文档库 最新最全的文档下载
当前位置:文档库 › 中考数学复习圆专题复习教案

中考数学复习圆专题复习教案

中考数学复习圆专题复习教案
中考数学复习圆专题复习教案

中考数学专题复习六 几何(圆)

【教学笔记】

一、与圆有关的计算问题(重点)

1、扇形面积的计算

扇形:扇形面积公式 21

3602

n R S lR π=

= n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积

圆锥侧面展开图:

(1)S S S =+侧表底=2

Rr r ππ+

(2)圆锥的体积:2

13

V r h π=

2、弧长的计算:弧长公式 180

n R

l π=; 3、角度的计算

二、圆的基本性质(重点)

1、切线的性质:圆的切线垂直于经过切点的半径.

2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半;

推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;

(2)相等的圆周角所对的弧也相等。 (3)半圆(直径)所对的圆周角是直角。 (4)90°的圆周角所对的弦是直径。

注意:在圆中,同一条弦所对的圆周角有无数个。

3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧

推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧

(2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧

(3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 (4)在同圆或者等圆中,两条平行弦所夹的弧相等

三、圆与函数图象的综合

一、与圆有关的计算问题

【例1】(2016?资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()

A.2﹣π B.4﹣π C.2﹣π D.π

【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,

∴BC=AC?tan30°=2?=2,∴S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.

【例2】(2014?资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()

A.﹣2B.﹣2C.﹣D.﹣

解答:连接OC,

∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,

∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,

∴△AOC的边AC上的高是=,△BOC边BC上的高为,

∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2,

故选A.

【例3】(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()πBππ

=

【例4】(2015成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这

个正六边形的边心距OM 和BC 弧线的长分别为( )

A .2,3

π

B .π

C 23π

D .43π

【课后练习】

1、(2015南充)如图,P A 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P =40°,则

∠ACB 的大小是( B )

A .40°

B .60°

C .70°

D .80°

2、(2015达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影部分的面积是( B )

A .12π

B .24π

C .6π

D .36π

3、(2015内江)如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD =120°,过D 点的切线PD 与

直线AB 交于点P ,则∠ADP 的度数为( ) A .40° B .35° C .30° D .45°

解析:连接BD ,∵∠DAB=180°-∠C=50°,AB 是直径,∴∠ADB =90°,∠ABD =90°-∠DAB=40°,∵PD 是切线,∴∠ADP =∠B=40°.故选A .

4、(2015自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为 A .2π B .π C .3π D .32π

解析:∠BOD =60°

5、(2015凉山州)如图,△ABC 内接于⊙O ,∠OBC=40°,则∠A 的度数为( ) A .80° B .100° C .110° D .130°

6、(2015凉山州)将圆心角为90°,面积为4πcm 2

的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径 ( )

A .1cm

B .2cm

C .3cm

D .4cm

7、(2015泸州)如图,P A 、PB 分别与⊙O 相切于A 、B 两点,若∠C =65°,则∠P 的度数为( ) A .65° B .130° C .50° D .100°

8、(2015眉山)如图,⊙O 是△ABC 的外接圆,∠ACO =450,则∠B 的度数为( ) A .300 B .350 C .400 D 450

9、(2015巴中)如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( ) A .25° B .50° C .60° D .30°

10、(2015攀枝花)如图,已知⊙O 的一条直径AB 与弦CD 相交于点E ,且AC =2,AE CE =1,则图中阴影部分的面积为( )

A B C .29π D .49

π

11、(2015甘孜州)如图,已知扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是 ( )

A.π﹣2B.π﹣4C.4π﹣2D.4π﹣4

12、(2015达州)已知正六边形ABCDEF cm,则正六边形的半径为cm.

13、(2015自贡)如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=3,则劣弧AD的长为.

14、(2015遂宁)在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.

15、(2015宜宾)如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是CF的中点,弦CF交AB于点E.若⊙O的半径为2,则CF= .

16、(2015泸州)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.

17、(2015眉山)已知⊙O的内接正六边形周长为12cm,则这个圆的半经是_________cm.

18、(2015广安)如图,A.B.C三点在⊙O上,且∠AOB=70°,则∠C= 度.

19、24.(2015巴中)圆心角为60°,半径为4cm的扇形的弧长为cm.

20、(2015甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.

二、圆的基本性质

【例1】(2016?资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.

(1)求证:∠A=∠BDC;

(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.

【解答】解:(1)如图,连接OD,

∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,

又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,

∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;

(2)∵CM平分∠ACD,∴∠DCM=∠ACM,

又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即

∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.

【例2】(2015?资阳)如图11,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E 为BC的中点,连接DE.

(1)求证:DE是⊙O的切线;

(2)连接AE,若∠C=45°,求sin∠CAE的值.

解答:解:(1)连接OD,BD,∴OD=OB ∴∠ODB=∠OBD.

∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.

∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,

∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.

∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,

∴DE是⊙O的切线;

(2)作EF⊥CD于F,设EF=x

∵∠C=45°,∴△CEF、△ABC都是等腰直角三角形,∴CF=EF=x,

∴BE=CE=x,∴AB=BC=2x,在RT△ABE中,AE==x,

∴sin∠CAE==.

【例3】(2014?资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.

(1)求证:△CDE∽△CAD;

(2)若AB=2,AC=2,求AE的长.

解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,

∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,

∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,

而∠ECD=∠DCA,∴△CDE∽△CAD;

(2)解:∵AB=2,∴OA=1,

在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,

∵△CDE∽△CAD,∴=,即=,∴CE=.

【例4】(2013?资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.

(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;

(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.

AC=

OE=

r

根据翻折的性质,

所对的圆周角等于

所对的圆周角,【课后练习】

1、(2015达州)如图,AB 为半圆O 的在直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连

接OD 、OC ,下列结论:①∠DOC =90°,②AD +BC =CD ,③22

ΔAOD ΔBOC ::S S AD AO =,④OD :OC =DE :

EC ,⑤2

OD DE CD =?,正确的有( ) A .2个 B .3个 C .4个 D .5个 解析:如图,连接OE ,

∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切,

∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE ,CE=CB ,AD ∥BC 。 ∴CD=DE+EC=AD+BC 。结论②正确。

在Rt △ADO 和Rt △EDO 中,OD=OD ,DA=DE ,∴Rt △ADO ≌Rt △EDO (HL )

∴∠AOD=∠EOD 。同理Rt △CEO ≌Rt △CBO ,∴∠EOC=∠BOC 。又∠AOD+∠DOE+∠EOC+∠COB=180°, ∴2(∠DOE+∠EOC )=180°,即∠DOC=90°。结论⑤正确。 ∴∠DOC=∠DEO=90°。又∠EDO=∠ODC ,∴△EDO ∽△ODC 。∴,即OD 2=DC ?DE 。结论①正确。

,结论④错误。由OD 不一定等于OC ,结论③错

误。∴正确的选项有①②⑤。故选A 。

2、(2015遂宁)如图,在半径为5cm 的⊙O 中,弦AB =6cm ,OC ⊥AB 于点C ,则OC =( )

A .3cm

B .4cm

C .5cm

D .6cm

【解析】连接OA ,∵AB=6cm ,OC ⊥AB 于点C ,∴AC=AB=×6=3cm , ∵⊙O 的半径为5cm ,∴OC==

=4cm ,

故选B .

3、(2015广元)如图,已知⊙O的直径AB⊥CD于点E.则下列结论一定错误的是()

D.△OCE≌△ODE

A.CE=DE B.AE=OE C.BC BD

4、(2015广元)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:

①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.

其中正确结论是(只需填写序号).

5、(2015成都)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及A B的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;

(3)若AB=1,求HG?HB的值.

6、(2015遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)

求证:∠ADC=∠ABD;(2)求证:AD2=AM?AB;(3)若AM=18

5

,sin∠ABD=

3

5

,求线段BN的长.

解答:(1)证明:连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,

∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,

∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD;

(2)证明:∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,

∴,∴AD2=AMAB;

(3)解:

∵sin∠ABD=,∴sin∠1=,∵AM=,∴AD=6,∴AB=10,∴BD=

=8,

∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴

sin∠NBD=,∴DN=,∴BN==.

7、(2015宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)

求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO,求AO的长.

8、(2015泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.

解答:(1)证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,

∵AB=AC,∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,

∵AB∥CD,∴四边形ABCE是平行四边形;

(2)解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD

与点N,M,∵AE是⊙O的切线,

由切割线定理得,AE2=EC?DE,∵AE=6,CD=5,

∴62=CE(CE+5),解得:CE=4,(已舍去负数),

由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,

又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,

设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC﹣FH=3

﹣z,DF=CF=BC+FH=3+z,

易得△OFH∽△DMF∽△BFN,∴,,

即,①②,①+②得:,①÷②得:,

解得,∵x2=y2+z2,∴,∴x=,∴OF=.

9、(2015绵阳)如图,O 是△ABC 的内心,BO 的延长线和△ABC 的外接圆相交于点D ,连接DC ,DA ,OA ,OC ,四边形OADC 为平行四边形.(1)求证:△BOC ≌△CDA ;(2)若AB =2,求阴影部分的面积. 【解析】

(1)证明:∵O 是△ABC 的内心,∴∠2=∠3,∠5=∠6,

∵∠1=∠2,∴∠1=∠3,由AD ∥CO,AD=CO ,∴∠4=∠5,∴∠4=∠6, ∴△BOC ≌△CDA (AAS )

由(1)得,BC=AC,∠3=∠4=∠6,∴∠ABC=∠ACB ,∴AB=AC ∴△ABC 是等边三角形,∴O 是△ABC 的内心也是外心,∴OA=OB=OC

设E 为BD 与AC 的交点,BE 垂直平分AC.在Rt △OCE 中,CE=AC=AB=1,∠OCE=30o,

∴OA=OB=OC=.∵∠AOC=120o,∴.

