文档库 最新最全的文档下载
当前位置:文档库 › 磁场典型例题解析

磁场典型例题解析

磁场典型例题解析
磁场典型例题解析

安培分子电流假说 磁性材料·典型例题解析

【例1】 关于分子电流,下面说法中正确的是 [ ]

A .分子电流假说最初是由法国学者法拉第提出的

B .分子电流假说揭示了磁铁的磁场与电流的磁场具有共同的本质,即磁场都是由电荷的运动形成的

C .“分子电流”是专指分子内部存在的环形电流

D .分子电流假说无法解释加热“去磁”现象

点拨:了解物理学发展历史,不仅能做好这类题,也能帮助我们历史地去看待科学的发展进程.解答:正确的是B .

【例2】 回旋加速器的磁场B =1.5T ,它的最大回旋半径r =0.50m .当分别加速质子和α粒子时,求:(1)加在两个D 形盒间交变电压频率之比. (2)粒子所获得的最大动能之比. 解析:(1)T =2πm/Bq ,故f P /f α=qp m α/q αm P =2.

(2)由r =mv/Bq 可得v =Bqr/m ,所以被加速粒子的动能E k =mv 2/2=B 2q 2r 2

/2m .同一加速器最大半径r 和所加磁场相同,故E P /E α=1.

点拨:比例法是解物理问题的有效方法之一.使用的程序一般是:根据研究对象的运动过程确定相应的物理规律,根据题意确定运动过程中的恒量,分析剩余物理量间的函数关系,建立比例式求解.

【例3】 如图16-74所示是显像管电子束运动的示意图.设加速电场两极间的电势差为U ,垂直于纸平面的匀强磁场区域的宽度为L ,要使电子束从磁场

出来在图中所示120°范围内发生偏转(即上、下各偏转60°),

磁感应强度B 的变化范围如何?(电子电量e 、质量m 已知)

点拨:这是彩色电视机显像管理想化以后的模型.先确定电子运

动的圆心再结合几何知识求解.参考答案例.≥≥3B 01232mU e

安培力 磁感应强度·典型例题解析

【例1】下列关于磁感应强度大小的说法中正确的是 [ ]

A .通电导线受安培力大的地方磁感应强度一定大

B .磁感线的指向就是磁感应强度减小的方向

C .放在匀强磁场中各处的通电导线,受力大小和方向处处相同

D .磁感应强度的大小和方向跟放在磁场中的通电导线受力的大小和方向无关

点拨:磁场中某点的磁感应强度的大小和方向由磁场本身决定,磁感应强度的大小可由磁感

线的疏密来反映.安培力的大小不仅与B、I、L有关,还与导体的放法有关.解答:正确的应选D.

【例2】如图16-14所示,其中A、B图已知电流和其所受磁场力的方

向,试在图中标出磁场方向.C、D、E图已知磁场和它对电流作用力的

方向,试在图中标出电流方向或电源的正负极. [ ]

解答:A图磁场方向垂直纸面向外;B图磁场方向在纸面内垂直F向下;C、D图电流方向均垂直于纸面向里;E图a端为电源负极.

点拨:根据左手定则,电流在磁场中受力的方向既要与磁感线垂直,还要与导线中的电流方向垂直,且垂直于磁感线与电流所决定的平面.

磁场磁感线·典型例题解析

【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知 [ ]

A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针

B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针

C.可能是小磁针正上方有电子流自南向北通过

D.可能是小磁针正上方有电子流自北向南水平通过

点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键.解答:正确的应选C.

【例2】下列关于磁感线的说法正确的是 [ ]

A.磁感线上各点的切线方向就是该点的磁场方向

B.磁场中任意两条磁感线均不可相交

C.铁屑在磁场中的分布所形成的曲线就是磁感线

D.磁感线总是从磁体的N极出发指向磁体的S极

点拨:对磁感线概念的理解和磁感线特点的掌握是关键.解答:正确的应选AB

磁场对运动电荷的作用力·典型例题解析

【例1】图16-49是表示磁场磁感强度B,负电荷运动方向v

和磁场对电荷作用力f的相互关系图,这四个图中画得正确的是

(B、v、f两两垂直) [ ]

解答:正确的应选A、B、C.点拨:由左手定则可知四指指示正

电荷运动的方向,当负电荷在运动时,四指指示的方向应与速度

方向相反.

