文档库 最新最全的文档下载
当前位置:文档库 › Gold序列产生及其特性实验

Gold序列产生及其特性实验

Gold序列产生及其特性实验
Gold序列产生及其特性实验

湖南科技大学

移动通信实验报告

姓名:吴文建

学号:1208030104

专业班级:应用电子技术教育一班

实验名称:GOLD序列产生及其特性实验

实验目的:1)掌握Gold序列的特性、产生方法及应用。

2) 掌握Gold序列与m序列的区别。

实验仪器:1、pc机一台2、

实验原理:

m序列虽然性能优良,但同样长度的m序列个数不多,且m序列之间的互相关函数并不理想(为多值函数)。

1.m序列优选对

m序列优选对是指在m序列集中,其互相关函数最大值的绝对值满足下式的两条n介m序列:

2.Gold序列的产生方法

Gold序列是m序列的组合序列,由同步时钟控制的两个码元不同的m序列优选对逐位模2加得到。这两个序列发生器的周期相同,速率相同,因而两者保持一定的相位关系,这样产生的组合序列与这两个自序列的周期也相同。当改变两个序列的相对位移,会得到一个新的Gold序列。Gold序列具有以下性质:

(1)两个m序列优选对经不同移位相加产生的新序列都是Gold序列,两个n级移位寄存器可以产生2n+1个Gold序列,周期均为2n?1。

(2)Gold序列的周期性自相关函数是一个三值函数,与m序列相比,具有良好的互相关特性。

Gold序列的产生有两种形式:并联形式和串联形式

实验步骤:

1.预习Gold序列的产生原理及性质及独立设计Glod序列产生方法。

2.画出Gold序列仿真流程图。

3.编写MATLAB程序并上机调试。

4.比较m序列与Glod序列的异同。

5.撰写实验报告。

实验数据、结果表达及误差分析:

实验仿真图形如图所示

实验编写程序(此程序在实验五编写程序之上方可运行):function c=gold()

n=7;

a=[1 1 1 1 1 1 1 1];

co=[];

for v=1:2^n-1

co=[co,a(1)];

a(8)=mod(a(5)+a(1),2);

a(1)=a(2);

a(2)=a(3);

a(3)=a(4);

a(4)=a(5);

a(5)=a(6);

a(6)=a(7);

a(7)=a(8);

end

m1=co;

b=[1 0 1 0 0 0 0 1];

生成m序列与gold序列

一、生成m序列 function [mseq] = m_sequence(fbconnection); n = length(fbconnection); N = 2^n-1; %m序列的长度 register = [zeros(1,n - 1) 1]; %定义移位寄存器的初始状态 mseq(1)= register(n); %m序列的第一个输出码元 for i = 2:N newregister(1)= mod(sum(fbconnection.*register),2); %寄存器与反馈的模2和 for j = 2:n, newregister(j)= register(j-1); end; register = newregister; %移位后的寄存器 mseq(i) = register(n); %新的寄存器输出 end clear all; close all; clc; fbconnection=[0 0 1 0 1]; %输入本原多项式系数,从C1开始 m_sequence=m_sequence(fbconnection); stem(m_sequence); %对m序列绘图 axis([0 35 -0.2 1.2]); grid on;

二、生成gold序列 function goldseq = g_sequence(connection1,connection2); msequence1 = m_sequence(connection1); %生成第一个m序列 msequence2 = m_sequence(connection2); %生成第二个m序列 N=2^length(connection1)-1; %gold序列长度 for i = 1:N; s = mod(msequence1+msequence2,2); %两个m序列模二加产生gold序列 goldseq = s; end clear all; close all; clc; connection1=[0 0 0 0 1 1]; connection2=[1 0 0 1 1 1]; goldseq = g_sequence(connection1,connection2);

伪随机序列的产生及应用设计-通信原理课程设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:信息工程学院 题目:伪随机序列的产生及应用设计 初始条件: 具备通信课程的理论知识;具备模拟与数字电路基本电路的设计能力;掌握通信电路的设计知识,掌握通信电路的基本调试方法;自选相关电子器件;可以使用实验室仪器调试。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、设计伪随机码电路:产生八位伪随机序列(如M序列、Gold 序列等); 2、了解D/A的工作原理及使用方法,将伪随机序列输入D/A中(如 DAC0808),观察其模拟信号的特性; 3、分析信号源的特点,使用EWB软件进行仿真; 4、进行系统仿真,调试并完成符合要求的课程设计说明书。 时间安排: 二十二周一周,其中3天硬件设计,2天硬件调试 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要................................................................................................................................ I 1理论基础知识 (1) 1.1伪随机序列 (1) 1.1.1伪随机序列定义及应用 (1) 1.1.2 m序列产生器 (2) 1.2芯片介绍 (4) 1.2.1移位寄存器74LS194. (4) 1.2.2移位寄存器74LS164 (5) 1.2.3 D/A转换器DAC0808 (6) 2 EWB软件介绍 (8) 3设计方案 (9) 4 EWB仿真 (11) 5电路的安装焊接与调试 (13) 6课程设计心得体会 (14) 参考文献 (15) 附录1 (16)