10、(2015广元)如图,AB 是⊙O 的弦,D 为半径OA 的中点.过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F .且CE =CB .(1)求证:BC 是⊙O 的切线;(2)连接AF 、BF ,求∠ABF 的度数;(3)如果CD =15,

BE =10,sinA =

5

13

.求⊙O 的半径. 解:(1)证明:连接OB∵OB=OA,CE=CB ,∴∠A=∠OBA ,∠CEB=∠ABC 又∵CD ⊥OA ∴∠A+∠AED=∠A+∠CEB=90 °∴∠OBA+∠ABC=90 ° ∴OB ⊥BC ∴BC 是⊙O 的切线.

(2)连接OF ,AF ,BF , ∵DA=DO ,CD ⊥OA ,

∴△OAF 是等边三角形, ∴∠AOF=60 °∴∠ABF=∠AOF=30 ° (3)过点C 作CG ⊥BE 于点G ,由CE=CB ,∴EG=BE=5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG=sin ∠A=, ∴CE=

=13

∴CG=

=12,

又CD=15,CE=13, ∴DE=2, 由Rt △ADE ∽Rt △CGE 得=

,∴AD=

CG=

,∴⊙O 的半径为2AD=

11、(2015广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接P A、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:P A是⊙O的切线;(2)

2

3

OC

AC

,且OC=4,求P A的长和tanD的值.

解:(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,

∴OP是AB的垂直平分线,∴PA=PB,

在△PAO和△PBO中,

∵PA=PBPO=POOA=OB,∴△PAO≌△PBO(SSS)

∴∠PBO=∠PAO,PB=PA,

∵2+OC2=213,∴AE=2OA=413,OB=OA=213,在Rt△APO中,

∵AC⊥OP,∴AC2=OC?PC,

解得:PC=9,∴OP=PC+OC=13,

在Rt△APO中,由勾股定理得:AP=OP2-OA2=313,∴PB=PA=∵PB为⊙O的切线,B为切点,∴∠PBO=90°,

∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;

(2)连接BE,∵OCAC=23,且OC=4,∴AC=6,∴AB=12,

在Rt△ACO中,由勾股定理得:AO=AC13,∵AC=BC,OA=OE,

∴OC=12BE,OC∥BE,∴BE=2OC=8,BE∥OP,∴△DBE∽△DPO,∴BDPD=BEOP,

即BD313+BD=813,解得:BD=24135,在Rt△OBD中, tanD=OBBD=21324135=512.

12、(2015巴中)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.

解:(1)证明:连接OC,

∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,

又∵∠CFD=∠BFO,∴∠DCB=∠BOF,

∵CO=BO,∴∠OCF=∠B,

∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;

(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,

又∵∠D=∠B,∴△OCD∽△ACB,

∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.

三、圆与函数图象的综合

【例1】(2015?资阳)如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O

的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()

解答:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,

∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;

(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;

(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.

【例2】(2013年四川巴中)如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P交y轴的正半轴于点C.

(1)求经过A,B,C三点的抛物线所对应的函数解析式;

(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;

(3)试说明直线MC与⊙P的位置关系,并证明你的结论.

解:(1)∵A(4,0),B(-1,0),

∴AB=5,半径是PC=PB=PA=。∴OP=。

在△CPO中,由勾股定理得:。∴C

(0,2)。

设经过A、B、C三点抛物线解析式是,

把C(0,2)代入得:,∴。∴。

∴经过A、B、C三点抛物线解析式是,

(2)∵,∴M。

设直线MC对应函数表达式是y=kx+b,

把C(0,2),M代入得:,解得。

∴直线MC对应函数表达式是。

(3)MC与⊙P的位置关系是相切。证明如下:设直线MC交x轴于D,

当y=0时,,∴,OD=。∴D(,0)。

在△COD中,由勾股定理得:,

又,,∴CD 2 +PC 2 =PD2 。∴∠PCD=90 0 ,即PC⊥DC。∵PC为半径,∴MC与⊙P的位置关系是相切。

【课后作业】

一、选择题(每小题3分,共24分)

1.如图,已知A,B,C在⊙O上,下列选项中与∠AOB相等的是()

A. 2∠C B. 4∠B

C. 4∠A D.∠B+∠C

2.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()

A.35° B. 45°

C.55° D.65°

3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()

A.CM=DM B.CB=DB

C.∠ACD=∠ADC D.OM=MD

4.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()

A. 6 B.5

C. 4 D.3

第1题图 第2题图 第3题图 第4题图

5. 已知⊙O 的半径为6,圆心到直线l 的距离为8,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定

6. 圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为( ) A .3cm B .6cm C .9cm D .12cm

7.如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC 、BC 相切于点D 、E ,则AD 的长为( ) A . 2.5 B . 1.6 C . 1.5 D . 1

8. 如图,直线y =

+x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O.若将圆P 沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P ′的个数是( ) A .2 B .3 C .4 D.5

第7题图 第8题图

二、填空题:(每小题3分,共24分)

9.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =∠,则BAD ∠的度数为 . 10.如图,在△ABC 中∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则的度数

为 .

