文档库 最新最全的文档下载
当前位置:文档库 › 超宽带通信天线的矩量法分析与仿真研究

超宽带通信天线的矩量法分析与仿真研究

超宽带通信天线的矩量法分析与仿真研究
超宽带通信天线的矩量法分析与仿真研究

摘 的矩真。获取该方实际关键中图1.的极线也频带精确CST 处理分析确性宽带阵、工具Matl 2.2.1 程组 本文国家教育韩国 超宽要:本文针对矩量法(MoM),。文中以超宽取各相关参数方法在频域内际意义。 键词:矩量法图分类号:TN 引 言

近年来,基极大重视。作也成为天线与带、高性能、确的分析对目对天线的特T(Computer S 理问题时需要析法,矩量法性和灵活性。带天线进行分本文首先依表面电流分具箱产生指定lab 下进行编理论分析矩量法原理矩量法实质组的方法求解 得到

自然科学基金部博士点基金仁荷大学IT 研 宽带通信对目前的超宽,结合Matlab 宽带脉冲缝隙天数的计算方法内完成了超宽法;RWG基函数N82

基于无载波的超作为超宽带无与传播领域的小型化、集成目前天线工作特性分析的数Simulation Te 要单独考虑吸法(MoM)是频域对矩量法应分析,完成超依据矩量法从分布、方向图定尺寸、形状程仿真。最后析

质上是将一个解[6],用线性矢 金项目(60432040金项目(2006001研究中心项目(IN 信天线的陈俊雷北京邮电泛网无线通北京邮电大E-Mail 宽带通信天线ab 含有的交互天线为例,详法,并且给出了宽带天线的特性数;缝隙天线超宽带(Ultra 无线通信系统的一个新的研成化与低成本作者来说是一数值方法主要echnology)商吸收边界条件域分析的理想应用最广的是超宽带天线的特理论上对天线等参数。之后状的天线并且进后对仿真结果个电场积分方矢量空间和算

0,60772021)3008,200700NHA UWB ‐ITRC 的矩量法雷,邹卫霞电大学无线网通信教育部重大学96号信l:chenjlbupt@1线,运用基于互式“天线工详细分析了该了应用矩量法性仿真,对超线;辐射特性a-Wideband,简的关键部件之究热点。就目本等方向发展个严峻挑战[有两种,一种用软件包来完,这样增加了想方法。它在对线天线的分特性仿真。

线进行建模,后根据超宽带进行德罗内三果进行分析,程化为一个矩算子表示如下, 013029), C)的资助。

法分析与,周正

网络实验室

重点实验室信箱 100086

https://www.wendangku.net/doc/7417075221.html,

于面电流模型工具箱”对超该天线的模型法分析天线的超宽带天线的性 简称UWB)无之一, 用于目前而言,超展,因此有效[1]。

种是采用时域完成天线的设了处理问题的在处理天线的分析和研究[3,结合电场积带脉冲缝隙天三角化。依据验证了该方矩阵方程,通下与仿真研型的局域基函超宽带天线进型建立过程,的基本流程。的设计与进一无线通信技术于收发窄脉冲超宽带天线的效的设计天线域分析法[2],设计与分析,的难度和效率的远场、近场3,4],在此,利积分方程推导天线结构[5],据矩量法得出方法及其仿真通过矩阵求逆研究1

函数(RWG基函数进行电磁建模,以及采用矩。仿真结果表一步改进有一术引起了通信冲信号的超宽的总体目标是线并且对天线该方法常结但采用这种率。另一种是场参量时,有利用该方法对导出天线的阻利用Matlab 出的计算公式真的正确性。逆或其他解线数)

模与仿矩量法表明: 一定的信领域带天是朝宽进行

结合方法是频域有其精

对超

阻抗矩PDE 式在

性方https://www.wendangku.net/doc/7417075221.html,

式中等),n a 为在取内(4) 其中若 从(

2.2 先,元, 中L 为算子;为待求未知为待定系数, L 的值域内定内积,可得

式可以写成如 中[]mn Z 为矩mn Z 为非奇异 (6)看出,只要RWG矢量三RWG 基函数待研究的天其中一个三()L f =g 为源或激知方程。将1

N

n n f a ?=∑n f 为基函数

(1

N

n

n a L =∑定义一个检验1

,N

n

m n a

w L =∑如下矩阵形式

[][]mn n Z J =矩量矩阵,[J 1

2

mn

m w w Z w ??

?=??

??

