文档库 最新最全的文档下载
当前位置:文档库 › 基于C8051F系列单片机的低功耗设计

基于C8051F系列单片机的低功耗设计

基于C8051F系列单片机的低功耗设计
基于C8051F系列单片机的低功耗设计

基于C8051F系列单片机的低功耗设计

[日期:2007-7-3] 来源:单片机及嵌入式系统应用作者:海军工程大学赵志

宏李小珉陈冬

[字体:大中小]

摘要着重介绍C805lF系列单片机功耗的计算方法及系统低功耗设计的策略.内容包括有关的内部和外部振荡器、CPU的电源管理模式、系统的时钟频率.工作电压对系统功耗的影响.以及如何合理地配置它们来降低功耗。最后,给出有关数据采集系统的设计实例。关建词C8051F单片机低功耗电源管理

引言

在控制终端系统设计中,当系统要求整体功耗偏低时,C8051F系列单片机是一个最佳的选择。它们拥有灵活的时钟硬件,使系统能够方便地在高效运作模式与低功耗模式问进行转换,智能的电源管理模式能够在正常工作及待机状态自由切换,从而降低整个系统的能量损耗;当工作频率低于10kHz时,时钟丢失检测器(MCD)能够引发系统产生复位,确保系统工作的安全可靠。

1 C8051F各部分组件的功耗

当一个系统对功耗要求严格时,可以在硬件电路建立前首先粗略计算一下整个系统所需的功耗。由于C8051F系列单片机为数模混合SOC系统,能够实现整个设计的大部分功能,因此整个设计系统的功耗将主要集中在C805IF系列单片机的能量消耗上。

整个单片机系统的功耗应该由4部分组成:振荡器功耗、数字设备功耗、模拟外设功耗及I/O端口功耗。振荡器功耗包括内部振荡器的功耗以及外部振荡器功耗。数字设备能量消耗主要由CPU的工作模式、工作电压及系统时钟频率决定。温度与数字外围设备对数字设备的功耗影响很小。模拟外围设备功耗主要包含ADC、电压基准VREF、温度传感器、偏压发生器及内部振荡器。比较器也有少量的能量损耗。

1.1 振荡器功耗分析

外部振荡器具有很高的可配置性,为系统设计者提供了多种选择。时基信号可以从外部CMOS电平时钟源、晶振或陶瓷谐振器、RC组合电路或外部电容获得,每一种方法都有各自的优势。由于振荡器可以灵巧地在各种方式中转换,因此可以通过改变振荡器来降低功耗。

对外部振荡器来说,外部CMOS时钟、电容和RC网络都能够提供较低的振荡频率。

(1)外部CMOS时钟

当工作于外部振荡器CMOS时钟模式时,外部振荡器驱动被关闭.电路功耗电流微小可以近似忽略。XTAL2输出的时基信号可以用作CPU、计时器、PCA或其他外围设备的时钟源。注意,即使在某一端口应用了高频信号,功耗仍只有少量的增加。

(2)外部晶振

外部晶振提供了最精确的时间基准,但随之而来的功耗在同一频率下也更高。外部晶振依赖于晶振频率和振荡器驱动电路(XFCN)。

(3)外部电容C模式

外部电容模式通过将一个电容连接到XTAL2为系统提供低功耗时钟。这是精度最差的一种时基方式,但同时也是最灵活的一种方式。只用1个电容元件就可以提供8种不同的工作频率.最高频率几乎可达最低频率的3000倍。可以通过改变在OSCXCN寄存器中的X FCN位改变其振荡的频率,并直接影响其输出的电流。外部电容方式下的时基精度主要由电容的误差和流过XTAL2的内部电流源的精度决定。

(4)外部振荡RC模式

RC模式与电容模式十分相似,区别在于外部电容方式下电容的充电电流由接到XTAL2的内部可编程电流源提供,并且在RC模式下充放电电路除了包含电容外还要通过一个外部电阻器。RC模式振荡电路的平均功耗由通过电阻器的平均电流所决定。电阻器上的压降成指数倍大小,其波形可以简化为三角波来估计平均值。

通常,设计者可以通过合理地选择时钟源达到降低功耗的目的。内部振荡器消耗数字电源电流的典型值为200μA,用于驱动外部振荡器的电流是变化的。对于一个外部振荡源(如晶振),驱动电流(由模拟电源提供)用软件通过配置外部振荡器控制寄存器OSCXCN的XF CN位来设置。在驱动电流较大时用户町以使用内部振荡器以降低功耗。

1.2 数字设备的功耗分析

数字设备的能量淌耗主要是由CPU电流的大小来衡量的。CPU的电源模式是决定CPU 电流大小、工作电压及系统时钟频率的关键因素。通常,温度和数字外围设备对数字设备的

功耗只有很小的影响。

(1)OPU电源管理模式

CPU有3种操作模式:正常状态,空闲状态与停止状态。通常,空闲状态的平均电流值受控于内部振荡器。正常模式时的电流值减去空闲模式时的电流值即为CPU正常运行的工作电流值。当写l到IDLE位时,CPU结束指令周期进入低功耗模式,直到被中断或复位唤醒。在空闲模式下,所有的模拟与数字外围设备,存储器与内部寄存器都保持原来的值不变。被唤醒后,CPU开始从设置空闲方式选择位指令的下一条指令开始执行。当写1到STOP 位时,CPU进入停机模式。设置停机模式后,当前指令被执行完毕,内部振荡器及所有的数字外围设备全部停止工作。模拟外设(如比较器与外部振荡器)保留其当前的状态。在停止状态,MCU消耗最少的电流。

(2)OPU工作电压、频率及温度对功耗的影响

工作电压:CPU的工作电流会随着供电电压的升高而增大。这种关系存在于任意一种工作频率下,尤其在高频运行时表现得更为明显。理论上供电电压最小可达到2.7 V,但由于电压调整本身有±10%的误差率,因此系统通常供电电压不会低于3V。

温度:温度对系统的功耗无影响。

工作频率:CPU工作频率对系统功耗有主要影响。在CMOS数字逻辑器件中,功耗与系统时钟SYSCLK频率成正比:

功耗=CV2f

式中:C是CMOS的负载电容;V是电源电压;f是SYSCLK的频率。

因此,为了降低功耗,设计者必须知道给定系统所需的最高SYSCLK频率和精度。某些设计口可能需要其系统时钟频率在全部工作时间内保持不变。在这种情况下,设计者将选择满足要求的最低频率.并采用消耗最低功率的振荡器配置。

l.3 数字外围设备与I/0接口的功耗分析

数字外围设备(计数器、UART、PCA、SPl)的损耗占系统总功耗的比例很小。举个例子,当C8051F单片机工作在3.06MHz(内部振荡器8分频),3 V电压时,没有一个数字外围设备端口的工作电流超过700μA;而在启动计数器作为UARTO数据传输时钟后,系统的工作电流会增加18μA。这里,计数器与UART的功率损耗主要由其时钟频率及工作电压来决定。利用交叉开关配置通用I/O口为推挽模式,也能够影响功耗的大小。在上述例子中,