11.如图,ABC ?的一边AB 是⊙O 的直径,请你添加一个条件,使BC 是⊙O 的切线,你所添加的条件为 .

第9题图第10题图第11题图

12.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是.

13.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 .

14. 如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为 .

15.如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心得到△ABC,则图中阴影部分的面积之和是 .

16.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是

第14题图第15题图第16题图

三、解答题(本大题共8个小题,满分52分):

17. (本题4分)如图,圆弧形桥拱的跨度12

AB=米,拱高

4

CD=米,试求拱桥的半径.

18.(本题4分)如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,求sin∠ABD的值.

19.(满分6分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D .

⑴.求证:AC=BD;

⑵.若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

20.(本题6分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D 作⊙O的切线交AC于点E.

⑴.求证:DE⊥AC;

⑵.若AB=3DE,求tan∠ACB的值.

21. (本题6分)如图,AB是⊙O的直径,点E是上的一点,

∠DBC=∠BED.

⑴.求证:BC是⊙O的切线;

⑵.已知AD=3,CD=2,求BC的长.

22. (本题8分)已知:如图,⊙O 的直径AB 垂直于弦CD ,过点C 的切线与直径AB 的延长线相交于点P ,连结PD .

⑴.求证:PD 是⊙O 的切线. ⑵.求证:2

PD PB PA =? ⑶.若PD =4,1

tan 2

CDB ∠=

,求直径AB 的长.

23. (本题8分)已知:AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD ⊥CP 于D . ⑴.求证:△ACB ∽△CDB ;

⑵.若⊙O 的半径为1,∠BCP =30°,求图中阴影部分的面积.

24. (本题10分)如图,在平面直角坐标系中,已知A(8,0),B(0,6),圆M经过原点O及点A、B.

⑴.求圆M的半径及圆心M的坐标;

⑵.过点B作圆M的切线l,求直线l的解析式;

⑶.∠BOA的平分线交AB于点N,交圆M于点E,求点N的坐标和线段OE的长.

中考数学专题训练圆专题复习

——圆 ◆知识讲解 一.圆的定义 1、在一个平面内,线段OA绕着它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。 2、圆是到定点的距离等于定长的所有点的集合。 3、确定一个圆需要两个要素:一是位置二是大小,圆心确定其位置,半径确定其大小。 4、连接圆上任意两点的线段叫弦,经过圆心的弦叫直径。圆上任意两点间的部分叫做圆弧,简称弧。以A、B为端点的弦记作“圆弧AB”,或者“弧AB”。大于半圆的弧叫作优弧(用三个字母表示,如ABC)叫优弧;小于半圆的弧(如AB)叫做劣弧。 二、垂直于弦的直径、弧、弦、圆心角 1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弦。 2、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 在同圆或等圆中,等弧所对的圆心角相等。 在等圆中,弦心距相等的弦相等。 三、圆周角 1、定义:顶点在圆上,并且角的两边和圆相交的角。 2、定理:一条弧所以的圆周角等于这条弧所对的圆心角的一半。 3、推论:(1)在同圆或等圆中,同弧或等弧所以的圆周角相等。 (2)直径所对的圆周角是直角,90°的圆周角所对的弦是直径。 四、点和圆的位置关系 1、设⊙O的半径为r,点到圆心的距离为d。 则d>r ?点在圆外,d=r ?点在圆上,d

2020年中考数学 圆专题复习(中等生) 学生版

2020年中考数学圆专题复习 1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE; (2)若AD=8,DE=5,求BC的长. 2.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D. (1)如图①,若∠OCA=60°,求OD的长; (2)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.

3.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切 线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G. (1)求证:△EFD为等腰三角形; (2)若OF:OB=1:3,⊙O的半径为3,求AG的长. 4.如图,已知在△ABC中,⊙O在AB上,AC为⊙O的弦,延长BC至D,使AD为⊙O切线, 且DA=DC. (1)求证:BD为⊙O切线; (2)若AB=9,AD=12,求BD的长及⊙O的半径; (3)若⊙O的半径为6,tan∠BAC=,求CD的长.

5.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E. (1)试判断直线DE与⊙O的位置关系,并说明理由; (2)若⊙O的半径为2,∠BAC=60°,求线段EF的长. 6.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E. (1)试判断DE与⊙O的位置关系,并说明理由; (2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

7.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF. (1)求证:CF与⊙O相切; (2)若AD=2,F为AE的中点,求AB的长. 8.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC 于点E,F是DE的中点,连接CF. (1)求证:CF是⊙O的切线. (2)若∠A=22.5°,求证:AC=DC.