[1,n J a a =异矩阵,可知

1

n mn J Z ?=i 要基函数选取三角基函数

数是一种矢量天线表面被划三角标以正号

g 激励,认为它

f 在L 的定义

n f 数。将(2)式代

)n

f g =

验函数的集合()n f =式 []m E ]n 为基向量

()()()1,12,1,1...L f L f L f ]

2,...,T

n a

知其逆阵存在m E 取合适,矩量量面元基函数划分为一系列号,另一个三

它是已知方程义域展开成某 代(1)式可得 12,...N w w w ,m w g 量,[]m E 称为()()()

1,22,2,2...

m w L f w L f w L f 在,因而有 量方程便可迎数[6],它定义在的三角,拥有角标以负号。 ;f 为场或某基函数系 : ,在此取w 为激励向量,1,2,,.............

m w w L w 迎刃而解。在两个相邻的有公共边的每。边元被赋以 (1)

响应(如散射12,...N f f f 的组 (2)

(3)

n n f =,以每 (4)

(5)

,具体表示如()()()..n n n L f f L f ?

?

?

????

(6) 的三角片上,每对三角构成以矢量基函数射体上的电流组合 每一个m w 对(如下: 如图1所示成相应的RW 数: 流分布 (3)式示。首WG 边 https://www.wendangku.net/doc/7417075221.html,

这里向观 关于

2.3 电,下面其中Φ为将天里,l 是边元的观察点r 。天 于RWG 基函数天线建模的对于发射天而接收天线面以接收天线结合Maxwe 中A

为矢量磁为电标量位,天线表面电流()((

f r l ???

=??

??

的长度,A 天线表面的电流

图数所具备的性的矩量法求天线和接收天线的激励源是线为例,说明ell 方程组,入 E j ω=? 磁位,其定义()A r =

其定义为:()r Φ=流基函数展开1

N s n J ==∑

)()(220l A r A r ρρ++??,其±

是三角形T 流是所有边元图1 RWG基函数性质见文献[7]求解

天线,其唯一的是入射电磁波如何应用前入射场E 可表A ??Φ

义为

4jkR s e J d R μ

π

?∫

1

4jkR s e R

σπε?

∫开,有

()n n I f r )),,r T r T +?在内在内它 ±

的面积,矢元贡献之和,示意图 。 的不同之处就波,因此从天面的RWG 基表示为

'

dS

'

dS 矢量ρ±

分别为权是未知系 就是激励源,线建模的角度基函数结合Mo (7)

为从正负三角系数。

发射天线的度来衡量,二oM 对接收天 (8 (9 (1 //www.paper.

角的自由顶点

的激励源是天二者没有差别天线进行建模8)

) 0)

(11)

点指天线馈别[8]。。

其中将(1其中结合其中结合n =解此奠定

3.给出馈电

中N 是三角对11)式代入(8)中1,2,...,m =合基函数m f 在中1,2,...,m =合(5)式有

E 1,2,...,N ,此线性方程组定了基础。 计算实例首先,由M 出

电边长1mm 。 对公共边数目式有

,m E f =,N 。

在三角形上的2c m m m l E ρ++???

i 1N

m n n l I =??=????∑,N mn

m Z l ?=??m m m l E +?=??

1,2,...,m =组,求得n J ,例及分析

Matlab PDE 工()(cos 1l π

目。 ,m j A f ω?的性质[7]及矢2c m m E ρ?

??+?

?i 2c m mn j A ρω++???i 2c m mn j A ρω+???i 2c m m E ρ+?+i i N

代入(11)可得工具箱产生的天())

cos 4

l π? ,m f ??Φ矢量算法,最2c m mn A ρ???+??i 2c m mn A ρ+?

?+i

2c m ρ?

???

得天线表面的天线形状、尺 终(12)式可化mn

mn ?+

?+Φ?Φ?(mn ??+Φ???的电流分布,尺寸如图2所 http: 化为

??????? ()mn +

?Φ??

为分析天线所示,天线缝 //www.paper.

(12)

13) 线的其它辐射缝隙形状由(14 (14)

射特性4)式

图3给阻抗 图4表集中显示图5给0.5G 图6给乎保给出了该天线抗峰值大约在 表示天线在

0中于缝隙边界示的阻抗在1G 给出了H 平面GHz 的85°降到给出了E 平面保持不变。

图线的输入阻抗在1GHz 。

0.5GHz ,1G 界附近,频率GHz 附近出现面的辐射方向到2GHz 时的

面的辐射方向图2 用PDE生成抗,其中三角 图3 天线的GHz , 1.5GH 率为1GHz 时,现峰值相符。图4 天线表面向图,频率分60°,因此,

向图,频率分成的天线

角点划线表示的输入阻抗

Hz ,2GHz 时馈电电流显

面电流分布

分别为0.5GHz 此天线不能别为

0.5GHz

示电阻,圆圈

时的表面电流显得非常小,z ,1GHz ,能够用做全向,1GHz

,圈线表示电抗流分布,可以天线本身开2GHz 。半功天线。

2GHz 。其半抗。可以看出以看出,表面始发亮,与功率波束宽度半功率波束宽输入面电流图3度从度几

4.性已不同域的系列优化线特5.