【例2】带电量为+q 的粒子,在匀强磁场中运动,下面说法中正确的是 [ ]

A .只要速度大小相同,所受洛伦兹力就相同

B .如果把+q 改为-q ,且速度反向且大小不变,则洛伦兹力的大小、方向均不变

C .只要带电粒子在磁场中运动,它一定受到洛伦兹力作用

D .带电粒子受到洛伦兹力越小,则该磁场的磁感强度越小

点拨:理解洛伦兹力的大小、方向与哪些因素有关是关键.解答: B

【例3】如果运动电荷除磁场力外不受其他任何力的作用,则带电粒子在磁场中作下列运动可能成立的是 [ ]

A .作匀速直线运动

B 、作匀变速直线运动

C .作变加速曲线运动

D .作匀变速曲线运动

点拨:当v ∥B 时,f =0,故运动电荷不受洛伦兹力作用而作匀速直线运动.当v 与B 不平行时,f ≠0且f 与v 恒垂直,即f 只改变v 的方向.故运动电荷作变加速曲线运动.参考答案:AC

【例4】如图16-50所示,在两平行板间有强度为E 的匀强电场,方

向竖直向下,一带电量为q 的负粒子(重力不计),垂直于电场方向以速

度v 飞入两板间,为了使粒子沿直线飞出,应在垂直于纸面内加一个怎

样方向的磁场,其磁感应强度为多大?

点拨:要使粒子沿直线飞出,洛伦兹力必须与电场力平衡.参考答案:磁感应强度的方向应垂直于纸面向内,大小为E/v

带电粒子在磁场中的运动 质谱仪·典型例题解析

【】质子和α粒子从静止开始经相同的电势差加速例1 (H)(He)11

24

后垂直进入同一匀强磁场作圆周运动,则这两粒子的动能之比Ek 1∶Ek 2=________,轨道半径之比r 1∶r 2=________,周期之比T 1∶T 2=________.

解答:∶=∶=∶,∶=∶E E q U q U 12r r k1k21212m v q B m v q B m E q k 111222111

2= ∶=∶,∶=∶=∶.22222221122m E q m q B m q B k 1T T 1212ππ

点拨:理解粒子的动能与电场力做功之间的关系,掌握粒子在匀强磁场中作圆周运动的轨道半径和周期公式是解决此题的关键.

【例2】如图16-60所示,一束电子(电量为e)以速度v 垂直射入磁感

强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与原来入射方

向的夹角是30°,则电子的质量是________,穿透磁场的时间是

________.

解析:电子在磁场中运动,只受洛伦兹力作用,故其轨迹是圆弧一部分,又因为f ⊥v ,故圆心在电子穿入和穿出磁场时受到洛伦兹力指向的交点上,如图16-60中的O 点.由几何知识可知:AB 间的圆心角θ=30°,OB 为半径.r =d/sin30°=2d ,又由r =mv/Be 得m =2dBe/v . 由于AB 圆心角是30°,故穿透时间t =T/12=πd/3v .

点拨:带电粒子的匀速圆周运动的求解关键是画出匀速圆周运动的轨迹,利用几何知识找出圆心及相应的半径,从而找到圆弧所对应的圆心角.

【例3】如图16-61所示,在屏上MN 的上侧有磁感应强度为B 的

匀强磁场,一群带负电的同种粒子以相同的速度v 从屏上P 处的孔

中沿垂直于磁场的方向射入磁场.粒子入射方向在与B 垂直的平面

内,且散开在与MN 的垂线PC 的夹角为θ的范围内,粒子质量为m ,

电量为q ,试确定粒子打在萤光屏上的位置.

点拨:各粒子进入磁场后作匀速圆周运动,轨道半径相同,运用左手定则确定各粒子的洛伦兹力方向,并定出圆心和轨迹.再由几何关系找出打在屏上的范围.参考答案

例.落点距点的最近距离为θ,其最远距离为=3P 222mv Bq R mv Bq cos

【例4】如图16-62所示,电子枪发出的电子,初速度为零,当被一

定的电势差U 加速后,从N 点沿MN 方向出射,在MN 的正下方距N 点为

d 处有一个靶P ,若加上垂直于纸面的匀强磁场,则电子恰能击中靶P .已

知U 、d ,电子电量e ,质量m 以及∠MNP =α,则所加磁场的磁感应强

度方向为________,大小为________.