2019年中考数学圆专题复习试卷含详解

2018-2019学年初三数学专题复习圆 一、单选题 1.下列说法,正确的是( ) A. 半径相等的两个圆大小相等 B. 长度相等的两条弧是等弧 C. 直径不一定是圆中最长的弦 D. 圆上两点之间的部分叫做弦 2.如图,在⊙O中,∠ABC=50°,则∠AOC等于() A. 50° B. 80° C. 90° D. 100° 3.已知⊙O的半径为5,A为线段OP的中点,当OP=6时,点A与⊙O的位置关系是( ) A. 点A在⊙O内 B. 点A在⊙O上 C. 点A在⊙O外 D. 不能确定 4.如果两圆半径分别为5和8,圆心距为3,那么这两个圆的位置关系是() A. 外离 B. 外切 C. 相交 D. 内切 5. 两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是() A. 内含 B. 内切 C. 相交 D. 外切 6.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为()。 A. B. C. D. 7.钝角三角形的外心在() A. 三角形的内部 B. 三角形的外部 C. 三角形的钝角所对的边上 D. 以上都有可能 8.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为() A. 5πcm B. 6πcm C. 8πcm D. 9πcm 9.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于( ) A. 6π B. 9π C. 12π D. 15π 10.直线a上有一点到圆心O的距离等于⊙O的半径,则直线a与⊙O的位置关系是() A. 相离 B. 相切 C. 相交 D. 相切或相交 11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠DAC等于()

中考数学统计复习教案(最新整理)

? ? 中考复习教案——统计 中考要求及命题趋势 1、了解总体、个体、样本不同的抽样可能得到不同的结果,频数分布的意义和作用, 2、理解频数、频率的概念 3、掌握用扇形统计图表示数据,计算加权平均数,根据具体问题可选择合适的统计图表示数据的集中程度;计算极差和方差,并用它们表示数据的离散程度。列频率分布表,画频数分布直方图和频数折线图,并解决简单的实际问题;样本估计总体的思想,用样板的平均数、方差估计总体的平均数。方差,根据统计结果作出合理的判断和预测,比较清晰的表示自己的观点,对日常生活中的某些数据发表自己的看法,认识到统计在社会生活及科学领域中应用,并能解决一些简单的实际问题。 每年中考都考查总体、样本及样本容量等概念,以及确定平均数、众数、中位数、标准差。 应试对策 1牢固掌握概念,并能掌握概念间的区别和联系,以及在实际问题中应用。 2统计的特点是与数据打交道解题时计算较繁,所以要有意识培养认真、耐心、细致的学习态度和学习习惯。 3要关注统计知识与方程、不等式相结合的综合性试题,会读频率分布直方图,会分析图表,注重能力的培养、加大训练力度。 一、数据的代表 【回顾与思考】 ??中中中中中 ?中中中 ? ?中中中 ? ?中中?中中? 中中中中中 ?中中 - - 中中中 ? 数据的代表 ?? 【例题经典】 考查众数和中位数的概念

(2006 年临安市)某青年排球队 12 名队员的年龄情况如下: 则这个队队员年龄的众数和中位数是( ) A .19,20 B .19,19 C .19,20.5 D .20,19 【点评】关键弄清众数和中位数的概念,明确众数可以是 1 个,多个, 也可以没有; 求中位数要把数据从小到大排列. 考查平均数的概念和计算公式 例 2 (2006 年泸州市)江北水厂为了了解某小区居民的用水情况,随机抽查了该小区 10 户家庭的月用水量,结果如下: (1) 计算这 10 户家庭该月平均用水量; (2) 如果该小区有 500 户家庭,根据上面的计算结果,估计该小区居民每月共用水多 少立方米? 【点评】关键是能够灵活运用公式求平均数. 考查极差、方差、标准差的概念及生活中的应用 例 3 在暑假开展的社会实践活动中, 小丽同学帮助李大爷统计了一周内卖出 A 、B 两种品牌雪糕的数量,记录数据如下表: (1) 请你用统计表提供的数据完成上表;

中考数学精编—初中数学圆专题复习

初中数学圆的专题圆 一、知识点梳理 知识点1:圆的定义: 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的; 圆又是对称图形,是它的对称中心. 知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90°所对的弦是 . 例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______. 例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若 半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S 1,S 2 之间的关系是 () A.S 1<S 2 B.S 1 >S 2 C.S 1 =S 2 D.不确定 例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)

的面积为() 例4 车轮半径为0.3m的自行车沿着一条直路行驶,车轮绕着轴心转动的转速为100转/分,则自行车的行驶速度() A.3.6π千米/时 B.1.8π千米/时 C.30千米/时 D.15千米/时 例5 如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有() A.2条 B.3条 C.4条 D.5条 知识点3:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 . 知识点4:垂径定理 垂直于弦的直径平分,并且平分; 平分弦(不是直径)的垂直于弦,并且平分 . 例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.