[1] 阮[2] N ferrit [3] K 1965[4] J.Trans [5]Ba [6] 王[7] 庄[8] [Natio

图5 结论

由于超宽带已经引起人们同于正弦波而的角度结合RW 列参数的计算化打下了基础特性。

致谢

本文部分得阮成礼. 《超宽Nishioka Y , Mae te coated condu K.K.Mei. On the ,pp.374.

.H.Richmond, D s. Antennas and arnes M A. Ultr 王璟.电磁散射庄钊文 袁乃昌美]LAL CHAN

onal Defence In H面辐射方向带瞬时电脉冲们的普遍重视而且功率很小WG 矢量三角算公式,并应用础。下一步的工得到意大利外宽带天线理论与eshima O, Uno ucting cavity for e Integral Equat D.M.Pozar, N.H d Propagat. May ra-wideband M 问题的矩量法昌等. 《军用目ND GODARA.H

ndustry Press. 2图 信号在冲击雷视。同时,由于小,因此对其进角基函数对超用Matlab 对天工作将对天线外交部 iCHIP研与技术》[M],T, Adachi S. FD r subsurface rad tions of Thin W H.Geary. Mutua y 19/5, vol. AP-agnetic Antenn 建模及快速算标雷达散射截HANDBOOK O

2004.09

雷达,电磁脉于超宽带瞬时进行研究具有超宽带天线进天线的特性进线的尺寸、形研究计划的资参考文献

哈尔滨:哈尔DTD analysis o dar. IEEE Trans Wire Antennas[J al impedance of -23.

na. US Patent 6,法[A], 南京截面预估与测量

OF ANTENNA 图6 E面

脉冲和通信等时电磁脉冲信有十分重要的进行建模, 从进行一系列仿形状及馈电等资助,在此表尔滨工业大学出of resistor-loade s. Antennas and J]. IEEE Trans. A f nonplanar – sk ,091,374 of July :东南大学硕量》[M],北京:

S IN WIRELES 面辐射方向图 等领域的广泛信号的产生、的意义。本文从理论的角度仿真,为进一等进行探讨,表示衷心的感出版社, 2006.11ed bowtie anten d Propagation, 1Antennas and P kew sinusoidal y 18,2000

士学位论文., 科学出版社

SS COMMUNI 泛应用,其辐传输、辐射文应用矩量法度得出了天线一步的天线设以进一步优感谢。

1。

nna covered with 1999,47(6):970-Propagat. May dipoles[J]. IEE 2006。 社,2007.6。

ICATIONS.

射特射等都法从频的一设计及优化天h -977

E https://www.wendangku.net/doc/7417075221.html,

An on This local inclu ultra proc analy featu impr Key

nalysis an the Met Wirele paper, aimed l-function (RW uded in Matlab a-wideband pu ess, and how yzing antenna ures of UWB a rovement of U words: MoM nd Simu thod of M Che ess Network Key Lab Inn d at current ult WG basis func b, completes t ulse slot anten to access to al a by MOM is p antenna in fre UWB antenna.M; RWG local-f ulation of Moment en Jun Lei, Lab. Beijing b of Universa ner Box. 96. E-Mail tra-wideband (ction) of the m the electromag nna as an exam ll relevant par presented. The equency doma . -function; slot f Ultra-W s

Zou Wei X University o al Wireless Co Bupt, Beijing l:chenjlbupt@1

Abstract

(UWB) antenn method of mom gnetic modelin mple, this pape ramenters usin e simulation r ain. The result t antenna; rad Wideban ia, Zhou Zh f Posts and T ommunicatio g 100876, Ch https://www.wendangku.net/doc/7417075221.html,

na, based on t ments (MoM)ng and simula er detailedly a ng MoM. In a result shows th may be helpf diated feature

http:

nd Anten heng

Telecommunic ns, MOE

hina

the use of the , combined w ation of UWB analyses the m ddition, the ba hat this proces ful to the desig nna Base cations

current model with antenna to B antenna. Tak model’s buildin asic processes ss can simulat gn and ed l of