如果利用交叉开关将UARTO的TX端分配到P0.4口,则配置端口为推挽模式将令系统的工作电流再增加82μA。输出引脚的功耗由连接在该引脚的外部电路频率决定。

1.4 模拟外围设备的功耗

模拟外围设备功耗是ADC、温度传感器、内部偏置电压产生器及内部振荡器的功耗和。通常,只要ADC、内部振荡器或温度传感器被激活,内部偏置电压产生器就会自动被使能,ADC在转换期间的工作电流比ADC没有转换时的工作电流大30%~50%。SAR转换时钟频率与采样频率也影响了功耗的大小。由于增加SAR转换时钟频率或降低采样率会缩短每次A/D转换的时间,使系统在转换间隙有更多的时间处于空闲状态,因此会大大降低系统功耗。

2 降低功耗的几点考虑

要降低系统的平均功耗,需要从两个方面考虑:首先是适当调整在所有时间一直影响系统工作的参数。通常工作电压是重点考虑的参数。工作电压决定了系统是否能够处于正常运作状态,它可以由电压调整器或一个电池来提供。对于一个节能系统,工作电压应该被最小化,以节约能量。第二点就是构建合理的固件结构降低以功耗。要为系统设计两个工作模式:一个为高效的运作模式;另一个则是以降低功耗为日地的睡眠模式。两个模式的设计标准不同,但应尽量让系统在大部分时间内处于睡眠模式,以降低系统的总功耗。下面详细讨论这两个方面的设计。

2.1 降低工作电压、减小工作电流

工作电压对系统的总功耗起着举足轻重的作用。对于节能系统.应该尽量在保证系统安全可靠的前提下采用最低的工作电压。通常电压调整器会有土10%的误差率,因此在设计工作电压时,最低的工作电压应该为3V,此时电压调整器的输出电压在2.7V与3.3V

之间。也可以选择用电池。在这里推荐使用锂电池,锂锰二氧化氮电池能够无须任何调节地输出稳定的2.85V电压,并且该电池能够直接连接到设备的电源引脚。无须担心电池耗尽时会对系统工作有不良的影响,因为在C8051F系列单片机中,片上电源监控器能够确保在电池耗尽后系统自动复位。

由于工作电压通常是恒定的,因此经常通过减小平均电流来降低系统的总功耗。平均工作电流是系统在单位时间内消耗的电荷量。对一个系统来说,其总的运行时间应该被分为两个部分——高效工作期与低功耗体眠期,如图l所示。高效工作期的工作电流偏大,而休眠

期的电流非常小。平均工作电流是系统在这两部分时问的总电荷量与时问相除所得的平均值。因此,如果想减小平均电流值,唯有通过两种方法解决——缩短高效工作期的时间或减小高效工作期的峰值电流。设计者应该尽量从这两方面着手设计系统,以达到降低总功耗的目的。

2.2 设计一个低功耗的休眠模式

可以通过设计低功耗休眠模式,令系统在非工作期一直处于低消耗状态,从而达到减小整个系统工作电流的目的。休眠模式可以通过将电源管理模式设定为空闲或停机状态来实现。通常会设定空闲模式,因为该模式更容易被恢复。需要注意的是,在休眠模式下应该关闭所有不需要的外围设备,并配置体眠模式的时钟为外部振荡器。因为外部振荡器能够禁止内部振荡器的振荡,并能以非常低的时钟基准进行振荡。这里有两个可选的振荡器:36.72 8kHz晶振与单电容模式外部振荡器。

外部电容模式振荡器消耗的功耗比晶振低,但没有晶振精确。其优势在于能够使钟控外围设备(如定时器)的频率低度低于10kHz。同时由于其组成只包含1个电容,相比于晶振的2个装载电容及1个电阻器结构,能够节省PCB板的空间。若在没计中使用了高频晶振,则可将装载电容连接到XTAL2引脚,作为外部振荡器使用,并可在C模式下为休眠模式提供一个较低频率的时钟。

2.3 设计一个高效运作模式

高效运作模式的设计应该以尽可能缩短完成作业所需时间为标准,使得系统能够尽快地恢复到休眠模式。模式的设计包括调整工作电流的峰值以及时钟频率,以减小高效工作期问的总电荷量。通常在高效工作模式下使用内部振荡器,更有益于系统总功耗的降低。

下面以ADC采样为例,比较、分析两种设计中系统功耗的消耗率情况。

片上温度传感器以10Hz速率采样,系统的外部晶振连接到XTAL1与XTAL2之间。定时器2每100ms溢出产生一个中断,将系统从空闲模式唤醒。当系统被激活后,系统捕捉ADC采样数据,然后重新返回空闲模式,直到下一个中断发生。

由于该系统是电池供电,因此系统应尽量减少每次A/D采样所消耗的电荷。由于电荷量是一段时间内电流的总量,因此可以通过缩短采样时间或减小采样时的峰值电流来节约能量。也就是说,在捕捉ADC采样数据时,系统可以选择转换到3MHz的内部振荡器,在短时间内使用大的电流;或是用外部32kHz晶振作为系统振荡器,使单片机在长时间内使用较小的电流值。

根据以上分析,进行了两种设计。一种设计是在采样时一直采用外部32.768kHz晶振作为系统时钟基准;另一种设计是在采样时将振荡器转换到内部振荡器,以缩短A/D转换的时间。两个系统在不采样时都处于同样的空闲模式。

第1个系统从空闭模式被唤醒后,系统直接启动了ADC设备开始采样。系统没有转换到内部振荡器,而是仍采用原来的32kHz晶振作为系统的时钟基准。A/D转换结束后,系统读取采样值,关闭ADC并重新进入空闲模式。为了捕捉采样数据,系统在峰值工作电流O.6 5mA上持续了1.5ms。第2个系统从空闲模式被唤醒时,系统启动内部振荡器与ADC,转换系统时钟基准为内部振荡器8分频模式,并开始ADC转换。转换完成后,读ADC数据,而后停止ADC及内部振荡器并令CPU回到空闲模式。为了捕捉ADC采样数据,系统在峰值工作电流2.2 mA上持续了400μs。利用公式:

计算可得,第1种设计系统的平均电流为15μA;而第2种设计系统的平均工作电流为14μA。在3V锂电池供电的情况下.第1种设计电池的寿命为4000h;而第2种设计电池的寿命为42000h。