点拨:电子经电势差U 加速后,速度由零变为v ,则eV =1/2mv 2.v 的方向水平向右,电子在洛伦兹力作用下,沿顺时针回旋到P ,则电子在N 点受洛伦兹力方向向下.由此确定B 的方向.NP 对应的圆心角为2α,则有Rsin α=d/2,而R =mv/Be ,则B 可求.

参考答案

电磁感应现象·典型例题解析

【例1】如图17-1所示,P 为一个闭合的金属弹簧圆圈,

在它的中间插有一根条形磁铁,现用力从四周拉弹簧圆圈,使

圆圈的面积增大,则穿过弹簧圆圈面的磁通量的变化情况

________,环内是否有感应电流________.

解析:本题中条形磁铁磁感线的分布如图所示(从上向下

看).磁通量是穿过一个面的磁感线的多少,由于进去和出来的磁感线要抵消一部分,当弹簧

例.垂直纸面向里:α422mUe ed sin

圆圈的面积扩大时,进去的磁感条数增加,而出来的磁感线条数是一定的,故穿过这个面的磁通量减小,回路中将产生感应电流.点拨:会判定合磁通量的变化是解决此类问题的关键.

【例2】如图17-2所示,线圈面积为S,空间有一垂直于水平

面的匀强磁场,磁感强度为B特斯拉,若线圈从图示水平位置

顺时针旋转到与水平位置成θ角处(以OO’为轴),线圈中磁通

量的变化量应是________Wb,若旋转180°,则磁通量的变化量

又为________Wb.

解析:开始位置,磁感线垂直向上穿过线圈,Φ=BS,转过θ时,由B.S关系有Φ2=BScos θ,故ΔΦ=BS(1-cosθ) 当转过180°时,此时,Φ2=BS,不过磁感线是从线圈另一面穿过∴ΔΦ=2BS

点拨:有相反方向的磁场穿过某一回路时,计算磁通量必须考虑磁通量的正负.

【例3】如图17-3所示,开始时矩形线圈与磁场垂直,且

一半在匀强磁场内,一半在匀强磁场外.若要线圈产生感应电

流,下列方法可行的是 [ ]

A.将线圈向左平移一小段距离

B.将线圈向上平移

C.以ad为轴转动(小于90°)

D.以ab为轴转动(小于60°)

E.以dc为轴转动(小于60°)

点拨:线圈内磁通量变化是产生感应电流的条件

参考答案:ACD

【例4】如图17-4所示装置,在下列各种情况中,能使悬挂在

螺线管附近的铜质闭合线圈A中产生感应电流的是 [ ]

A.开关S接通的瞬间

B.开关S接通后,电路中电流稳定时

C.开关S接通后,滑线变阻器触头滑动的瞬间

D.开关S断开的瞬间

点拨:电流变化时能引起它产生的磁场变化.参考答案:ACD

法拉第电磁感应定律的应用(1)

【例1】如图17-67所示,两水平放置的、足够长的、平行的光滑金属导轨,其间距为L,电阻不计,轨道间有磁感强度为B,方向竖直向上的匀强磁场,静止在导轨上的两金属杆ab、cd,它们的质量与电阻分别为m1、m2与R1、R2,现使ab杆以初动能E K沿导轨向左运动,求cd

杆上产生的热量是多少?(其他能量损耗不计)

解析:杆的初速度为,=.∴=ab v E m v v 1K 11211221E m K /

以abcd 为系统,系统所受合外力为零,系统总动量守恒,设达到

稳定时共同速度为v ,则有m 1v 1=(m 1+m 2)v 系统中产生的热量为:

Q =

1212212m v (m m )v E 112122K -+=.m m m +

ab cd Q Q 12杆和杆可看成串联,故两杆产生的热量为:、,

=Q Q R R 121

2

∴==Q 2R Q R R R R R m E m m K 212212212+++()()

点拨:本题以分析两杆的受力及运动为主要线索求解,关键注意:(1)明确“最终速度”的意义及条件.(2)运用能的转化和守恒定律结合焦耳定律分析求解.