ools ken ng s of

te the https://www.wendangku.net/doc/7417075221.html,

2.4G八木天线的制作方法

2.4G八木天线的制作方法 好长时间没有上来更新了。一则单位事儿多,没空;二则,自己心情也不太好,没兴致。上周查单子时突然发现家里的ADSL快到期了,想想邻居家里的AD是2M的,自己用不了怪可惜的,不如我跟他合用,但是距离太原,无法拉网线,从网上得知可以用无线路由器及无线网卡组件无线局域网,时间长距离的无线传输,于是在网上查找资料,研究可行性。网上这方面的资料还真不少,但是国内的资料大部分都是照抄国外的,于是直接上国外网站查找,国外无线电爱好者对于2.4G的网络研究比国内要早好多年,因此各种数据比较准确,图纸资料也比较全。2.4G的定向天线有很多种:罐头盒式,反射板式,八木天线,卫星天线,裂隙天线,螺旋天线,以及厨房用具的简单天线。根据天线的制作难易程度以及取材方面考虑,罐头盒式和反射式太简单,厨房用具的那些玩玩倒可以不实用,螺旋天线还要分左旋和右旋,卫星天线和裂隙天线太专业,手工制作不现实。最后决定制作八木天线,虽然要求精度也很高,制作精度要求不低于0.1MM,但是取材和工艺还是能满足的。 第一步选材;根据图纸计算材料,1根12MM的有机玻璃棒,市场上没有12.7MM的,这个尺寸没有问题。直径3.3的铜棒,宽4MM厚1MM的铜条,50欧--5的电缆,虽然比不上--7的电缆,但是只需要1米,效果还是能保证的。由于没有3.3的规格的铜棒,只好用3.2的铜焊条挂上一层焊锡,尺寸比较接近了。 第二步钻孔:给有机玻璃棒上钻15个孔,根据图纸用游标卡尺在有机玻璃棒上画好线,标注好孔位置,这一步很关键,孔的位置将直接影响到后续的工艺精度,钻孔时也要注意,要用台钻,一气呵成,保证所有孔在一条直线上,孔的间距要满足尺寸要求,并且孔的垂直度要保证,否则装上振子后就会发现振子不在一个平面上了。钻头用3.2MM的。 第三步制作振子:根据图纸用钢锯将振子裁好,注意尺寸稍微留长一点,然后用锉刀和砂轮将振子长度调整到标准尺寸,要求精度不小于0.1MM。主振子用铜条打磨弯形挂锡,焊上电缆待用。 第四步安装振子:由于孔是3.2MM多一点的,振子也是3.2MM多一点,因此有些振子安装上后会发现松动,无法固定在孔内,这是可以将振子上再挂点锡,用锉刀修磨到能紧配安装。主振子安装时要求距离第一个振子的位置要固定,上下位置也要固定,但是还不用用任何金属材料来固定,我是用短有机玻璃棒根据振子尺寸锯上缺口,使主振子卡在两个振子之间。 第五步装外壳:根据天线的尺寸使用相应的PVC管将之套入,两头用PVC堵头封住,电缆孔用密封胶封住。 到此为止,一个2.4G的八木天线算是大功告成,据说增益能达到15dbi,剩下的事儿就是用设备调试了。 因为还没有相中合适的设备,所以实验还要过几天做。先把部分照片放上,完全是个人爱好,不正之处欢迎拍砖。 材料

层次分析法模型

二、模型的假设 1、假设我们所统计和分析的数据,都是客观真实的; 2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性和普遍性,基本上能够集中反映毕业生就业实际情况; 3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略. 三、符号说明

四、模型的分析与建立 1、问题背景的理解 随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻.为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析和评价毕业生就业的若干主要因素,并将它们从主到次依秩排序. 针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略. 2、方法模型的建立 (1)层次分析法 层次分析法介绍:层次分析法是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题.特别是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法. 通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重.这些权重在人的思维过程中通常是定性的,而在层次分析法中则要给出得到权重的定量方法. 我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学

家T.L.Saaty 教授提出的AHP 法. (2)具体计算权重的AHP 法 AHP 法是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据计算成对比较矩阵的特征值获得权重向量k W . Step1. 构造成对比较矩阵 假设比较某一层k 个因素12,,,k C C C 对上一层因素ο的影响,每次两个因素i C 和j C ,用ij C 表示i C 和j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵. *()k k ij C C =, 0ij C >,1 ij ji C C =, 1ii C =. 若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵. 标度ij C 含义 1 i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9 i C 比j C 的影响绝对地强 2,4,6,8 i C 与j C 的影响之比在上述两个相邻等级之间 11 ,,29 i C 与j C 影响之比为上面ij a 的互反数 Step2. 计算该矩阵的权重 通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量 12 = [ , ,..., ]T k k k kk Q q q q ,其中的ik q 就是i C 对ο的相对权重.由特征方程 A-I=0λ,利用Mathematica 软件包可以求出最大的特征值 max λ 和相应的特征向 量. Step3. 一致性检验 1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :

HFSS仿真2×2矩形贴片天线阵

HFSS 仿真2×2线极化矩形微带贴片天线阵 微带天线以其体积小、重量轻、低剖面等独特的优点,在通信、卫星电视接收、雷达、遥感等领域得到广泛应用,它一般工作在100MHz-100GHz 宽广频域的无线电设备中,而矩形微带天线是微带天线最常用的辐射单元,它是一种谐振型天线,通常在谐振频率附近工作。C 波段,是频率在4—8GHz 的无线电波,通常的上行频率范围为—,下行频率范围为—。雷达天线具有将电磁波聚成波束的功能,定向地发射和接收电磁波。本实验采用设计了一款工作于C 波段中心频率在的矩形贴片线极化微带雷达天线阵列,根据理论经验公式初步计算出矩形微带贴片天线的尺寸,然后在里建模仿真,根据仿真结果反复调整天线的尺寸,对天线的结构进行优化,直到天线的中心频率为为止。 1 单个侧馈贴片天线的仿真 矩形贴片天线的设计 导波波长g λ,矩形贴片天线的的有效长度e L 2/g e L λ= , e g ελλ/ 0= 有效介电常数为e ε,r ε为介质的介电常数 2 1 121212 1- ?? ? ?? +-+ += w h r r e εεε 矩形贴片的实际长度为L , L=e L -2L ?=e ελ2 /0-2L ?= e f c ε02-2L ? 0f 天线的实际频率,L ?微带天线等效辐射缝隙的长度 ()()()()8.0/258.0264.0/3.0412.0+-++=?h W h W h L e e εε 矩形贴片的宽度为W 2 1 0212- ?? ? ??+=r f c W ε

基片尺寸取: g L LG λ2.0+≥ ,g W WG λ2.0+≥ 介质板材为Rogers RT/duroid 5880,其相对介电常数r ε=,厚度h=2mm ,损耗角正切为。 在设计过程中,我们假设贴片、微带线的厚度t 与基片厚度相比可以忽略不计,即 005.0/≤h t ,在设计过程中,我们令t=0。 计算矩形贴片天线的尺寸 (1)矩形贴片的宽度 由C=×108 m/s, 0f =,r ε=,可以计算出矩形微带天线贴片的宽度。 W=0.02062m=20.62mm (2)有效介电常数e ε 把h=2mm ,W=20.62mm ,r ε=代入,计算出有效介电常数。 e ε= (3)辐射缝隙的长度 把h=2mm ,W=20.62mm ,e ε=代入,可以计算出天线的辐射缝隙的长度L ?。 L ?=1.01mm (4)矩形贴片的长度 把C=×108 m/s, 0f =,e ε=,L ?=1.01mm 代入,可计算出天线矩形贴片的长度。 L=15.69mm (5)参考地的长度LG 和宽度WG 把C=×108 m/s, 0f =,e ε=代入,可算出导波波长g λ。 g λ=35.42mm LG=22.77mm WG=27.70mm (6)估算天线的输入阻抗 由于介质板材Rogers RT/duroid 5880有一定的损耗,所以在计算微带天线的输入阻抗

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

八木天线的原理和制作

八木天線的原理和製作 八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。 八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。 由反射器至最前的一个导向器的距离叫做这个八木天线长度。通常收发机的天线输出端,都只是接到八木天线的有源振子。反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。当无源振子的长度不同时,呈现的阻抗也不同。适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。而当八木天线各个导向器的长度不同,间距亦不等时叫做非均匀导向八木天线,特点是天线的主瓣较宽,方向系数较少,工作频带内增益不均匀(但在UHF以上波段并不明显),但工作频带较宽。但如果将非均匀的导向八木天线的结构设计合理,则可以显著地压缩副瓣,又不致太大扩宽主瓣和降低方向系数。

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

24GHz天线设计仿真报告

微波技术与天线 课程设计报告 仿真结果 课题: 2.4GHz天线的设计院系:文正学院电子信息系专业:2012级通信工程姓名:郑富成 学号:1217408034 指导老师:刘学观 日期:2014年12月25日

一、设计名称 2.4GHz 微带贴片天线 二、设计目标 1.设计 2.4GHz的天线,使其在2.4GHz处产生谐振 2.回波损耗 3.驻波比 4. 三、设计过程 微带天线主要参数如图,w为辐射贴片的宽度,L为长度。L1为馈线的长度,w1为馈线的宽度。 1.微带辐射贴片尺寸估算 微带辐射贴片的宽度:

由相关数据:,f=2.4Ghz, 。解得: W0=38.03mm 辐射贴片的长度L0一般取。考虑到边缘缩短效应后,实际上的辐射单元长度L0应为: 其中为等效辐射缝隙长度,为有效介电常数。 带入,,W0=38.03mm 得 所以 L0=29.11mm 2.馈电点位置 微带线馈电点位置选在辐射贴片的中点,此时馈电点和辐射贴片边缘距离为 Z=w/2=19.015