从这个例子可以看出,在系统高效工作时提高系统的叫钟频率能够减小系统的平均工作电流,从而降低系统的总功耗。

集成电路的功耗优化和低功耗设计技术

集成电路的功耗优化和低功耗设计技术 摘要:现阶段各行业的发展离不开对能源的消耗,随着目前节能技术要求的不 断提升,降低功耗成为行业发展的重要工作之一。本文围绕集成电路的功耗优化 以及低功耗设计技术展开分析,针对现阶段常见的低功耗设计方式以及技术进行 探究,为集成电路功耗优化提供理论指导。 关键词:集成电路;功耗优化;低功耗 目前现代节能技术要求不断提升,针对设备的功耗控制成为当前发展的主要问题之一。 针对数字系统的功耗而言,决定了系统的使用性能能否得到提升。一般情况下,数字电路设 计方面,功耗的降低一直都是优先考虑的问题,并且通过对整个结构进行分段处理,同时进 行优化,最后总结出较为科学的设计方案,采用多种方式降低功耗,能够很大程度上提升设 备的使用性能。下面围绕数字电路的功耗优化以及低功耗设计展开分析。 一、设计与优化技术 集成电路的功耗优化和低功耗设计是相对系统的内容,一定要在设计的每个环节当中使 用科学且合理的技术手段,权衡并且综合考虑多方面的设计策略,才能够有效降低功耗并且 确保集成电路系统性能。因为集成电路系统的规模相对较大且具有一定的特殊性,想要完全 依靠人工或者手动的方式来达到这些目的并不现实且缺少可行性,一定要开发与之对应的电 路综合技术。 1 工艺级功耗优化 将工艺级功耗应用到设计当中,通常情况下采取以下两种方式进行功耗的降低: 首先,根据比例调整技术。进行低功耗设计过程中,为了能够实现功耗的有效降低会利 用工艺技术进行改善。在设计过程中,使用较为先进的工艺技术,能够让设备的电压消耗有 效缩减。现阶段电子技术水平不断提升,系统的集成度也随之提高,目前采用的零件的规格 也逐渐缩小,零件的电容也实现了良好的控制,进而能够很大程度上降低功耗。借助比例技术,除了能够将可见晶体管的比例进行调整,而且也能够缩小互连线的比例[1]。目前在晶体 管的比例缩小方面,能够依靠缩小零件的部分重要参数,进而在保持性能不被影响的情况下,通过较小的沟道长度,确保其他的参数不受影响的栅压缩方式,进而将零件的体积进行缩减,同时也缩短了延长的用时,使功耗能够有效降低。针对互连线缩小的方式主要将互连线的整 个结构进行调整,工作人员在进行尺寸缩减的过程中,会面临多方面的难题,比如系统噪音 无法控制,或者降低了电路使用的可靠性等等。 其次,采用封装技术进行降低。采用封装技术,能够让芯片与外部环境进行有效的隔离,进而避免了外部环境给电气设备造成一定的破坏与影响,在封装阶段,芯片的功耗会受到较 大的影响,因此需要使用更加有效的封装手段,才能够提升芯片的散热性,进而有效降低功 耗[2]。在多芯片的情况下,因为芯片与其他芯片之间的接口位置会产生大量的功耗,因此针 对多芯片采取封装技术,首先降低I/0接口的所有功能,接着解决电路延迟的问题,才能够 实现对集成电路的优化。 2 电路功耗优化 一般情况下,对电路级的功耗会选择动态的逻辑设计。在集成电路当中,往往会包含多 种电路逻辑结构,比如动态、静态等等,逻辑结构从本质上而言具有一定的差异性,这种差 异性也使得逻辑结构有着不同作用的功能。动态逻辑结构有着较为典型的特性[3]。静态的逻 辑结构当中所有的输入都会对接单独的MOS,因此逻辑结构功耗更大,动态的逻辑结构当中 电路通常具备N、M两个沟道,动态电路会利用时钟信号采取有效的控制,进而能够实现预

嵌入式系统的低功耗设计

第27卷第6期增刊 2006年6月 仪 器 仪 表 学 报 Chinese Journal of Scientific Instrument Vol.27No.6 J une.2006  嵌入式系统的低功耗设计 3 杨天池 金 梁 王天鹏 (解放军信息工程大学 郑州 450002) 摘 要 嵌入式系统的电源管理是系统设计中关键部分,合理的电源管理方案可以减少系统的功耗并提高整体性能。本文提出了一种层次化的电源管理结构,分别为硬件层、驱动层、操作系统层、电源管理层和应用层。本文同时引入了动态的电源管理方法来解决电源功耗的动态管理问题。通过在实际的系统中的测试表明,该电源管理机制的有效性。关键词 嵌入式系统 低功耗设计 动态电源管理 PXA255 Low pow er design in embedded system Yang Tianchi Jin Liang Wang Tianpeng (Universit y of I nf ormation Engineering ,Zhengz hou 450002,China ) Abstract Proper power management mechanism is important when designing embedded system.It is helpful to reduce power consumption and improve performance.This low power model adopt s five 2layer architecture ,which are hardware platform ,driver layer ,operating system ,power manage mechanism and application program.Dynamic power management (DPM )technology is also introduced to solve the problem of power consumption.The experiment on embedded system demonstrates t hat this power management mechanism is feasible.K ey w ords embedded system low power design dynamic power management PXA255  3基金项目:河南人才创新基金(0421000100) 1 引 言 随着嵌入式系统的发展以及应用面的不断扩展,功耗控制是系统设计中必不可少的组成部分。如何最大限度的降低系统功耗、减少不必要的能源损失、延长电池使用时间已经成为嵌入式系统特别是便携式系统设计中研究的热点问题。系统的低功耗设计,并非是某一方面、某一角度的解决方案,而应当从系统级的设计考虑功耗的节省,是一个硬件设计与软件控制相互结合的协调过程。 2 低功耗电路模型 低功耗设计对于无线设备、PDA 等便携式设备的实际应用具有重要的意义。低功耗元件的发展和系统设计的进步使得通用计算技术可以用到表、无线电话、 PDA 和桌面计算机中。在这些系统中的电源管理技 术传统上集中在休眠模式和设备能源管理这2个方面上[1]。但是,这样的电源管理缺乏直观性和灵活性,而且功耗的降低,并非单独软件、硬件单方面可以解决的[2],因此设计并建立如图1所示的系统低功耗设计模型。整个模型由硬件平台,驱动层,操作系统层,电源管理机制层和应用程序五个部分组成。 2.1 硬件平台 几乎所有系统功耗都集中于硬件平台,因此降低硬件平台的功耗是实现低功耗的基本所在。公式(1)为系统功耗的表达式: P ∞CV 2 f (1) 式中:C 是负载电容,V 是器件电压,f 是工作频率[3]。系统功耗同负载电容、器件电压平方以及工作频率成正比。因此,硬件平台设计多选用低电压,电压、频率可调器件,以及采用SOC 设计来进一步降低功耗[4,5]。另外,模式可控器件在空闲状态消耗的能量为运行状