伪随机序列发生器本科毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

实验2 空域信息隐藏算法

信息隐藏技术实验报告 一、实验目的 (1)了解信息隐藏算法的分类方式和分类依据 (2)理解空域信息隐藏算法的基本思想 (3)掌握最低有效位算法原理 (4)完成基于LSB的图像信息隐藏 二、实验内容 载体图像为24位真彩色bmp图像Lena.bmp,嵌入的秘密图像为黑白的bmp 图像LSB.bmp,要求采用空域信息隐藏算法,将LSB.bmp嵌入到Lena.bmp的最低有效位中,同屏显示原载体图像、需要嵌入的秘密图像、嵌入了秘密图像的伪装载体、提取的秘密图像。(编程语言不限) 三、实验步骤和设计思想 实现空域图像水印方法中的LSB算法:原始图像选取大小为512*512的elain 图像或者goldhill图像,选择一个LSB水印算法以及适当的水印序列;利用选定的水印嵌入算法将水印信息嵌入到原始图像中。在嵌入水印之后的图像中提取水印,是否可以判定图像中含有水印,同时计算含水印图像的峰值信噪比。将含有水印的图像缩小为256*256之后,再放大为512*512,这时再提取水印,是否可以判定图像中含有水印。 四、程序清单 % LSB 算法: clear; A=imread('elain.bmp'); B=A; message='www`s homework'; m=length(message); n=size(A); k=1; for i=1:n(1) for j=1:n(2) if k<=m %如果消息输入完成则为0

h=bitget(double(message(k)),8:-1:1); else h=[0,0,0,0,0,0,0,0]; end c=bitget(A(i,j),8:-1:1); if mod(j,8) == 0 p=8; else p=mod(j,8); end v=0; for q=1:7 v=xor(v,c(q)); end v=xor(v, h(p) ); B(i,j)=bitset(A(i,j),1,v); if mod(j,8) == 0 k=k+1; end end end % 提取信息 out=char; tmp=0 ; t=1; for i=1:n(1) for j=1:n(2) c=bitget(B(i,j),8:-1:1); v=0; for q=1:8 v=xor(v,c(q)); end if mod(j,8)==0 p=1; else p=9-mod(j,8); end tmp=bitset(tmp,p,v); if mod(j,8)==0 out(t)=char(tmp); t=t+1; tmp=0; end end

扩频编码M序列和gold序列

M序列 由n级移位寄存器所能产生的周期最长的序列。这种序列必须由非线性移位寄存器产生,并且周期为2n(n 为移位寄存器的级数)。例如,考察图中a的非线性反馈移位寄存器,其状态转移关系如表:

状态(a k-3,a k-2,a k-1)的接续状态是(a k-2,a k-1,a k),其中a k=a k-3嘰a k-1嘰1嘰a k-2a k-1是一种非线性逻辑。从任一状态出发,例如从(000)出发,其接续状态恰好构成一个完全循环(图b),由此产生一个周期为23=8的3级序列。M序列最早是用抽象的数学方法构造的。它出现于组合数学的一些数学游戏中,例如L.欧拉关于哥尼斯堡的七桥问题等。后来发现这种序列具有某些良好的伪随机特性。例如,M序列在一个周期中,0与1的个数各占一半。同时,同样长度的0游程与1游程也各占一半。所有这些性质在数据通信、自动控制、光学技术和密码学诸领域中均有重要应用。 隐蔽通信内容的通信方式。为了使非法的截收者不能理解通信内容的含义,信息在传输前必须先进行各种形式的变化,成为加密信息,在收信端进行相应的逆变化以恢复原信息。电报通信、电话通信、图像通信和数据通信,都有相应的保密技术问题。另一方面,为了从保密通信中获得军事、政治、经济、技术等机密信息,破译技术也在发展。保密技术和破译技术是在相互对立中发展起来的。 1881年世界上出现了第一个电话保密专利。电话保密开始是采用模拟保密或置乱的方法,即把话音的频谱或时间分段打乱。置乱后的信号仍保持连续变化的性质。在第二次世界大战期间,频域和时域的置乱器在技术上已基本成熟。70年代以来,由于采用集成电路,电话保密通信得到进一步完善。但置乱器仍是有线载波和短波单边带电话保密通信的主要手段。模拟保密还可以采用加噪声掩盖、人工混响或逆向混响等方法,但因恢复后话音的质量大幅度下降或保密效果差,这些方法没有得到推广应用。数字保密是由文字密码发展起来的。数字信号(包括由模拟信号转换成的数字信号),由相同速率的密码序列加密,成为数字保密信号;保密信号传输到收信端后由同一密码序列去密,恢复原数字信号。随着集成电路的发展,数字保密通信已成为保密通信的主要发展方向。话音、图像等模拟信号都可以用数字保密方式。一般来说,数字破译要比模拟破译困难得多。数字保密的主要限制是传输数字信号所需带宽要比传输模拟信号的带宽大好多倍。 模拟保密通信话音信号置乱后的带宽基本保持不变,这是模拟保密通信的一个特点。但是,置乱后恢复的话音质量有所下降。置乱的过程越复杂,则话音质量下降的程度越大。 倒频用倒频器(图1)把话音频谱颠倒过来,使高频变为低频,低频变为高频,这是最简单的一种频域置乱方法。频域置乱器的基本电路是平衡调制器和带通滤波器。平衡调制器可以搬移和倒置频谱,而滤波器可以滤取所需要的频谱成分。输入的话音信号经过平衡调制器后输出上、下两个边带。适当地选择