3.输入阻抗 如果采用微带线馈电方式,馈电点到辐射贴片边缘拐角的距离为z,则微带线的输入导纳近似为: 式中: 由此,计算出输入阻抗 4.阻抗匹配 输入阻抗一般不符合微波器件通用的系统,所以在设计微带 线馈电矩形微带天线时,可加上一段的阻抗变换器。则阻抗变换器的特性阻抗: 借由此可以计算出馈线的宽度 由下式

及 解得: 四、参数汇总 由以上可以得到各变量的理论值: 五、仿真过程 采用如上数据,在HFSS中绘制侧馈微带天线,如图3.1所示:

图3.1 理论数据建模 仿真结果不理想,虽然衰减非常好,但频率偏差大约24MHz。应该能够做得更好 对L0从45.1到45.5mm进行扫描,得到图3.2

计算电磁学

电磁学: 电磁学是研究电磁现象的规衛[]应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学”但狭义来说是_ 门探讨电性与磁性交互关系的学科。主要硏究电磁波、电磁场以及有关电荷、带电物体的动力学等等。 计算电磁学: 内容简介: 本书在论述计算电磁学的产生背景、现状和发展趋势的基础上, 系统地介绍了电磁仿真中的有限差分法、人工神经网络在电磁建模中的应用,遗传算法在电磁优化中的应用等。 图书目录: 第一童绪论 1.1计算电磁学的产生背景 1.1.1高性能计算技术 1.1.2计算电磁学的重要性 1.1.3计算电磁学的硏究特点 1.2电磁场问题求解方法分类 1.2.1解析法 1.2.2数值法 1.2.3半解析数值法 13当前计算电磁学中的几种重要方法 13.1有限元法

1.3.2时域有限差分法 1.3.3矩量法 1.4电磁场工程专家系统 1.4.1复杂系统的电磁特性仿真 1.4.2面向CAD的复杂系统电磁特性建模1.4.3电磁场工程专家系统 第一篇电磁仿真中的有限差分法 第二童有限差分法 2.1差分运算的基本概念 2.2二维电磁场泊松方程的差分格式 2.2.1差分格式的建立 2.2.2不同介质分界面上边界条件的离散方法2.2.3第一类边界条件的处理 2.2.4第二类和第三类边界条件的处理 2.3差分方程组的求解 2.3.1差分方程组的特性 2.3.2差分方程组的解法 2.4工程应用举例 2.5标量时域有限差分法 2.5.1瞬态场标量波动方程 2.5.2稳定性分析 2.5.3网格色散误差

2.5.4举例 第三童时域有限差分法I——差分格式及解的稳定性3.1FDTD基本原理 3.1.1Yee的差分算法 3.1.2环路积分解释 3.2解的稳定性及数值色散 3.2.1解的稳定条件 3.2.2数值色散 3.3非均匀网格及共形网格 3.3.1渐变非均匀网格 3.3.2局部细网格 3.3.3共形网格 3.4三角形网格及平面型广义Yee网格 3.4.1三角形网格离散化 3.4.2数值解的稳定性 3.4.3平面型广义Yee网格 3.5半解析数值模型 3.5.1细导线问题 3.5.2增强细槽缝公式 3.5.3小孔耦合问题 3.5.4薄层介质问题 3.6良导体中的差分格式

微波课设八木天线设计

微波课设八木天线设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课设报告 课程名称:微波技术与天线 课设题目:八木天线的仿真设计 课设地点:电机馆跨越机房 专业班级:信息1002班 学号: 学生姓名: 指导教师: 2013/6/27 目录 1、设计摘要 2、设计原理 3、八木天线参数选择及设计要求 4、八木天线的HFSS10仿真 (1)建立模型 (2)确认设计 (3) S参数(反射参数) (4)2D辐射远区场方向图 (5)3D Polar 5、仿真结果分析 6、实验中的问题 7、心得体会

一、设计摘要 八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。 六元八木天线示意图 八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。主要作用是提高辐射能量。无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。 二、设计原理: 八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。 本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线。三、八木天线参数选择及设计要求