超声波热量表

超声波热量表 使 用 说 明 书 地址:唐山市路北区创业服务中心211号 电话: 传真: 网址: E-mail:

一、概述 超声波热量表是参考欧洲标准EN1434 和OIML-R75号国际规程开发设计的高性能、低功耗电子式测量仪表,用来测量和显示载热(冷)液体流经冷热交换系统释放(吸收)热量。 超声波热量表由流量传感器、微处理器和配对温度传感器组成。微处理器通过流量传感器得到流量信号,从测温电路得到出口和入口水温信号,根据标准热量计算公式计算出系统交换的能量。 用户可选用具有M-BUS通信接口或无线传输通信接口的RLB-C型超声波热量表,超声波热量表可和采集器、集中器以及配套软件组成远传抄表管理系统,管理部门可以随时抄取表中数据,方便对用户用热量的管控。 超声波热量表符合国家建设部颁布的CJ128-20XX《热量表》产品标准。M-BUS接口或无线接口通讯协议符合建设部CJ/T188-20XX《户用计量仪表数据传输技术条件》的要求;无线数传模块符合工信部无[20XX]423号《微功率(短距离)无线电设备的技术要求》。 二、性能特点 1、低电压报警。 2、自动数据纠错技术。 3、温度传感器断路和短路报警。 4、高清晰度宽温度型LCD显示。 5、流量分8段校准,准确度高。 6、超低功耗(静态功耗小于7uA)。 7、管段为直通一体结构采用锻压工艺制造而成。 8、测量机构无运动部件,永无磨损,计量精度不受使用周期影响。

9、具备光电接口,采用红外工具可以实现抄表。 10、安装极为方便,水平或垂直安装。 11、数据传输采用M-BUS或无线传输通信接口,通信距离远。 三、使用方法 1、超声波热量表一直循环显示: 累积热量:累积 XXX kW·h 累积流量:累积 XXX。XX m3 瞬时流量:瞬时 XXX。XXX m3/h 温度:入口 XX。X 出口 XX。X ℃ 温差:温差X。X K 累积工作时间:累积 XXX h 2、数据通讯(不带数据通讯的仪表无此功能) 用户可选用具有M-BUS通信接口或无线传输通信接口的RLB-C型超声波热量表,配合采集器、集中器、管理软件等可实现远程抄表。不同数据通讯接口的仪表选配相应采集器。使用前在上位机建立地址档案,表地址出厂时已设定(仪表ID号为12位数字编码),由热量表、集中器、采集器、上位机等组成的集中抄表系统组建完成后,管理部门就可以随时抄取表中数据。

基于IEEE1801(UPF)标准的低功耗设计实现流程

https://www.wendangku.net/doc/7b17194397.html,/inform ation/snug/2009/low-power-impleme ntation-flow-based-ieee1801-upf 基于IEEE1801(UPF)标准的低功耗设计实现流程 Low-power Implementation Flow Based IEEE1801 (UPF) 郭军, 廖水清, 张剑景 华为通信技术有限公司 jguo@https://www.wendangku.net/doc/7b17194397.html, liaoshuiqing@https://www.wendangku.net/doc/7b17194397.html, zhangjianjing@https://www.wendangku.net/doc/7b17194397.html, Abstract Power consumption is becoming an increasingly important aspect of ASIC design. There are several different approaches that can be used to reduce power. However, it is important to use these low-power technology more effectively in IC design implementation and verification flow. In our latest low-power chip, we completed full implementation and verification flow from RTL to GDSII successfully and effectively by adopting IEEE1801 Unified Power Format (UPF). This paper will focus on UPF application in design implementation with Synopsys low power solution. It will highlight that how to describe our low-power intent using UPF and how to complete the design flow. This paper first illustrates current low-power methodology and UPF?s concept. Then, it discussed UPF application in detail. Finally, it gives our conclusion. Key words: IEEE1801, UPF, Low-Power, Shut-Down, Power Gating, Isolation, IC-Compiler 摘要

ARM低功耗设计_全面OK

嵌入式系统中的低功耗设计 2008-12-31 18:19:55 作者:电子之都来源:电子之都浏览次数:59 网友评论 0 条 经过近几年的快速发展,嵌入式系统(Embedded system)已经成为电子信息产业中最具增长力的一个分支。随着手机、PDA、GPS、机顶盒等新兴产品的大量应用,嵌入式系统的市场正在以每年30%的速度递增(IDC预测),嵌入式系统的设计也成为软硬件工程师越来越关心的话题。 在嵌入式系统的设计中,低功耗设计(Low-Power Design)是许多设计人员必须面对的问题,其原因在于嵌入式系统被广泛应用于便携式和移动性较强的产品中去,而这些产品不是一直都有充足的电源供应,往往是靠电池来供电,所以设计人员从每一个细节来考虑降低功率消耗,从而尽可能地延长电池使用时间。事实上,从全局来考虑低功耗设计已经成为了一个越来越迫切的问题。 那么,我们应该从哪些方面来考虑低功耗设计呢?笔者认为应从以下几方面综合考虑: 1.处理器的选择 2.接口驱动电路设计 3.动态电源管理 4.电源供给电路的选择 下面我们分别进行讨论: 一、处理器的选择 我们对一个嵌入式系统的选型往往是从其CPU和操作系统(OS)开始的,一旦这两者选定,整个大的系统框架便选定了。我们在选择一个CPU的时候,一般更注意其性能的优劣(比如时钟频率等)及所提供的接口和功能的多少,往往忽视其功耗特性。但是因为CPU 是嵌入式系统功率消耗的主要来源---对于手持设备来讲,它几乎占据了除显示屏以外的整

个系统功耗的一半以上(视系统具体情况而定),所以选择合适的CPU对于最后的系统功耗大小有举足轻重的影响。 一般的情况下,我们是在CPU的性能(Performance)和功耗(Power Consumption)方面进行比较和选择。通常可以采用每执行1M次指令所消耗的能量来进行衡量,即Watt/M IPS。但是,这仅仅是一个参考指标,实际上各个CPU的体系结构相差很大,衡量性能的方式也不尽相同,所以,我们还应该进一步分析一些细节。 我们把CPU的功率消耗分为两大部分:内核消耗功率PCORE和外部接口控制器消耗功率PI/O,总的功率等于两者之和,即P=PCORE+PI/O。对于PCORE,关键在于其供电电压和时钟频率的高低;对于PI/O来讲,除了留意各个专门I/O控制器的功耗外,还必须关注地址和数据总线宽度。下面对两者分别进行讨论: 1、CPU供电电压和时钟频率 我们知道,在数字集成电路设计中,CMOS电路的静态功耗很低,与其动态功耗相比基本可以忽略不计,故暂不考虑。其动态功耗计算公式为: Pd=CTV2f 式中,Pd---CMOS芯片的动态功耗 CT----CMOS芯片的负载电容 V----CMOS芯片的工作电压 f-----CMOS芯片的工作频率 由上式可知,CMOS电路中的功率消耗是与电路的开关频率呈线性关系,与供电电压呈二次平方关系。对于一颗CPU来讲,Vcore电压越高,时钟频率越快,则功率消耗越大。所以,在能够满足功能正常的前提下,尽可能选择低电压工作的CPU能够在总体功耗方面得到