伪随机序列的产生与仿真

基于MATLAB 的伪随机序列的产生 及相关特性的仿真 一、相关概念: 平稳随机过程的各态历经性, 随机信号的频谱特性, 自相关函数, 互相关函数 二、工程背景与理论基础 根据香农的理论,在高斯白噪声干扰情况下,在平均功率受限的信道上,实现有效和可靠通信的最佳信号是具有白噪声统计特性的信号。扩频通信正是由此而来的,在扩频通信最大的优点就是具有强大的抗噪声性能,使有用信号几乎可以淹没在噪声传播。 故扩频通信对扩频序列一般有如下要求: (1)尖锐的自相关特性 (2)尽可能小的互相关值 (3)足够多的序列数,具有良好的伪随机性 (4)序列均衡性好,0、1等概 (5)工程上易于实现 伪随机序列具有以上所以有点,故在CDMA 扩频通信系统中,伪随机序列被作为扩频码之一。下面在理论上阐述下伪随机序列(即m 序列)的产生原理及其所具有的相关数学性质。然后在用MATLAB 语言实现m 序列的产生,并就其相关特性进行仿真,仿真结果结果表明该方法是可行的。 1、 m 序列简单介绍 m 序列是最长线性反馈移位寄存器序列的简称,是由带线性反馈的移位寄存器的周期最长的序列。它是周期为r N=2-1的伪随机序列,r 是移位寄存器的阶数。 下面是IS-95CDMA 系统中I 信道引导PN 序列的生成多项式和线性反馈移位寄存器的框图。 I 支路生成表达式:15139875()1I P x x x x x x x =++++++ 123456789101112131415 输出 图1-1 I 路信号产生器 m 序列具有以下基本性质: (1)均衡性:在m 序列的一个周期中,“1”的个数之比“0”的个数多一个。这表明序列平均性很好,即“1”和“0”几乎就是随机出现的,具有较好的随机性。 (2)具有尖锐的自相关特性,相互不同码字之间几乎是完成正交的。 周期函数的自相关函数定义为:/2/201R()()()T s s T T s t s t dt ττ-=+?,式中0T 是s()t 的周期。

伪随机序列m和M的生成算法实现

m-M 文档 1 相关概念 随机序列:可以预先确定又不能重复实现的序列 伪随机序列:具有随机特性,貌似随机序列的确定序列。 n 级线性移位寄存器,能产生的最大可能周期是21n p =-的序列,这样的序列称为m 序列。 n 级非线性移位寄存器,能产生的最大周期是2n 的序列,这样的序列称为M 序列。 图1线性移位寄存器 线性移位寄存器递推公式 11221101 n n n n n n i n i i a c a c a c a c a c a ----==++++= ∑ 线性移位寄存器的特征方程式 010 ()n n i n i i f x c c x c x c x ==+++= ∑ ,ci 取值为0或1 定义 若一个n 次多项式f (x )满足下列条件: (1) f (x )为既约多项式(即不能分解因式的多项式); (2) f (x )可整除(x p +1), p =2n -1; (3) f (x )除不尽(x q +1), q

由抽象代数理论可以证明,若α是n 次本原多项式()f x 的根,则集合2 2 {0,1,}n F α-= 可 构成一个有限的扩域(2)n G F 。F 中的任一元素都可表示为1110n n a a a αα--+++ ,这样n 个分量的有序序列110(,,,)n a a a - 就可表示F 中的任一元素。 若既约多项式()f x 的根能够形成扩域(2)n G F ,则该多项式是本原多项式,否则不是本原多项式。 2.2 二元域(2)GF 上的本原多项式算法实现 (2)GF 上n 次多项式的通式为 1 2 1210()...n n n n n f x x a x a x a x a ----=++++,系数是二元域上的元素(0,1) 既约多项式既不能整除,1x x +,0和1不可能是()f x 的根,即0a =1, ()f x 的项数一定为奇数。 另外,一个既约多项式是否能形成(2)n G F ,从而判断它是否为本原多项式。N 次多项式的扩域,其中,120,1,,,n ααα 一定在扩域中,需要判断的是12 2 ,n n αα+- 是否也在扩域 中,从而形成全部扩域(2)n G F ,若在,则该n 次既约多项式是本原多项式,否则不是。 (1)给定二元多项式 1 2 1210()...n n n n n f x x a x a x a x a ----=++++,01a = 设α是f(x)扩域中的一个元素,且f(α)=0则有: n n-1 n-11=a ++a +1αα α (1) (2)从n α开始,计算α的连续幂。在计算过程中,当遇到α的幂次为n 时,将(1)代入,一直计算到n 2 -2 α (形成GF (2n )),再计算n 2 -1 α 。若n 2-1 α =1,则证明()f x 能被n 21 x 1-+整 除,而不能整除1q x +(21n q <-),判定为本原多项式。在计算α的连续幂过程中,若 q x =1(21n q <-),则证明()f x 能被1q x +整除,判定为非本原多项式,停止计算。 在计算机实现时,n 个分量的有序序列110(,,)n a αα- 与α的任一连续幂有着一一对应的 关系,可以用有序序列110(,,)n a αα- 来表示α的任一连续幂。q α用110(,,)q q q n a αα- 来