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

数学建模之层次分析法

第四讲层次分析法 在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。 比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。这些因素是相互制约、相互影响的。我们将这样的复杂系统称为一个决策系统。这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。层次分析法是解决这类问题的行之有效的方法。层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。 一、建立系统的递阶层次结构 首先要把问题条理化、层次化,构造出一个有层次的结构模型。一个决策系统大体可以分成三个层次: (1) 最高层(目标层):这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果; (2) 中间层(准则层):这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则; (3) 最低层(方案层):这一层次包括了为实现目标可供选择的各种措施、决策方案等。 比如旅游景点问题,我们可以得到下面的决策系统: 目标层——选择一个旅游景点 准则层——旅游费用、景色、居住、饮食、交通 方案层——宁波、普陀山、浙西大峡谷、雁荡山、楠溪江 二、构造成对比较判断矩阵和正互反矩阵 在确定了比较准则以及备选的方案后,需要比较若干个因素对同一目标的影响,从额确定它们在目标中占的比重。如旅游问题中,五个准则对于不同决策者在进行决策是肯定会有不同的重要程度,而不同的方案在相同的准则上也有不同的适合程度表现。层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

调频信号八木天线制作

八木五单元FM天线的制作 发表日期:2003年12月21日出处:调频发烧作者:甘铭晓【编辑录入:飞奔】 天线是接收机捕捉信号的工具,用于远程调频广播接收的天线大部分采用八木(YAGI)天线,八木天线的单元数接影响了接收范围,单元数越多,则方向越尖锐,增益越高,直距离越远. 中国的调频广播频段为87.5-108MHZ,而电视五频道的中心频率为88MHZ,所以五频道天线基本适合于远程调频广播接收.爱好者可购五频道电视天线代用,要求高的爱好者可将五频道电视天线稍加改后用.我建议用五单元的好,它具有较高的增益,且体积不大.普通的五频道五单元八木天线才十多元,购后改动最合算. 以下我介绍我使用天线的一些处理方法: 1.天线的匹配问题,一般天线的输出为300欧,而电缆多为75欧,阻抗不同就得进行匹配,否则高频信号是很难传输的.天线匹配器多为变压器式和U型半波环式,变压器式匹配器制作较复杂,线和磁环的选取直接影响匹配系数.而U型半波环式只需一段75欧的电缆就可以了.我应用时觉得U型半波环式好些. 2.天线的调试问题,安装好天线后并不是就有立杆见影的效果,需进行调试后才有不可思义的效果.首先要确定要接收电台的方向(因为天线为定向天线),将天线引子的方向对准电台方向.用接收机试收电台,然后找相应方向的一个最弱的信号调节天线的高度,找一个信号最强的位置后将天线定住. 3.使用天线放大器应注意的问题,目前市场上的天线放大器多为两个9018组合的,由于9018的工作噪声较大,要"发烧"最好将9018改用C3358或C3355低噪管.若使用放大器时在多个频点上出现不明的数码声(音频脉冲)干扰其它电台的信号,这是传呼发射台的谐波再生造成的,是由于天线放大器的滤波器问题,最好在输入端加一个BPF(88-108MHZ滤波器),可从旧的调频收音机上拆(形状如电视6.5MHZ滤波器).亦可在第一级放大器的耦合电容前对地加一个5-45P的电容. 4.天线与电缆的接头应注意防锈,天线一般架设在天台,日晒风吹后天线接口很易生锈,这样会影响信号的传输和天线的匹配,使接收效果变差.若有天线放大器的天线极易使放大器自激,最好在天线安装时将接口涂上防锈漆. 5.电缆安装时尽量拉直不要卷在一起,引入屋后最好在刚入屋处安个插座,打雷时可很快拔下. 6.天线架设时应注意防雷,高层建筑一般都有避雷针,避雷范围是以针尖为原点与针成45度角的伞形空间,天线应在此空间内才安全. 7.天线的保养,由于天线受风吹,日晒,雨淋后很快会被氧化,有时间可一年将天线洗一次,我是一年换一付天线的.电缆的所有接口一样要用95%的酒精清洗. 8.天线的反射器,振子和引向器不能和支架导通,要用塑料隔开! 9.大部分收音头是300欧输入的,可以将收音头里的300-75欧的匹配器断开成75欧接口. 一个调频接收系统并不是有了好天线,高级电缆就有很好的接收效果.而是要在天线,电缆和接收机相互配合下才可能的.就如我们音响发烧一样,音源,功放,线材,音箱相互搭配好才有好的效果一样.我们选择接收机时应注意,目前市场上的很多收音机都不适宜进行远程调频接收,普通的微型收音机主要是设计为了能收本地和邻近电台,它在调谐的工艺上花较少的工夫,邻频处理不好,它主要花在外形设计上.普通的收音头我认为手调的要比数调的好,目前国产的普通数调收音头主要设计在它的功能上,而不是求它的高灵敏度,手调收音机是我国民族工业的成熟产品,显然普通手调收音头比数调的好.但一些国产的数调机还是不错的,已可和一些进口产品比美了.在我的使用中发现汽车调频接收机相当好,不论是手调的还是数调的,它的灵敏度和邻频处理都很好,中强度信号在0.2MHZ完全可分离,主要它是用了一体化调谐器,一体调谐器不象普通调谐一样与中放和立体声解调设计在同一块板上,而是由专业厂家另外生产的,它不论工艺还是技术都是较好的.使用WALKMEN时,我认为手调的比数调的好,比如松下,爱华,索尼的收音功