基于超低功耗无线模块RFM64的无线远传水表、远传电表、远传燃气表、远传热量表设计方案

基于超低功耗无线模块RFM64的无线远传水表设计方案 概述 随着社会和经济的进步,住宅商品化发展迅速,住宅水、电、气、热表的抄表和收费问题日益突出。如何有效解决入户抄表收费的技术问题,提供一个合理、完整、系统的实施管理方案,需要企业、科研和公用事业管理部门共同努力。目前,住宅水、电、气、热表远程抄表系统形式多样,但市场比较混乱,技术上尚不成熟,没有一个被市场认可的完整系统实施管理方案。传统的有线抄表系统布线复杂、可靠性差、维护困难,难以实现管理升级,不能满足旧楼系统改造的市场要求;而新兴GPRS、短信GSM网络抄表方式使用成本昂贵,不适宜大面积推广。 RFM64是华普推出的一款超低功耗高性能的无线收发模块,最大发射功率10db以上,可工作在315/433MHz ISM的频点,故无需申请。RFM64经过优化具有非常低的接收功耗,典型接收电流为 2.6mA, 远小于同类收发器的接收电流。工作电压为 2.1-3.6V,最大发射功率+12.5dBm, RFM64集成度非常高,其包含了射频功能和逻辑控制功能的集成电路,内部集成压控振荡器、锁相环电路、功率放大电路、低噪声放大电路、调制解调电路、变频器、中放电路等。此外它整合了基带调制解调器的数据传输速率高达150Kbps数据处理功能包括一个64字节的FIFO,包处理,自动CRC生成和数据白化。它的高度集成的架构允许最少的外部元件数量,同时保持设计的灵活性。所有主要的射频通讯参数可编程,其中多数可动态设置。 基于超低功耗无线模块RFM64的设计,其具有传输距离相对远,接收的灵敏度较高,工作功耗低等诸多优点,所以它适用于无线远传水表、无线远传电表、无线远传燃气表、无线远传热量表无线遥控系统、无线传感器网络、无线温度压力数据采集、机器人控制等需要用电池长期工作的领域。 系统电路设计 系统主要由一个MCU和RFM64组成。MCU选用了ST公司的低功耗单片机 STM8L101F3, RFM64与单片机通讯采用SPI接口,与外部终端通信采用UART接口。由于高度集成化RFM64外围零件已经很少,所以设计的关键是RF前端的匹配电路的设计。另外高频部分的走线尽量的短粗,元器件参数要根据线路板的实际情况作出适当的调节,以抵消分布参数的影响。一般的RF芯片发射与接收端口的阻抗并不是标准的50?阻抗,要达到最佳的接收效果必须将输入阻抗通过外围器件的补偿使之与50?的天线匹配。

如何进行低功耗设计

如何进行低功耗设计 现在电子产品,特别是最近两年很火爆的穿戴产品,智能手表等都是锂电池供电,如果采用同样容量大小的锂电池进行测试不难发现电子产品低功耗做的好的,工作时间越长。因此,低功耗设计排在电子产品设计的重要地位。 最近做穿戴产品设计,面临的第一个问题就是低功耗设计。经过这两天的认真分析总结,将低功耗设计的方法总结,以飨网友。 首先,要明白一点就是功耗分为工作时功耗和待机时功耗,工作时功耗分为全部功能开启的功耗和部分功能开启的功耗。这在很大程度上影响着产品的功耗设计。 对于一个电子产品,总功耗为该产品正常工作时的电压与电流的乘积,这就是低功耗设计的需要注意事项之一。 为了降低产品的功耗,在电子产品开发时尽量采用低电压低功耗的产品。比如一个产品,曾经用5v单片机正常工作,后来又了3.3v的单片机或者工作电压更低的,那么就是在第一层次中进行了低功耗设计,这也就是我们常说的研发前期低功耗器件选择。这一般需要有广阔的芯片涉猎范围或者与供应商有良好的沟通。 其次是模块工作的选择控制,一般选择具有休眠功能的芯片。比如在设计一个系统中,如果某些外部模块在工作中是不经常使用的,我们可以使其进入休眠模式或者在硬件电路设计中采用数字开关来控制器工作与否,当需要使用模块时将其唤醒,这样我们可以在整个系统进入低功耗模式时,关闭一些不必要的器件,以起到省电的作用,延长了待机时间。一般常用方法:①具有休眠模式的功能芯片②MOS管做电子开关③具有使能端的LDO芯片。 再次,选择具有省电模式的主控芯片。现在的主控芯片一般都具有省电模式,通过以往的经验可以知道,当主控芯片在省电模式条件下,其工作电流往往是正常工作电流的几分之一,这样可以大大增强消费类产品电池的使用时间。同时,现在一些控制芯片具有双时钟的模式,通过软件的配置使芯片在不同的使用场合使用不同的外部始终从而降低其功耗。这与始终分频器具有异曲同工之妙,不同之处想必就是BOM的价格问题。现在火爆的APPLE WATCH 就是低功耗的一个例子:全功能运行3-4小时,持续运行18小时。 主控芯片或者相关模块唤醒的方式选择。通常进过以上的步骤设计好了硬件结构,在系统需要省电,在什么时候进入省电模式,这一般在软件设计中实现,但是最主要还是需要根据产品的功能特性来决定了。当系统进入了省电模式,而系统的唤醒也需要控制。一般系统的唤醒分为自动唤醒和外部唤醒。 A、自动唤醒是使用芯片内部的定时器来计时睡眠时间,当睡眠时间达到预定时间时,自动进行唤醒。这与我们使用的看门狗或者中断有比较相近之处,不同就是其工作与否的时序。 B、外部唤醒就是芯片一直处于一种休眠状态,当有一个外部事件(主要是通过接口)来对芯片进行一个触发,则芯片会唤醒,在事件处理之后消除该触发事件而在此进入休眠状态。因此,根据系统的特性,就需要进行软件设计时,来决定如何使用睡眠及唤醒,以降低系统的功耗。 最后说说功耗的测试,功耗测试分为模块功耗和整机功耗,模块功耗需要测试休眠时功耗和工作时功耗。整机功耗分为最大负荷工作时功耗和基本功能时功耗和休眠时功耗。在前期的测试中我用直接用UI来进行测量,关于如何进行高精度低功耗产品的测量,在下篇中进一步说明。