中考数学总复习专题教案17

y x O 课时17.二次函数及其图象 【课前热身】 1.将抛物线y =-3x 2向上平移一个单位后,得到的抛物线解析式是___________. 2.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的 图象, 那么a 的值是______. 3.二次函数y =(x -1)2+2的最小值是() A.-2B.2C.-1D.1 4.二次函数y =2(x -5)2+3的图象的顶点坐标是() A.(5,3) B.(-5,3) C.(5,-3) D.(-5,-3) 5.二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是() A.a >0,b <0,c >0B.a <0,b <0,c >0 C.a <0,b >0,c <0D.a <0,b >0,c >0 【知识整理】 1.解析式: (1)一般式:y =ax 2+bx +c (a ≠0) (2)顶点式:y =a (x -h )2+k (a ≠0),其图象顶点坐标(h ,k ). (3)两根式:y =a (x -x 1)(x -x 2)(a ≠0),其图象与x 轴的两交点分别为(x 1,0),(x 2,0). 注意:①一般式可通过配方法化为顶点式.②求二次函数解析式通常由图象上三个点的坐标,用待定系数法求得.若已知抛物线的顶点和

y x O 对称轴,可用顶点式;若已知抛物线与x 轴的两个交点,可用两根式;若已知三个非特殊点,通常用一般式. 2.二次函数y =ax 2+bx +c (a ≠0)的图象和性质 a >0 a <0 图象 开口 对称轴 顶点坐标 最值 当x =_______时,y 有最 _____值为________. 当x =_______时,y 有最 _____值________. 增 减 性 在对称轴左侧 y 随x 的增大而______ y 随x 的增大而 ______ 在对称轴右侧 y 随x 的增大而______ y 随x 的增大而 ______ 3.二次函数y =a (x -h )2+k (a ≠0)的对称轴是______________,顶点坐标是___________. 4.二次函数y =ax 2+bx +c 用配方法可化成y =a (x -h )2+k 的形式,其中 h =____,k =________. 5.二次函数y =a (x -h )2+k 的图象和y =ax 2图象的关系.

深圳中考数学专题--圆

2017届深圳中考数学专题——圆 一.解答题(共30小题) 1.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长.

4.如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM. (1)求证:AD是⊙O的切线; (2)若sin∠ABM=,AM=6,求⊙O的半径. 5.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O 于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径.

6.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 8.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED. (1)若∠B+∠FED=90°,求证:BC是⊙O的切线; (2)若FC=6,DE=3,FD=2,求⊙O的直径. 9.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E. (1)判断DF与⊙O的位置关系,并证明你的结论; (2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学复习必备教案――几何初步及平行线、相交线.

中考数学复习必备教案 几何初步及平行线、相交线 知识点回顾 知识点 1:立体图形与平面图形 1. 常见的立体图形:长方体、正方体、球、圆柱、圆锥、棱锥、棱柱等。平面图形:长方形、正方形、三角形、圆等。 2. 主视图、俯视图与左视图 : (1从物体的 _____观察,看到物体的正面的图形称为主视图. (2从物体的 ______向下观察,看到物体的顶面的图形称为俯视图. (3从物体的 _______观察,看到物体的左面的图形称为左视图. 物体的主视图、俯视图与左视图合成为物体的三视图. (4常见几何体的三视图:

3.几种常见几何体的展开图: 1.圆柱展开图:上、下底面为 ________,侧面是 ________,长方形的长是圆柱的底面周长,宽是圆柱的高。 2.圆锥展开图:底面是 _______,侧面是 ________,扇形的弧长是底面圆的周长。 3.棱柱展开图:上、下底面是 _____________,侧面都是 _________。 4.棱锥展开图:底面是 __________,侧面都是 ________,这些三角形的公共顶点就是棱锥的顶点。 4. 正方体的表面展开图 : 把正方体的表面展开成平面图形后, 有很多种形状, 如果将经过平移、旋转等变化后可以重合的两个图形看成是同一图形,那么正方体的表面展开图共有 11种不同的情况。我们可以将则 11种图形分类:

(1 “一·四·一” 型,中间一行 4个作侧面,两边各 1个分别作上下底面, ? 共有 6种.如图(1——(6 . (2 “二·三·一” (或一·三·二型,中间 3个作侧面,上(或下边2? 个那行, 相连的正方形作底面,不相连的再下折作另一个侧面,共 3种.如图(7——(9 . (3 “二·二·二”型,成阶梯状.如图(10 . (4 “三·三”型,两行只能有 1个正方形相连.如图(11 . 例 1、 (2009年内蒙古包头将一个正方体沿某些棱展开后,能够得到的平面图形是( 【解析】本题考查图形的展开与折叠中, 正方体的常见的十余种展开图有关内容, 可将这四 A . (1 (2 (5 (4 (3