GPS信号调制

GPS课程设计 实验报告(1) 学院 姓名LSC 班级 学号指导教员 一、试验名称:GPS信号调制 二、试验目的: 1. 熟悉传统GPS信号调制的基本流程; 2. 掌握PRN序列的产生方法及其基本特性; 3. 掌握DSSS调制和BPSK调制的基本原理和实现方法; 4. 训练由MATLAB编程进行仿真的能力。 三、试验内容 1. 用MATLAB编程产生一段随机的二进制比特流,作为原始的导航电文数据。 2. 对以上导航电文数据进行DSSS调制,所用PRN序列自选(需编写PRN 序列产生子程序,并画出该PRN序列的自相关函数和互相关函数。编写出GPS C/A 码产生子程序)。 3. 对DSSS调制后的序列进行BPSK调制,频率自定。画出调制后信号的波形。 四、试验原理: 4.1 C/A码 C/A码(Coarse Acquisition Code)是Gold码,用于粗测距和捕获GPS 卫星信号。它是由两个10级反馈移位寄存器组合产生的,其序列长度为1023(基

数码)。因为C/A码的基码速率是 1.023MHz,因此伪随机序列的重复周期是1023/1.023*106或1ms。 图1描述了GPS C/A码发生器的结构方案。 图1 C/A码发生器 两个移位寄存器于每星期日子夜零时,在置“1”脉冲作用下处于全“1”状态, 同时在频率为f 1=f /10=1.023MHz时钟脉冲驱动下,两个移位寄存器分别产生码 长为N=210-1=1023、周期为1ms的两个m序列G 1(t)和G 2 (t)。这时G 2 (t)序列的 输出不是在该移位寄存器的最后一个存储单元,而是选择其中两个存储单元进行 二进制相加后输出,由此得到一个与G 2(t)平移等价的m序列G 21 (即与延时等价)。 再将其与G 1 (t)进行模二相加,将可能产生1023种不同结构的C/A码。C/A码不是简单的m序列,而是由两个具有相同码长及数码率,但结构不同的m序列相乘所得到的组合码,称为戈尔德(Gold)序列。 采用不同的it 0值,可能产生1023个G 2 (t),再加上G 1 (t)和G 2 (t)本身,共可能 产生1025种结构不同的C/A码供选用。这些C/A码具有相同的码长 N=210-1=1023bit,相同的码元宽t u =1/f 1 =0.98μs(相当于293.1 m)和相同的周

m序列和Gold序列特性研究

扩频通信实验报告 - I- Harbin Institute of Technology 扩频通信实验报告 课程名称: 扩频通信 实验题目: Gold 码特性研究 院 系: 电信学院 班 级: 通信一班 姓 名: 学 号: 指导教师: 迟永钢 时 间: 2012年5月8日 哈尔滨工业大学

第1章实验要求 1.以r=5 1 45E为基础,抽取出其他的m序列,请详细说明抽取过程; 2.画出r=5的全部m序列移位寄存器结构,并明确哪些序列彼此是互反多项式; 3.在生成的m序列集中,寻找出m序列优选对,请确定优选对的数量,并画 出它们的自相关和互相关函数图形; 4.依据所选取的m序列优选对生成所有Gold序列族,确定产生Gold序列族的 数量,标出每个Gold序列族中的所有序列,并实例验证族内序列彼此的自相关和互相关特性; 5.在生成的每个Gold序列族内,明确标出平衡序列和非平衡序列,并验证其 分布关系。 6.完整的作业提交包括:纸质打印版和电子版两部分,要求两部分内容统一, 且在作业后面附上源程序,并加必要注释。 7.要求统一采用Matlab软件中的M文件实现。

第2章 实验原理 2.1 m 序列 二元m 序列是一种伪随机序列,有优良的自相关函数,是狭义伪随机序列。m 序列易于产生于复制,在扩频技术中得到了广泛应用。 2.1.1 m 序列的定义 r 级非退化的移位寄存器的组成如图1所示,移位时钟源的频率为c R 。r 级线性移位寄存器的反馈逻辑可用二元域GF(2)上的r 次多项式表示 2012() {0,1}r r i f x c c x c x c x c =++++∈ (1) 图 2-1 r 级线性移位寄存器 式(1)称为线性移位寄存器的特征多项式,其给出的表示反馈网络的而逻辑关系式是现行的。因此成为线性移位寄存器。否则称为,非线性移位寄存器。 对于动态线性移位寄存器,其反馈逻辑也可以用线性移位寄存器的递归关系式来表示 112233 {0,1}i i i i r i r i a c a c a c a c a c ----=++++∈ (2) 特征多项式(1)与递归多项式(2)是r 级线性移位寄存器反馈逻辑的两种不同种表示法,因其应用的场合不同而采用不同的表示方法。以式(1)为特征多项式的r 级线性反馈移位寄存器所产生的序列,其周期21r N ≤-。假设以GF(2)域上r 次多项式(1)为特征多项式的r 级线性移位寄存器所产生的非零序列{}i a 的周期为21r N =-,称序列为{}i a 是最大周期的r 级线性移位寄存器序列,简称m 序列。