基于MSP430的极低功耗系统设计

基于MSP430的极低功耗系统设计 摘要:MSP430是TI公司出品的一款强大的16位单片机,其显著特点是具有极低的功耗。本文对构造以MSP430为基础极低功耗系统作为有益的探讨,对于设计各种便携式设备都具有较高的参考价值。 对于一个数字系统而言,其功耗大致满足以下公式:P=CV2f,其中C为系统的负载电容,V为电源电压,f为系统工作频率。由此可见,功耗与电源电压的平方成正比,因此电源电压对系统的功耗影响最大,其次是工作频率,再就是负载电容。负载电容对设计人员而言,一般是不可控的,因此设计一个低功耗系统,应该考虑到不影响系统性能前提下,尽可能地降低电源的电压和使用低频率的时钟。下面对TI公司新出MSP430来具体探讨这个问题。 MSP430具有工业级16位RISC,其I/O和CPU可以运行在不的时钟下。CPU功耗可以通过开关状态寄存器的控制位来控制:正常运行时电流160μA,备用时为0.1μA,功耗低,为设计低功耗系统提供了有利的条件。 图1是我们设计的以MSP430为CPU的“精密温度测试仪”(下面简称测试仪)。该产品使用电池供电,体积小巧,携带方便。 在使用时应该尽可能地选择最低的电源电压。对于MSP430而言,可用的最低电压是很低的,最低可达1.8V。我们使用TI公司推荐使用的3V。通常的电源只提供5V电压,因此,需要将5V电压由一个3V的稳压管降压后给CPU供电,也可以直接锂电池供电。3V不是标准的TTL电平,因此,在使用时需要用接口电路使CPU的非TTL标准电平能与TTL标准电平的器件连接。这些接口电路应该也是低功耗的,否则会造成一方面使用低电压降低了功耗,另一个方面使用额外的接口电路又增加了系统的功耗。或者直接使用支持3V电压的外围芯片。图1 (2)时钟频率 从低功耗的角度看,需要较低的频率,但是在实时应用中为了快速响应外部事件

热量表设计方案

热量表设计方案

1 引言 把热表计量技术中的关键要素——温度和流量引入到热计量技术中;利用热介质的温差及供热系统中流量相对稳定的概念,将每个计算单元的温差及流量作为热能计量的依据,实现热量计量。 2 核心技术介绍 2.1热量计算原理 在供热用户中安装热量表,当热水流经供热用户时,根据流量传感器给出的流量和配对温度传感器给出的供回水温度,以及热水流经的时间,可计算并显示供热用户所吸收的热量。其基本公式为: 1 1 r r m v r r Q q hdt q hdt ρ= ?= ??? (1) 式中:Q —供热用户所吸收的热量,J 或W .h m q —流经热量表的水的质量流量,kg/h v q —流经热量表的水的体积流量,m 3 /h ρ—流经热量表的水的密度,kg/m 3 Δh —供热用户的入口和出口温度下的焓值差,J/kg τ—时间,h 2.2 红外无线通信技术 红外线是指波长在750nm~1mm 之间的电磁波,它的频率介于微波和可见光之间,是一种人眼看不到的光线。红外通信利用波长在850nm~900nm 之间的近红外线作为信息的载体来进行通信,将二进制数调制成脉冲序列并以此驱动红外线发射管向外发射红外光;而接收端则先将接收到的光脉冲信号转换为电信号,再进行放大、滤波、解调处理后还原为二进制信号。 2.3超声波流速测量原理 图1 超声波测量流量原理 超声波流量测量是应用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺流和逆流传播时间差来间接测量流体的流速,再通过流速来计算流量的一种间接测量方法,如图1 所示。

3 总体设计方案及说明 本方案以MPS430为主控芯片、结合超声波测量技术利用高精度时间测量芯片TDC-GP2测量暖气管道进水流速、进回水温度,以此作为热量计算的依据。 3.1系统原理框图 通过一对超声波换能器测量供暖管道的水流速度,进而通过流速计算流量,实现流量的测量;通过温度传感器PT1000测量供暖管道进水温度和回水温度,计算其温度差,由流量和进回水温度差计算出用户所用的热量,作为计费的依据。其系统组成框图如图2所示。 图2 系统原理框图 3.2模块功能 超声波换能器 通过一对超声波换能器,相向交替收发超声波,通过测量超声波在顺流和逆流传播时间差来间接测量流体的流速。 进水温度、回水温度 采用PT系列温度传感器PT1000测量进回水温度,PT1000具有很好的线性性质,测量精度高,电路实现简单。 红外通信接口(预留) 通过此接口实现热能表参数设定、数据抄录等功能。 RS485通信接口(预留) 通过上位机读取指定热量表的热能数据、热能表系统参数信息、读取并设定数据参数。 液晶显示模块 通过按钮按下时间长短显示相应菜单,向用户提供相应热能数据信息,方便用户查询,并当系统发生故障时,显示报警信息。 按键接口 通过此按键按下时间长短显示相应菜单,实现与用户交互,方便用户查询。 注:预留功能接口其与外界通信数据格式与贵公司协商,由贵公司提供。 3.3 功能设计: ①显示功能:用户可以在显示屏查看累计用热、进出水温度值、进出水温差、流量以及其他提示性符号; ②记忆功能:热量表中信息自行记忆,保持时间大于10年;

基于GP21+EFM32的超低功耗超声波热量表电路模块设计

基于32位Cortex-M3内核的超低功耗微控制器EFM32与ACAM公司的高集成度TDC-GP21芯片推出的超声波热量表方案,能够充分发挥EFM32的超低功耗与高运算能力的特点及GP21高精度的测量能力,它将成为超声波热量表方案中的最优之选。 主控及显示部分 超声波主控MCU采用EFM32TG840F32,它是基于ARM公司的32位Cortex-M3内核设计而来,对比于传统的8位、16位单片机,它具有更高的运算和数据处理能力,更高的代码密度,更低的功耗。实际数据显示,EFM32TG840在执行32位乘法运算仅需4个内核时钟周期,32 位除法运算仅需8个内核时钟周期,而相应热表上运用的16位单片机却分别需要50和465个时钟周期。而恰恰在时间数据转换芯片TDC-GP21上采集得到的数据均是32位长度,因此在运算和热量计算时均是32位的数据运算。可见,采用EFM32TG840可以让超声波热量表有更好的运算性能,从而使得整机可以缩短处在运行计算状态状态,达到降低运行功耗的效果。 EFM32TG840具有EM0-EM4共5种低功耗模式。在EM2的低功耗模式下,微控制器仍可实现RTC运行,LEUART、LETIMER 及LESENSE的通信或控制功能,而功耗仅需900你A。而且它具有灵活的唤醒方式和自主工作的PRS系统,可以由外部I/O、I2C通信接口、 LEUART 通信信号等等方式唤醒。 EFM32TG840集成了8×20段的LCD驱动器,满足直接驱动超声波热量表液晶屏的需求,而功耗仅为550nA。EFM32TG840的 LCD驱动器内部集成电压升压功能和对比度调节功能,可实现在芯片内部VCMP电压比较器监控VDD电压,分等级开启LCD升压及对比度调节,达到LCD 的现象效果良好,即使系统电池随着使用时间增加出现电压跌落现象。