层次分析法模型

二、模型的假设 1、假设我们所统计与分析的数据,都就是客观真实的; 2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况; 3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、 三、符号说明

四、模型的分析与建立 1、问题背景的理解 随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、 针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、 2、方法模型的建立 (1)层次分析法 层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、 通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、 我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、 (2)具体计算权重的AHP 法 AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据 W、 计算成对比较矩阵的特征值获得权重向量 k

手机双频天线设计论文综述

通信工程专业实训 题目:手机内置天线的设计 专业:通信2班 学号:1167119226 姓名:李盼 指导老师:杜永兴 分数:_________________

目录 摘要: 关键字: 第一章:背景介绍 第二章:实训过程记录第三章:实训结论 第四章:实训总结 第五章:参考文献

摘要:现在的电子通讯技术飞速发展,随着技术可经济的推进,人们对手机的要求越来越高,然而手机的基本功能就是打电话,而对手机的内置天线要求就更高难度更大,小型化,并且能工作在不同的频段下,文中主要研究双频手机PIFA天线。采用了开槽的的设计方法实现了天线的双频,工作性能良好,易于实现,现在大多数手机都使用这种天线。 关键字:PIFA天线,双频,GSM,DCS,HFSS 第一章:背景介绍 1.1 移动通信对手机天线的要求 天线最主要的功能在于转换两种不同传播介质中的电磁波能量。在能量转换的过程中,会出现收发信机与天线及天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发信机、天线以及传播介质之间形成一个连续的能量传输路径。 移动通信手机对天线的要求: 外在要求: 天线尺寸小,重量轻,剖面低,携带方便,机械强度好 电性能要求: 水平面要求有全向辐射方向图,频带宽,效率高,增益高,受周围环境影响小,对人体辐射伤害小 1.2 手机天线的指标意义 天线输入阻抗: 天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。这一数值对天线的辐射效率,天线的带内增益波动,天线前端的功率容量有很大的影响。手机天线是一种驻波天线,,天线的阻抗不匹配,将导致大量的信号反射,使天线的辐射效率降低,同时由于反射的影响使得天线在宽频带内的增益有抖动,如果天线的驻波为6,手机前端的击穿电压将降为原来的1/6,而功率容量就会下降。 手机天线驻波对天线效率的影响不可不慎。 天线的驻波要求,我们目前统一要求为小于3。

元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2 πθ=) 2/sin() 2/sin(1)(ψψψN N A =

式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时 0=m ?或π,也就是说阵的 各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: kd m ζ?-=cos 2π ?±=m

计算电磁学结课论文

《计算电磁学》学习心得 姓名:桑dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且, 麦克斯韦方程式对于结果拥有很强的预测能力: 对于一个复杂问题的麦克斯韦方程的解通常可以准确的预知实验结果。因此, 麦克斯韦方程的解对于提高我们对复杂系统之物理现象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛的应用前景: 例如纳米技术, 电脑微电子电路, 电脑芯片设计, 光学, 纳米光学, 微波工程, 遥感, 射电天文学, 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ●可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ●可以作为近似解和数值解的检验标准; ●在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2]。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。[3]

八木天线470MHZ

一、设计说明:作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛,它全称为“八木/宇田天线”,英文名Y AGI,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图1所示。主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。 二、系统规划传输方式:单向传输节目源:本系统电视节目包括无线电视和自办节目(一套)等。无线电视无线电视无线电视无线电视::::通过八木天线接收到的信号送到电视机,收看电视机节目。示意图如下(图一): 三、技术参数天线的性能直接影响电视机收看电视节目的质量重要因素,主要的技术参数有输入阻抗、工作频率、天线增益及方向性等。A.输入阻抗在谐振状态,天线如同一只电阻接在馈线端。常用馈线阻抗为50 ,如果天线输入阻抗也是50 ,那就达到了“匹配”,就能将天上的信号全部接收下来,所以在制作天线的时候一定要注意阻抗匹配的问题。二分之一波长偶极天线的输入阻抗约为67 ,二分之一波长折合振子的输入阻抗则高于前者4倍,当加了引向器、反射器后,阻抗关系就变得复杂起来了,总的来说八木比仅有基本振子的阻抗要低很多,且八木各单元间距大则阻抗高,反之阻抗变低,同时天线效率降低。有资料介绍,引向器与主振子间距0.15波长时阻抗最低,0.2-0.25时阻抗高,效率提高。这

相关文档