一种新的混沌伪随机序列生成方式

第28卷第7期电子与信息学报V ol.28No.7 2006年7月 Journal of Electronics & Information Technology Jul.2006 一种新的混沌伪随机序列生成方式 罗启彬 张 健 (中国工程物理研究院电子工程研究所绵阳 621900) 摘要利用构造的Hybrid混沌映射,通过周期性改变混沌迭代初值来产生混沌伪随机序列。理论和统计分析可知,该混沌序列的各项特性均满足伪随机序列的要求,产生方法简单,具有较高的安全性和保密性,是一类很有应用前景的伪随机加密序列。 关键词混沌序列, 加密, Lyapunov指数,自相关 中图分类号:TN918 文献标识码:A 文章编号:1009-5896(2006)07-1262-04 A New Approach to Generate Chaotic Pseudo-random Sequence Luo Qi-bin Zhang Jian (Institute of Electronic Engineering, CAEP, Mianyang 621900,China) Abstract This paper proposes hybrid mapping to generate chaotic sequence, by altering initial value periodically. The results show that the properties of the hybrid chaotic sequence are good,and the sequence generator can be easily realized. It is a class of promising pseudo-random sequence in practical applications. Key words Chaotic sequence, Encryption, Lyapunov exponent, Auto-correlation 1 引言 混沌序列是一种性能优良的伪随机序列,其来源丰富,生成方法简单。通过映射函数、生成规则以及初始条件便能确定一个几乎无法破译的加密序列。因此,混沌加密受到越来越多的关注,近年来被广泛应用于保密通信领域[1-4]。 将混沌理论应用于流密码是1989年由Matthews[5]最先提出。迄今为止,利用混沌映射产生随机序列的理论研究很多。但是,混沌序列发生器总是用有限精度来实现,其特性由于有限精度效应会与理论结果大相径庭。因此,有限精度效应是混沌序列从理论走向应用的主要障碍。文献[6]用m 序列与产生的混沌序列“异或”来克服有限精度的影响,但由于微扰是随机的,不易产生,而且系统分布以及相关性能取决于附加的m序列而不是混沌系统本身。文献[7]通过构造变参数复合混沌系统来实现有限精度混沌系统。本文利用构造的分段非线性Hybrid映射,通过周期性地改变混沌迭代初值的办法来产生混沌序列,克服了序列有限精度效应的影响。计算机数值实验表明所产生的混沌序列的各项特性均较好,产生方法简单,具有较高的安全性,是一类很有应用前景的伪随机加密序列。 本文第2节给出了混沌随机序列发生器的产生过程,在此基础上讨论了混沌系统的扰动问题;第4节通过计算机仿真来验证所产生的混沌伪随机序列的性质;最后是结论。 2004-11-22收到,2005-08-08改回 中国工程物理研究院科学技术基金面上资助课题(20050429) 2 序列产生 由于Logistic映射和Tent映射的复杂度都不高,由此产生的混沌加密序列的安全性能都不是非常理想。本文把两者相结合,构造出一种新的混沌迭代映射——Hybrid映射: 2 1 1 2 (1)10 =()= 1, 0<1 k k k k k k b u x x x f x u x x + ???<≤ ? ? ?< ?? , (1) 该映射不但继承了Logistic映射和Tent映射容易产生的特点,而且还能增加混沌系统的安全性。 当初值x0=0.82,u1=1.8,u2=2.0,b=0.85时,此映射处于混沌态,产生的混沌序列如图1所示,其中横轴是迭代次数k,纵轴是经不断迭代得到的混沌状态空间变量x(k)。图1(a)为初值等于0.82的Hybrid混沌映射时序图,图1(b)为Hybrid映射对迭代初值高度敏感性的示意图(初值相差10-15)。 图1 (a) Hybrid mapping 的随机特性 (b) Hybrid mapping 对初值的敏感特性 Fig.1 (a) Randomicity of Hybrid mapping (b) Sensitivity of Hybrid mapping 把生成的实值混沌随机序列{x k}转化为二进制随机序列{S k},按如下方法实施:

实验一 伪随机码发生器实验

实验一伪随机码发生器实验 电科1103 杨帆 3110104337 一、实验目的 1、掌握伪随机码的特性。 2、掌握不同周期伪随机码设计。 3、用基本元件库和74LS系列元件库设计伪随机码。 4、了解ALTERA公司大规模可编程逻辑器件EPM7128SLC84内部结构和应用。 5、学习FPGA开发软件MAXPLUSⅡ,学习开发系统软件中的各种元件库应用。 6、熟悉通信原理实验板的结构。 二、实验仪器 1、计算机一台 2、通信基础实验箱一台 3、100MHz示波器一台 三、实验原理 伪随机码是数字通信中重要信码之一,常作为数字通信中的基带信号源; 扰码;误码测试;扩频通信;保密通信等领域。伪随机码的特性包括四个方 面: 1、由n级移位寄存器产生的伪随机序列,其周期为-1; 2、信码中“0”、“1”出现次数大致相等,“1”码只比“0”码多一个; 3、在周期内共有-1游程,长度为i 的游程出现次数比长度为i+1的游程出现 次数多一倍; 例如:四级伪码产生的本原多项式为X 4 +X 3+1。 利用这个本原多项式构成的4级伪随机序列发生器产生的序列为: 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 四、实验内容及步骤 1、在MAXPLUSⅡ设计平台下进行电路设计 1.1 四级伪随机码发生器电路设计 电路原理图如图1-2所示。

在MAXPLUS II 环境下输入上述电路,其中:dff ------ 单D触发器 xor ------ 二输入异或门 nor4 ------ 四输入或非门 not ------ 反相器 clk ------ 时钟输入引脚(16M时钟输入) 8M ------ 二分频输出测试点引脚 nrz ------ 伪随机码输出引脚

Gold序列的仿真研究

Gold序列的仿真研究 Gold序列的仿真研究 摘要: Gold序列是R·Gold提出的一种基于m序列的码序列,这种序列有较优良的自相关和互相关特性,构造简单,产生的序列数多,因而获得了广泛的应用。本文对Gold序列进行仿真研究,首先介绍了扩频通信中常用的m序列和Gold序列码产生的方法原理和性质,运用Matlab对Gold码的生成和性能进行了仿真分析。 关键词:伪随机序列;Gold序列;m序列;Matlab仿真 SIMULATION OF GOLD SEQUENCES Abstract:Gold sequences is proposed by R ? Gold which is based on m sequences. Gold sequences has good properties, such as good autocorrelation and cross-correlation, easy to construct and more sequences, etc, therefore it has wide applications. This paper investigates the Gold sequences. The principle and performance of m sequences and Gold sequences in spread spectrum communication are first introduced in the paper. Simulation by Matlab is also provided in the paper to analyze the nature of Gold sequences. Key words: Pseudo-random sequence;Gold sequence;m sequence;Matlab simulation

Gold序列与m序列仿真应用

1. 绪论 m 序列具有优良的双值自相关特性,但互相关特性不是很好。作为CDMA 通信地址码时,由于互相关特性不理想,使得系统内多址干扰影响增大,且可用地址码数量较少。在某些应用场合,利用狭义伪随机序列复合而成复合序列更为有利。这是因为通过适当方法构造的复合序列具有某些特殊性质。Gold 序列就是一种复合序列,而且具有良好的自相关与互相关特性,地址码数量远大于m 序列,且易于实现、结构简单,在工程上得到广泛应用。 表1是m 序列和Gold 序列的主要性能比较,表中max ?为m 序列的自相关峰值,(0)s ?为自相关主峰;()t n 为Gold 序列的互相关峰值,(0)g ?为其自相关主峰。从表1中可以看出:当级数n 一定时,Gold 序列中可用序列个数明显多于m 序列数,且Gold 序列的互相关峰值和主瓣与旁瓣之比都比m 序列小得多,这一特性在实现码分多址时非常有用。 表1. m 序列和Gold 序列性能比较 在引入Gold 序列概念之前先介绍一下m 序列优选对。m 序列优选对,是指在m 序列集中,其互相关函数绝对值的最大值(称为峰值互相关函数)max ()R τ最接近或达到互相关值下限(最小值)的一对m 序列。 设{a i }是对应于r 次本原多项式F 1(x )所产生的m 序列, {b i } 是另一r 次本原多项式F 2(x )产生的m 序列,峰值互相关函数满足 12 max 2 221()214r ab r r R τr ++?+?≤??+? 为奇数 为偶数但不是的整倍数 (1) 则m 序列{a i }与{b i }构成m 序列优选对。 例如:6r =的本原多项式61()1F x x x =++与6522()1F x x x x x =++++所产生的m 序列{}i a 与{}i b ,其峰值互相关函数2622 2 max ()172 12117r ab R τ++=≤+=+=。满足式(1) ,故{}i a 与{}i b 构成m 序列优选对。而本原多项式65323()1F x x x x x =++++所产生的m 序列 {}i c ,与m 序列{}i a 的峰值互相关函数max ()2317ac R τ=>,不满足上式,故{}i a 与{}i c 不 是m 序列优选对。 2. Gold 序列 1967年,R·Gold 指出:“给定移位寄存器级数r 时,总可找到一对互相关函数值是最小的码序列,采用移位相加方法构成新码组,其互相关旁瓣都很小,且自相关函数和互相关函数均有界”。这样生成的序列称为Gold 码(Gold 序列)。 Gold 序列是m 序列的复合序列,由两个码长相等、码时钟速率相同的m 序列优选对的模2