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

中考数学圆专题练习

中考数学圆 专题练习-- 一、选择题 1.(2010年 湖里区 二次适应性考试)已知半径分别为5 cm 和8 cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .10 cm D .15 cm 答案:C 2.(2010年教育联合体)如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论 正确的个数是( ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 1 2AC ,④DE 是⊙O 的切线. A .1个 B .2个 C .3个 D .4个 答案:D 3.(2010安徽省模拟)如图,AB 是⊙O 的直径,点D 、E 是圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则 ⊙O 中阴影部分的面积是( ) A .433π- B .2 3π C .2 23 π- D .1 3 π 答案:A 4.(2010年重庆市綦江中学模拟1).在直角坐标系中,⊙A 、⊙B 的 位置如图所示.下列四个点中,在⊙A 外部且在⊙B 内部的是( ) A.(1,2) B.(2,1). C.(2,-1). D.(3,1) 答案C 5.(2010年聊城冠县实验中学二模)如下图,将半径为2cm 的圆形纸片 第4题图 O D B C E A 第3题 A O B C D E

折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .32cm D .52cm 答案C 6.(2010年广州市中考六模)、如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( ) A. 2 9cm π B. 2 18cm π C. 2 27cm π D. 2 36cm π 答案:B 7.(2010年广州市中考六模)如图,已知⊙O 的弦AB 、CD 相交于点E , 的度数为60°, 的度数为100°,则∠AEC 等于( ) A. 60° B. 100° C. 80° D. 130° 答案:C 8.(2010年广西桂林适应训练)如图,圆弧形桥拱的跨度AB = 12米,拱高CD =4米,则拱桥的半径为( ). A.6.5米 B.9米 C.13米 D.15米 答案:A 9.(2010年广西桂林适应训练)如图,BD 是⊙O 的直径,∠CBD=30o , 则∠A 的度数为( ).[来 A.30o B.45o C.60o D.75o 答案:C 10.(2010山东新泰)已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,圆心距O 1O 2=2,那么⊙O 1与⊙O 2的位置关系是( ) A .相离 B .外切 C .相交 D .内切 答案:D 11.(2010年济宁师专附中一模)如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路 7题图 8题图 9题图

初中数学“圆”专题复习(初三必备)

初中数学“圆”专题复习(初三必备) 一、知识点梳理 知识点1:圆的定义: 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的; 圆又是对称图形,是它的对称中心. 知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90°所对的弦是 . 例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______. 例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S 1 , S 2 之间的关系是() A.S 1<S 2 B.S 1 >S 2 C.S 1 =S 2 D.不确定 例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为()

A.2条 B.3条 C.4条 D.5条 知识点3:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 . 知识点4:垂径定理 垂直于弦的直径平分,并且平分; 平分弦(不是直径)的垂直于弦,并且平分 . 例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM. (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由. 例2 在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为() A.6分米 B.8分米 C.10分米 D.12分米

中考数学专题:圆.(学生版)

中考数学试题专题复习:圆 【学生版】 一、选择题 1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切 2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 A 、相交 B 、外切 C 、外离 D 、内含 3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点, 过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 A 、30° B 、60° C 、45° D 、50° 4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC∥AB,BC=1, AB=AC=AD=2.则BD 的长为 A. 14 B. 15 C. 32 D. 23 5.(内蒙古呼伦贝尔3分)⊙O 1的半径是cm 2,⊙2的半径是cm 5,圆心距是cm 4,则两圆的位置关系为 A. 相交 B. 外切 C.外离 D. 内切 6.(内蒙古呼伦贝尔3分)如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点, 则线段OM 长的最小值为. A. 5 B. 4 C. .3 D. 2 7.(内蒙古呼伦贝尔3分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°, AC∥OD,则∠AOC 的度数 A. 70° B. 60° C. 50° D. 40° 8.(内蒙古乌兰察布3分)如图, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD , 如果∠BOC = 700 ,那么∠A 的度数为 A 70 0 B. 350 C. 300 D . 200 17.填空题 1.(天津3分)如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.OB⊥AD,交AC 于点B .若OB=5,则BC 的长等于 ▲ 。

中考数学复习教案

中考数学复习教案 有理数及其运算 一、中考要求: 1.理解有理数及其运算的意义,并能用数轴上的点表示有理数,会比较有理数的大小. 2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值 二、知识要点: 1.整数与分数统称为有理数.有理数 2.规定了原点、正方向和单位长度的直线叫做数轴. 3.如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.0的相反数是0. 4.在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.5.数轴上两个点表示的数,右边的总比左边的大;正数大于0,负数小于0,正数大于负数;两个负数比较大小,绝对值大的反而小. 6.乘积为 1的两个有理数互为倒数. 7.有理数分类应注意:(1)则是整数但不是正整数;(2)整数分为三类:正整数、零、负整数,易把整数误认为分为二类:正整数、负整数. 8.两个数a、b在互为相反数,则a+b=0. 9.绝对值是易错点:如绝对值是5的数应为士5,易丢掉-5. 10.乘方的意义:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂. 11.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.12.有理数减法法则:减去一个数,等于加上这个数的相反数. 13.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0. 14.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.15.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的. 16.有理数的运算律: 加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