【例2】如图17-68所示,在与水平面成θ角的矩形框架范围内垂

直于框架的匀强磁场,磁感应强度为B ,框架ad ,bc 电阻不计,长

均为L 的ab 、cd 电阻均为R ,有一质量为m ,电阻为2R 的金属棒

MN ,无摩擦地平行于ab 冲上框架,上升最大高度为h ,在此过程中

ab 部分的焦耳热为Q ,求运动过程的最大热功率.

解析:MN 沿斜面向上运动产生感应电动势,ab 和cd 相当于外电阻

并联,ab 和cd 中电流相同,MN 的电流为ab 中电流的两倍.当ab 部分的焦耳热为Q ,cd 部分焦耳热也为Q ,MN 的电阻为2R ,消耗的焦耳热为8Q .

设MN 的初速度为v0,根据能量守恒

12mv mgh 10Q mv 2mgh 20Q 0202=+即=+

MN 在上滑过程中,产生最大的感应电动势为E . E =BLv0

最大热功率为,==P P P E R R B L mgh Q Rm 2

222222025++/().

点拨:弄清能量转化的途径,用能的转化和守恒定律来求解.

【例3】如图17-69所示,质量为m 高为h 的矩形导线框在竖直面内下

落,其上下两边始终保持水平,途中恰好匀速穿过一有理想边界高亦为

h 的匀强磁场区域,则线框在此过程中产生的内能为 [ ]

A .mgh

B .2mgh

C .大于mgh 而小于2mgh

D .大于2mgh

点拨:匀速穿过即线框动能不变,再从能量转化与守恒角度分析.参考答案:B

【例4】如图17-70所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R ,匀强磁场垂直于斜面向上,质量为m ,电阻不计的金属棒ab 在沿斜面与棒垂直的恒力F 作用下沿导轨匀速上滑,上升高度h .在这过程中 [ ]

A .金属棒所受各力的合力所做的功等于零

B .金属棒所受各力的合力所做的功等于mgh 和电阻R 产生的焦耳热之和

C .恒力F 与重力的合力所做的功等于棒克服安培力所做的功与电阻R

上产生的焦耳热之和

D .恒力F 和重力的合力所做的功等于电阻R 上产生的焦耳热

点拨:电磁感应过程中,通过克服安培力做功,将其他形式的能转化为电能,再通过电阻转化成内能(焦耳热),故W 安与电热Q 不能重复考虑,这一点务须引起足够的注意.参考答案:AD

法拉第电磁感应定律应用(2)·典型例题解析

【例1】如图17-84所示,MN 、PQ 为足够长的水平导电轨道,

其电阻可以忽略不计,轨道宽度为L ,ab ,cd 为垂直放置在

轨道上的金属杆,它们的质量均为m ,电阻均为R ,整个装置

处于竖直向下的匀强磁场中,磁场的磁感强度为B .现用水平

力拉cd 杆以恒定的速率v 向右匀速滑动,设两杆与轨道间的

动摩擦系数为μ,求ab 杆可以达到的最大速度和此时作用在cd 杆上水平拉力做功的瞬时功率.

解析:由楞次定律可知,当cd 向右匀速运动时,ab 也向右运动.

当ab 有最大速度vm 时,μmg =BIL

I ==?Φ????/()/t R R BL v t v t R R m +-+t 联立①②有:=-v v m 222μmgR B L

此时作用在cd 杆上水平拉力F 做功的瞬时功率为P =Fv =(F 安+f)v =(BIL +μmg)v

∴= P 2mgv μ 点拨:要明确最大速度的条件,分析电路中的电流、安培力和金属

棒的运动之间相互影响、相互制约的关系.

【例3】如图17-86所示,用粗、细不同的铜丝制成两个边长相同

的正方形闭合线圈a 和b ,让它们从相同高处同时自由下落,下落中

经过同一有边界的水平匀强磁场,设线框下落过程中始终保持竖直

且不计空气阻力,试分析判断两框落地的先后顺序.

点拨:本题是对两种情况进行比较,我们通过对一般情形列式分析,找到本质规律再作判断.这是一种比较可靠的方法.参考答案:b先落地。

【例4】如图17-87所示,两金属杆ab和cd,长均为L,电阻均为R,质量分别为M和m,M >m.用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合电路,并悬挂在水平、光滑、不导电的圆棒两侧,两金属杆都处在水平位置,整个装置处

在一与回路平面垂直的磁感强度为B的匀强磁场中,若金属杆ab

正好匀速向下运动,求ab的运动速度.