常用低功耗设计

随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个非常重要的考虑因素。为了使产品更具有竞争力,工业界对芯片设计的要求已从单纯的追求高性能、小面积,转换为对性能、面积、功耗的综合要求。微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有非常重要的意义。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解其功耗来源。高层次仿真得出的结论如图1所示。 从图1中可以看出,时钟单元(Clock)功耗最高,因为时钟单元有时钟发生器、时钟驱动、时钟树和钟控单元的时钟负载;数据通路(Datapath)是仅次于时钟单元的部分,其功耗主要来自运算单元、总线和寄存器堆。除了上述两部分,还有存储单元(Mem ory),控制部分和输入/输出 (Control,I/O)。存储单元的功耗与容量相关。 如图2所示,C MOS电路功耗主要由3部分组成:电路电容充放电引起的动态功耗,结反偏时漏电流引起的功耗和短路电流引起的功耗。其中,动态功耗是最主要的,占了总功耗的90%以上,表达式如下: 式中:f为时钟频率,C1为节点电容,α为节点的翻转概率,Vdd为工作电压。

2 常用的低功耗设计技术 低功耗设计足一个复杂的综合性课题。就流程而言,包括功耗建模、评估以及优化等;就设计抽象层次而言,包括自系统级至版图级的所有抽象层次。同时,功耗优化与系统速度和面积等指标的优化密切相关,需要折中考虑。下面讨论常用的低功耗设计技术。 2.1 动态电压调节 由式(1)可知,动态功耗与工作电压的平方成正比,功耗将随着工作电压的降低以二次方的速度降低,因此降低工作电压是降低功耗的有力措施。但是,仅仅降低工作电压会导致传播延迟加大,执行时间变长。然而,系统负载是随时间变化的,因此并不需要微处理器所有时刻都保持高性能。动态电压调节DVS (Dynarnic Voltage Scaling)技术降低功耗的主要思路是根据芯片工作状态改变功耗管理模式,从而在保证性能的基础上降低功耗。在不同模式下,工作电压可以进行调整。为了精确地控制DVS,需要采用电压调度模块来实时改变工作电压,电压调度模块通过分析当前和过去状态下系统工作情况的不同来预测电路的工作负荷。 2.2 门控时钟和可变频率时钟 如图1所示,在微处理器中,很大一部分功耗来自时钟。时钟是惟一在所有时间都充放电的信号,而且很多情况下引起不必要的门的翻转,因此降低时钟的开关活动性将对降低整个系统的功耗产牛很大的影响。门控时钟包括门控逻辑模块时钟和门控寄存器时钟。门控逻辑模块时钟对时钟网络进行划分,如果在当前的时钟周期内,系统没有用到某些逻辑模块,则暂时切断这些模块的时钟信号,从而明显地降低开关功耗。图3为采用“与”门实现的时钟控制电路。门控寄存器时钟的原理是当寄存器保持数据时,关闭寄存器时钟,以降低功耗。然而,门控时钟易引起毛刺,必须对信号的时序加以严格限制,并对其进行仔细的时序验证。 另一种常用的时钟技术就是可变频率时钟。根据系统性能要求,配置适当的时钟频率,避免不必要的功耗。门控时钟实际上是可变频率时钟的一种极限情况(即只有零和最高频率两种值),因此,可变频率时钟比门控时钟技术更加有效,但需要系统内嵌时钟产生模块PLL,增加了设计复杂度。去年Intel公司推出的采用先进动态功耗控制技术的Montecito处理器,就利用了变频时钟系统。该芯片内嵌一个高精度数字电流表,利用封装上的微小电压降计算总电流;通过内嵌的一个32位微处理器来调整主频,达到64级动态功耗调整的目的,大大降低了功耗。

单片机MSP430的极低功耗系统设计

单片机MSP430的极低功耗系统设计

ASIC低功耗设计

三、低功耗技术 1. 功耗分析 (1)由于电容的充放电引起的动态功耗 V DD C l i VDD v out 图(20)充放电转换图 如图(20)所示:PMOS 管向电容L C 充电时,电容的电压从0上升到DD V ,而这些能量来 自于电源。一部分能量消耗在PMOS 管上,而剩余的则保存在电容里。从高电压向低转换的过程中,电容放电,电容中储存的能量消耗在NMOS 管上。 我们来推导一下:考虑从低电压转换到高电压的情况,NMOS 和PMOS 不同时导通。在转换过程中电源提供的能量为C E ,而是转换后储存在电容里的能量。 ???====∞∞VDD DD L out DD L out L DD VDD VDD V C dv V C dt dt dv C V dt t i E 0 002)( ???====∞∞VDD DD L out out L out out L out VDD C V C dv v C dt v dt dv C dt v t i E 02002 )( 这两个等式说明电源提供的能量只有一半储存在电容里。另一半被PMOS 管消耗掉了。 为了计算总体能量消耗,我们不得不考虑器件的翻转。如果门每秒钟翻转10?→? f 次,那么 102 ?→?=f V C P DD L dyn 10?→?f 表示能量消耗的翻转频率。 随着数字电路集成度的提高,能量问题将成为人们关注的焦点。从以上分析看出,dyn P 跟电源电压的平方成正比,因此降低供电电压对降低功耗有非常显著的意义。 但是,降低供电电压对电路性能有一定的影响,这时我们可以考虑减小有效电容和减少翻转率。电容主要是由于晶体管的门和扩散电容引起的,因此降低由于电容的充放电引起的动态功耗方法之一是将晶体管设计得尽可能小,这种方法同样对提高电路的性能有很大的帮助。

微处理器的低功耗芯片设计技术

微处理器的低功耗芯片设计技术 [日期:2008-1-7] 来源:单片机及嵌入式系统应用作者:同济大学周俊林正浩 [字体:大中小] 摘要随着半导体工艺的飞速发展和芯片工作频率的提高,功耗已经成为深亚微米集成电路设计中的一个重要考虑因素。本文介绍了低功耗微处理器的研究现状,讨论了几种常用的微处理器低功耗设计技术。最后,对夸后低功耗微处理器设计的研究方向进行了展望。 关键词微处理器功耗低功耗芯片设计 随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个重要考虑因素。为了使产品更具竞争力,工业界对芯片设计的要求已从单纯追求高性能、小面积转为对性能、面积、功耗的综合要求。而微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有重要的意义。 2000年年初,Transmeta公司推出了Crusoe处理器,以其独特的低功耗设计技术和非凡的超低功耗表现,在业界引起巨大轰动,引发了低功耗处理器设计的激烈竞争。 在2006年的英特尔开发者论坛大会(Intel DeveloperForum)上,英特尔展示了多款基于下一代技术的微处理器。其中,Metom主要用于笔记本电脑,最大功耗仅有5W,而将于2 006年底上市的超低电压版Merom的功耗则只有0.5W;Conroe主要面向台式机,其最大功耗为65W,远远低于现有Pentium 4处理器的95W;服务器处理器Woodcrest的最大功耗为80W,而现有的Xeon处理器的功耗为110W。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解它的功耗来源。高层次仿真得出的结论如图1所示。