伪随机序列发生器

伪随机序列发生器 一、实验目的: 理解伪随机序列发生器的工作原理以及实现方法,掌握MATLAB\DSP BUILDER设计的基本步骤和方法。 二、实验条件: 1. 安装WindowsXP系统的PC机; 2. 安装QuartusII6.0 EDA软件; 的序列发生器,并通 ⒈ ⒉ ⒊⒋⒌⒍⒎⒏ ⒐ ⒑ ⒒⒓⒔⒕⒖⒗ 四、实验原理: 对于数字信号传输系统,传送的数字基带信号(一般是一个数字序列),由于载有信息,在时间上往往是不平均的(比如数字化的语音信号),对应的数字序列编码的特性,不利于数字信号的传输。对此,可以通过对数字基带信号预先进行“随机化”(加扰)处理,使得信号频谱在通带内平均化,改善数字信号的传输;然后在接受端进行解扰操作,恢复到原来的信号。伪随机序列广泛应用与这类加扰与解扰操作中。我们下面用DSP BUILDER来构建一中伪随机序列发生器——m序列发生器,这是一种很常见的伪随机序列发生器,可以由线性反馈器件来产生,如下图:

其特征多项式为: ()∑==n i i i x C x F 0 注:其中的乘法和加法运算都是模二运算,即逻辑与和逻辑或。 可以证明,对于一个n 次多项式,与其对应的随机序列的周期为。 12?n 接下来我们以为例,利用DSP BUILDER 构建这样一个伪随机序列发生器。 125++x x 开Simulink 浏览器。 Simulink 我们可以看到在Simulink 工作库中所安装的Altera DSP Builder 库。 2. 点击Simulink 的菜单File\New\Model 菜单项,新建一个空的模型文件。

无线通信原理与应用-实验二 Gold序列及截短的Gold序列相关特性

实验三、Gold序列及截短的Gold序列相关特性 一、实验目的 了解常用正交序列--Gold序列及截短Gold序列的自相关及互相关特性。测量实验系统在异步CDMA工作方式下作为基站地址码的中的截短Gold序列。 二、实验内容 1. 用示波器测量常用正交序列--Gold序列及截短Gold序列的波形及其相关运算后的自相关函数及互相关函数,了解其相关特性。 2. 用示波器测量实验系统在异步CDMA工作方式下作为基站地址码的中的截短Gold 序列(长32位)。 三、基本原理 见实验一的”三、基本原理”。 下面是本实验待测量的Gold序列及截短Gold序列。 1. Gold序列 (1)5阶Gold序列 表3-3-1 5阶Gold序列的自相关特性测量(序列长25-1=31位) PN i(t) 0000,0000,1001,0100,1001,1110,1010,110.用实验一表3-1-2相位的二个5阶m序列优选对模二加产生 PN j(t) 同上同上表3-3-2 5阶Gold序列的互相关特性测量(序列长25-1=31位) PN i(t) 0000,0000,1001,0100,1001,1110,1010,110.用实验一表3-1-2相位的二个5阶m序列优选对模二加产生 PN j(t) 0110,1010,1010,1111,0111,1010,0110,111.用实验一表3-1-2的第一个序列与延时27位(即超前4位)的第二个序列模二加产生 这就是本实验系统异步CDMA方式的二个基站地址码,只是相位不同(见式(2-2))。 54

(2)7阶Gold序列 表3-3-3 7阶Gold序列的自相关特性测量(序列长27-1=127位) PN i(t) 0000,0000,0011,1111,0000,1100,1110,1111, 用实验一表3-1-4相位 的二个7阶m序列优选 对模二加产生 0100,1100,0000,0010,0001,1010,1010,1100, 0111,1100,1001,0011,0101,1101,0111,0101, 0000,1100,0000,1000,0111,1000,1011,010. PN j(t) 同上同上表3-3-4 7阶Gold序列的互相关特性测量(序列长27-1=127位) PN i(t) 0000,0000,0011,1111,0000,1100,1110,1111, 用实验一表3-1-4相位 的二个7阶m序列优选 对模二加产生 0100,1100,0000,0010,0001,1010,1010,1100, 0111,1100,1001,0011,0101,1101,0111,0101, 0000,1100,0000,1000,0111,1000,1011,010. PN j(t) 0001,1110,0111,1010,1001,0001,1010,0000, 用实验一表3-1-4第一 个序列与延时123位 (即超前4位)的第二个 序列模二加产生1110,1101,1100,0110,1001,0001,1111,0111, 1010,0100,0100,0001,1011,0011,0001,0000, 0101,0011,1100,1000,1111,1011,1011,111. 2. 截短的Gold序列 (1)截短的Gold序列一:Gc1序列 表3-3-5 Gc1序列自相关特性测量(序列长32位) PN i(t) 0010,1101,1110,0111,0010,1011,0011,0000.从实验一表3-1-4 PN i的第40位码片开始截取32位 PN j(t) 同上同上 表3-3-6 Gc1序列互相关特性测量(序列长32位) PN i(t) 0010,1101,1110,0111,0010,1011,0011,0000.从实验一表3-1-4 PN i的第40位码片开始截取32位 PN j(t) 0010,1100,1110,1010,0111,1101,0000,1110.从实验一表3-1-4 PN j的第40位码片开始截取32位 55