中考数学总复习教案

对称、平移、旋转、视图与投影 一、图形的对称 1、知识梳理 1.轴对称及轴对称图形的意义 (1)轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直 线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段. (2)如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称 图形,这条直线叫做对称轴. (3)轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点 所连的线段被对称轴垂直平分. (4)简单的轴对称图形:①线段:有两条对称轴:线段所在直线和线段中垂线. ②角:有一条对称轴:该角的平分线所在的直线. ③等腰(非等边)三角形:有一条对称轴,底边中垂线. ④等边三角形:有三条对称轴:每条边的中垂线. 2.中心对称图形 (1)定义:在平面内,一个图形绕某个点旋转180○,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心. (2)性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分. (3)中心对称与旋转对称的关系:中心对称是旋转角是180o的旋转对称. (4)中心对称的判定:如果两个点的连线被某一点M平分,则这两个点关于点M成中心对称.2、课前练习 1.如右图,既是轴对称图形,又是中心对称图形的是() 2.下列图形中对称轴最多的是() A.圆B.正方形C.等腰三角形D.线段 3.数字______在镜中看作 4.如右图的图案是我国几家银行标志,其中轴对称图形有() A.l个 B.2个 C.3个 D.4个 5.4张扑克牌如⑴所示放在桌子上小敏把其中一张旋转180° 后得到如图⑵所示,那么她所旋转的牌从左数起是() 3、经典考题剖析 1.如图,已知直线1⊥2,垂足为O,作线段PM关于直线1、2的对称线段M1P1、M2P2,并说明M1P1 和M2P2关于点O成中心对称.

最新中考数学复习圆专题复习教案

中考数学专题复习六 几何(圆) 【教学笔记】 一、与圆有关的计算问题(重点) 1、扇形面积的计算 扇形:扇形面积公式 21 3602 n R S lR π= = n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积 圆锥侧面展开图: (1)S S S =+侧表底=2 Rr r ππ+ (2)圆锥的体积:2 13 V r h π= 2、弧长的计算:弧长公式 180 n R l π=; 3、角度的计算 二、圆的基本性质(重点) 1、切线的性质:圆的切线垂直于经过切点的半径. 2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半; 推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等; (2)相等的圆周角所对的弧也相等。 (3)半圆(直径)所对的圆周角是直角。 (4)90°的圆周角所对的弦是直径。 注意:在圆中,同一条弦所对的圆周角有无数个。 3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧 推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧 (2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧 (3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 (4)在同圆或者等圆中,两条平行弦所夹的弧相等 三、圆与函数图象的综合

一、与圆有关的计算问题 【例1】(2016?资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是() A.2﹣π B.4﹣π C.2﹣π D.π 【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2, ∴BC=AC?tan30°=2?=2,∴S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A. 【例2】(2014?资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是() A.﹣2B.﹣2C.﹣D.﹣ 解答:连接OC, ∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2, ∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2, ∴△AOC的边AC上的高是=,△BOC边BC上的高为, ∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2, 故选A. 【例3】(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()πBππ =

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

新人教版中考数学复习教案

2016年中考数学复习教案 第一章实数与中考 中考要求及命题趋势 1.正确理解实数的有关概念; 2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质; 3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。 4.掌握实数的四则运算、乘方、开方运算以及混合运算 5.会用多种方法进行实数的大小比较。 中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。 应试对策 牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。 第一讲实数的有关概念 【回顾与思考】 知识点: 有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 课标要求: 1.使学生复习巩固有理数、实数的有关概念. 2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。 3.会求一个数的相反数和绝对值,会比较实数的大小 4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。 考查重点: 1.有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念; 3.在已知中,以非负数a2、、(a≥0)之和为零作为条件,解决有关问题。 实数的有关概念 (1)实数的组成

{ } ?????????????????????????? ? ?????? 正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规 定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值 ?? ? ??<-=>=)0()0(0)0(||a a a a a a 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数 实数a(a ≠0)的倒数是a 1 (乘积为1的两个数,叫做互为倒数);零没有倒数. 【例题经典】 理解实数的有关概念 例1 ①a 的相反数是-1 5 ,则a 的倒数是. ②实数a 、b 在数轴上对应点的位置如图所示:0a b . ③(2006年泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约. 【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解. 例2.(-2)3与-23( ). (A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 分析:考查相反数的概念,明确相反数的意义。答案:A 例33的绝对值是 ;-321 的倒数是 ;9 4 的平方根是 . 分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。 答案:3,-2/7,±2/3 例4.下列各组数中,互为相反数的是 ( )D A .-3与3 B .|-3|与一31 C .|-3|与3 1 D .-3与2(-3) 分析:本题考查相反数和绝对值及根式的概念

相关文档
相关文档 最新文档