超低功耗系统设计

超低功耗系统设计 学院: 学号: 姓名:

基于MSP430单片机的开关稳压电源设计 MSP430系列单片机是美国TI公司生产的新一代16位单片机,是一种超低功耗的混合信号处理器(MixedSignal Processor),它具有低电压、超低功耗、强大的处理能力、系统工作稳定、丰富的片内外设、方便开发等优点,具有很高的性价比,在工程控制等领域有着极其广泛的应用范围。开关Boost稳压电源利用开关器件控制、无源磁性元件及电容元件的能量存储特性,从输入电压源获取分离的能量,暂时把能量以磁场的形式存储在电感器中,或以电场的形式存储在电容器中,然后将能量转换到负载。对DC—DC主回路采用Boost升压斩波电路。 2 系统结构和总设计方案 本开关稳压电源是以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机,其低功耗的优点有利于系统效率高的要求,且其ADCl2是高精度的12位A/D转换模块,有高速、通用的特点。这里使用MSP430完成电压反馈的PI调节;PWM波产生,基准电压设定;电压电流显示;过电流保护等。 系统框图如图1所示。 3 硬件电路设计 3.1 DC/DC转换电路设计 系统主硬件电路由电源部分、整流滤波电路、DC/DC转换电路、驱动电

路、MSP430单片机等部分组成。交流输入电压经整流滤波电路后经过DC/DC变换器,采用Boost升压斩波电路DC/DC变换,如图2所示: 根据升压斩波电路的工作原理一个周期内电感L积蓄的能量与释放的能量相等,即: 式(1)中I1为输出电流,电感储能的大小通过的电流与电感值有关。在实际电路中电感的参数则与选取开关频率与输入/输出电压要求,根据实际电路的要求选用合适的电感值,且要注意其内阻不应过大,以免其损耗过大减小效率采样电路。对于电容的计算,在指定纹波电压限制下,它的大小的选取主要依据式(2): 式(2)中:C为电容的值;D1为占空比;TS为MOSFET的开关周期;I0为负载电流;V’为输出电压纹波。 3.2 采样电路 采样电路为电压采集与电流采集电路,采样电路如图3所示。其中P6.O,P6.1为MSP430芯片的采样通道,P6.O为电压采集,P6.1为电流采集。 电压采集因为采样信号要输入单片机MSP430内部,其内部采样基准电压选为2.5 V,因此要将输入的采样电压限制在2.5 V之下,考虑安全裕量则将输入电压限制在2 V以下,当输入电压为36 V时,采样电压为:12/ (12+200)×36=2.04 V,符合要求。 电流采集采用康铜丝进行采集。首先考虑效率问题,康铜丝不能选择过大,同时MSP430基准电压为2.5 V,且所需康铜丝需自制。考虑以上方面在康铜丝阻值选取上约为O.1Ω。 3.3 PWM驱动电路的设计 电力MOSFET驱动功率小,采用三极管驱动即可满足要求,驱动电路如图

SST技术机械式流量计和热量表

SST技术机械式流量计和热量表 普遍认为,机械式热量表与电磁式热量表、超声波热量表相比,因其存在转动部件(流量计叶轮),使用寿命和测量精度相对低些。但合理设计出的机械式热量表的使用寿命和测量精度不比电磁式热量表和超声波热量表低,而且机械式热量表回避了二者的诸多劣势,特别是造价远低于二者的突出优势,使其更适合作为我国供暖建筑热计量的主流热量表。然而,现有机械式热量表受机械式流量计结构及我国供暖水质的制约,存在着严重的技术缺陷,表现为流量计堵塞、磨损、转速信号检测失灵和结垢[1~11]。因此,笔者提出SST技术构想,解决机械式流量计存在的问题。本文对采用SST技术的机械式流量计结构及SST技术热量表进行研究。 1 SST技术机械式流量计结构 ①对称设计 对称设计就是将机械式流量计设计成对称结构。机械式流量计主要分为单流束和多流束流量计,二者都采用两段式立轴叶轮结构。单流束流量计的结构见图1,受进水折流流道结构及两段式立轴叶轮结构的限制,很难设计成对称结构。多流束流量计的结构见图2,受进水分流通道结构及两段式立轴叶轮结构,尤其是多流束喷口方向的限制,不可能加工成对称结构。 对称设计方案为:不区分流量计的进水管和出水管,即流量计相当于有两个进水管,其中一个进水管根据现场状况选作进水管后,另外一个就自动变成了出水管,见图3。在两个进水管之间的叶轮腔中安装叶轮,在进水管与叶轮腔之间的过渡段设计为向下收缩的导水喷管,喷管出口的水流喷射方向对着叶轮的叶片。两个进水管和两个收缩导水喷管以同样的形状和尺寸对称分布在叶轮腔的两侧。 ②直通式进出水流道

现有机械式流量计大多为多流束流量计,由于多流束流量计比单流束流量计的流道复杂,存在着多处阻水结构,这些阻水结构表面常成为流体的缓流和滞流区。因此,多流束流量计比单流束流量计更易结垢。根据机械式流量计的抗结垢原理,采取直通式进出水流道设计,实现流量计的抗结垢性。直通式进出水流道设计结构见图3。直通式进出水流道使流量计中流体通畅流动,具有抗结垢、低压损的特性,避免了单流束流量计侧向水流对叶轮轴产生侧压而导致轴磨损加速。 ③独立横轴叶轮 由于我国供暖水中含有杂质,尤其是那些供暖系统难于排出的细小杂质,易导致热量表的测量精度迅速下降,甚至堵塞流量计。独立横轴叶轮设计结构使流量计的流道拥有足够的空间,含有细小杂质的流体可顺畅通过,解决了以上问题。 独立横轴叶轮结构,见图4。 叶轮由叶片、轮毂、轴套、单根叶轮轴组成,叶片固定在轮毂上,轮毂固定在轴套上,单根叶轮轴贯穿轴套并与轴套成活动连接。无磁金属片镶嵌在叶片上,定位环起到叶片定位作用,叶轮轴的两端固定在叶轮腔的两侧。叶轮与叶轮腔底部留有一定的间隙,与直通式进出水流道

相关文档