Gold序列产生及其特性实验

湖南科技大学 移动通信实验报告 姓名:吴文建 学号:1208030104 专业班级:应用电子技术教育一班 实验名称:GOLD序列产生及其特性实验 实验目的:1)掌握Gold序列的特性、产生方法及应用。 2) 掌握Gold序列与m序列的区别。 实验仪器:1、pc机一台2、 实验原理: m序列虽然性能优良,但同样长度的m序列个数不多,且m序列之间的互相关函数并不理想(为多值函数)。 1.m序列优选对 m序列优选对是指在m序列集中,其互相关函数最大值的绝对值满足下式的两条n介m序列: 2.Gold序列的产生方法 Gold序列是m序列的组合序列,由同步时钟控制的两个码元不同的m序列优选对逐位模2加得到。这两个序列发生器的周期相同,速率相同,因而两者保持一定的相位关系,这样产生的组合序列与这两个自序列的周期也相同。当改变两个序列的相对位移,会得到一个新的Gold序列。Gold序列具有以下性质: (1)两个m序列优选对经不同移位相加产生的新序列都是Gold序列,两个n级移位寄存器可以产生2n+1个Gold序列,周期均为2n?1。 (2)Gold序列的周期性自相关函数是一个三值函数,与m序列相比,具有良好的互相关特性。 Gold序列的产生有两种形式:并联形式和串联形式 实验步骤: 1.预习Gold序列的产生原理及性质及独立设计Glod序列产生方法。 2.画出Gold序列仿真流程图。

3.编写MATLAB程序并上机调试。 4.比较m序列与Glod序列的异同。 5.撰写实验报告。 实验数据、结果表达及误差分析: 实验仿真图形如图所示 实验编写程序(此程序在实验五编写程序之上方可运行):function c=gold() n=7; a=[1 1 1 1 1 1 1 1]; co=[]; for v=1:2^n-1 co=[co,a(1)]; a(8)=mod(a(5)+a(1),2); a(1)=a(2); a(2)=a(3); a(3)=a(4); a(4)=a(5); a(5)=a(6); a(6)=a(7); a(7)=a(8); end m1=co; b=[1 0 1 0 0 0 0 1];

GOLD 序列码产生及特性分析实验

实验二 GOLD 序列码产生及特性分析实验 一、实验目的 1. 了解Gold 码的性质和特点; 2. 熟悉Gold 码的产生方法; 二、实验内容 1. 熟悉Gold 码的的产生方法; 2. 测试Gold 码的的波形; 三、实验原理 m 序列虽然性能优良,但同样长度的m 序列个数不多,且m 序列之间的互相关函数值并不理想(为多值函数)。1967年,R .Gold 提出和讨论了一种新的序列,即Gold 码序列。这种序列有较为优良的自相关和互相关特性,构造简单,产生的序列数多,因而得到广泛的应用。 a) m 序列优选对 m 序列优选对是指在m 序列集中,其互相关函数最大值的绝对值满足下式的两条n 阶m 序列: 表2-1给出了部分m 序列优选对。 表2-1 部分优选对码表 级数 基准本原多项式 配对本原多项式 7 211 217,235,277,325,203,357,301,323 9 1021 1131,1333 10 2415 2011,3515,3177 11 4445 4005,5205,5337,5263 2.Gold 码的产生方法 Gold 码是m 序列的组合码,由同步时钟控制的两个码字不同的m 序列优选对逐位模2加得到,其原理如图2-1所示。这两个码发生器的周期相同,速率也相同,因而两者保持一整除为偶数,但不能被位奇数41212)(2/)2(2/)1(n n R n n xy ???++≤++τ

定的相位关系,这样产生的组合码与这两个子码序列的周期也相同。当改变两个m 序列的相对位移时,会得到一个新的Gold 码。Gold 码虽然是m 序列模2加得到的,但它已不再是m 序列,不过仍具有与m 序列近似的优良特性,各个码组之间的互相关特性与原来两个m 序列之间的互相关特性一样,最大的互相关值不会超过原来两个m 序列间最大互相关值。Gold 码最大的优点是具有比m 序列多得多的独立码组。 图2-1 Gold 码序列发生器 Gold 码序列具有以下性质: (1)两个m 序列优选对经不同移位相加产生的新序列都是Gold 序列,两个n 级移位寄存器可以产生2n +1个Gold 序列,周期均为2n -1。 (2)Gold 码序列的周期性自相关函数是一个三值函数,与m 序列相比,具有良好的互相关特性。 Gold 码的产生有两种形式:并联形式和串联形式。例如m 序列本原多项式为:61)(x x x f ++=和6521)(x x x x x f ++++=,构成的并联和串联形式的Gold 码发生器如2-2图所示。(a )为并联形式,(b )为串联形式。 (a )并联结构 (b )串联结构 图2-2Gold 码发生器 (a ) 并联形式(b )串联形式 为了观测方便,本实验用两个周期为31的m 序列优选对采用并联结构产生一个Gold

相关文档