点,求证:→--BC 与→--DE 共线,并将→--DE 用→--BC 线性表示. 例2 判断下列各题中的向量是否共线: (1)a =4e 1-25e 2,b =e 1-110 e 2; (2)a = e 1+e 2,b =2 e 1-2 e 2,且1e ,2e 共线. 例3 如图2-2-11,ABC ?中,C 为直线AB 上一点, ?→?AC λ=)1(-≠?→?λCB 求证:λ λ++=?→ ??→??→?1OB OA OC . 例题提高:上例所证的结论λ λ++=?→??→??→?1OB OA OC 表明:起点为O ,终点为直线AB 上一点C 的向量?→?OC 可以用,?→?OA ?→?OB 表 示,那么两个不共线的向量,?→?OA ?→?OB 可以表示平面内任一向量吗? 2.练习. (1)已知向量a =2e 1-2e 2,b =-3(e 2-e 1),求证:a 与b 是共线向量. (2)已知4MP =e 12+e 2,2PQ =e 1+ e 2,求证:M ,P ,Q 三点共线.

《2.3平面向量基本定理及坐标表示(一)》

平面向量基本定理、平面向量的正交分解和坐标表示及运算 教学目的: (1)了解平面向量基本定理;理解平面向量的坐标的概念; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问 题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 向量的坐标表示的理解及运算的准确性. 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |; (2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =0 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线则:有且只有一个非零实数λ,使b =λa . 二、讲解新课: 1.思考:(1)给定平面内两个向量1e ,2e ,请你作出向量31e +22e ,1e -22e , (2)同一平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示? 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 2.探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 3.讲解范例:

18.向量共线定理和向量基本定理

向量共线定理和向量基本定理 知识点归纳: 1. 向量共线定理(两个向量之间的关系) 向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得b a λ=. 变形形式:已知直线l 上三点,,A B P ,O 为直线l 外任一点,有且只有一个实数λ,使得 ()1OP OA OB λλ=-+. 2. 平面向量基本定理(平面内三个向量之间的关系) 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+. 考点1 向量共线定理 题型 1 判断向量共线、三点共线、两直线平行 例1 如图,已知3AD AB =,3DE BC =,试判断AC 与AE 是否共线? 例2已知向量,a b ,且2AB a b =+,56BC a b =-+,72CD a b =-则一定 共线的三点是: .A ,,A B D .B ,,A B C .C ,,B C D A D

.D ,,A C D 例3 根据下列条件,分别判断四边形ABCD 的形状 ⑴AD BC = ⑵13 AD BC = ⑶AD BC =,且AB AD = 题型2 向量共线定理的应用 例 4 ⑴已知点 C 在线段 AB 上,且 5 2 AC CB =,则AC = AB ,BC = AB ⑵设 2 1,e e 是不共线的向量,已知向量 2 121212,3,2e e e e e k e -=+=+=,若A,B,D 三点共线,求k 的 值. ⑶已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且 A B C ,, 三点共线(该直线不过点O ),则200S 等于 .A 100 .B 101 .C 200 .D 201 考点3 平面向量基本定理 题型 在几何图形中,用基底表示其他向量 例 5 如图, ABCD 的两条对角线相交于点M ,且AB a =,AD b =, 用,a b 为基底表示,,,MA MB MC MD B C

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

向量证明三线共点与三点共线问题

用向量证明三线共点与三点共线问题 山东 徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多. 证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明AC AB λ=.证明三线共点一般须证两线交点在第三条直线上. 例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、μ, 且1=+μλ,使得OB OA OC μλ+=;反之,也成立. 证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故)(OA OB m OB OC -=-, OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得 OB OA OC μλ+=. 若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以A 、B 、C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线. 例2. 证明:三角形的三条中线交于一点. 证明:如图2,D 、E 、F 分别是ABC ?三边上的中 A O B C 图1

点. 设BE BG AD AG G BE AD b CB a CA μ===?==,,,.设.则 =-+-=++-=+-=+=)2 1( )2 1()()(b a a b CA BC a b BE a b BG AB AG μμμ b a )1(1(2 1μμ-+-),又b a b a CD AC AD AG λλλλλ2 1)2 1()(+-=+-=+== ?????? ? ==??????? -=-=-323 2121121μλμλμλ解得 所以 则b a b a a AD a AG CA CG 3131)21(323 2+ = + -+=+ =+= b a CF 2 121+ = ,所以CF CG 3 2=,所以G 在中线CF 上,所以三角形三条中线交于一点. A B C E D F 图2 G

相关文档
相关文档 最新文档