点拨:本题可通过用整体法来求解,也可通过对两棒分别隔离分析

用受力平衡的知识求解.

参考答案:v m=(M-m)R/2B2l2

法拉第电磁感应定律——感应电动势的大小·典型例题解析

【例1】如图17-13所示,有一夹角为θ的金属角架,角架所围区域内存

在匀强磁场中,磁场的磁感强度为B,方向与角架所在平面垂直,一段直

导线ab,从角顶c贴着角架以速度v向右匀速运动,求:(1)t时刻角架

的瞬时感应电动势;(2)t时间内角架的平均感应电动势?

解析:导线ab从顶点c向右匀速运动,切割磁感线的有效长度de随时间

变化,设经时间t,ab运动到de的位置,则

de=cetanθ=vttanθ

(1)t时刻的瞬时感应电动势为:E=BLv=Bv2tanθ·t

(2)t时间内平均感应电动势为:

E=

···θ

θ·?Φ

?

?

?

t

B S

t

B vt vt

t

Bv t ===

1

21

2

2

tan

tan

点拨:正确运用瞬时感应电动势和平均感应电动势表达式,明确产生感应电动势的导体是解这个题目的关键.

【例2】如图17-14所示,将一条形磁铁插入某一闭

合线圈,第一次用0.05s,第二次用0.1s,设插入方

式相同,试求:

(1)两次线圈中平均感应电动势之比?

(2)两次线圈之中电流之比?

(3)两次通过线圈的电量之比?

解析:(1)

(2)

(3)

.·

.·

E

E t

t t

t

I

I

E

R

R

E

E

E

q

q

I t

I t

1

21

22

1

1

2

1

2

1

2

1

2

11

22

2

1

2

1

1

1

===

===

==

?

?

?

?

?

?

点拨:两次插入时磁通量变化量相同,求电荷量时电流要用平均值.

【例3】如图17-15所示,abcd区域里有一匀强磁场,现有一竖直的圆环使它匀速下落,在下落过程中,它的左半部通过水平方向的磁场.o是圆环的圆心,AB是圆环竖直直径的两个端点,那么[ ]

A.当A与d重合时,环中电流最大

B.当O与d重合时,环中电流最大

C.当O与d重合时,环中电流最小

D.当B与d重合时,环中电流最大

点拨:曲线在垂直于磁感线和线圈速度所确定的方向上投影线的长度是有效切割长度.参考答案:B

楞次定律的应用·典型例题解析

【例1】如图17-50所示,通电直导线L和平行导轨在同一平面内,

金属棒ab静止在导轨上并与导轨组成闭合回路,ab可沿导轨自由滑

动.当通电导线L向左运动时[ ]

A.ab棒将向左滑动 B.ab棒将向右滑动

C.ab棒仍保持静止

D.ab棒的运动方向与通电导线上电流方向有关

解析:当L向左运动时,闭合回路中磁通量变小,ab的运动必将阻碍回路中磁通量变小,可知ab棒将向右运动,故应选B.点拨:ab棒的运动效果应阻碍回路磁通量的减少.

【例2】如图17-51所示,A、B为两个相同的环形线圈,

共轴并靠近放置,A线圈中通有如图(a)所示的交流电i,则

[ ]

A.在t1到t2时间内A、B两线圈相吸

B.在t2到t3时间内A、B两线圈相斥

C.t1时刻两线圈间作用力为零

D.t2时刻两线圈间作用力最大

解析:从t1到t2时间内,电流方向不变,强度变小,磁场变弱,ΦA↓,B线圈中感应电流磁场与A线圈电流磁场同向,A、B相吸.从t2到t3时间内,IA反向增强,B中感应电流磁场与A中电流磁场反向,互相排斥.t1时刻,I A达到最大,变化率为零,ΦB最大,变化率为零,I B =0,A、B之间无相互作用力.t2时刻,I A=0,通过B的磁通量变化率最大,在B中的感应电流最大,但A在B处无磁场,A线圈对线圈无作用力.选:A、B、C.

点拨:A线圈中的电流产生的磁场通过B线圈,A中电流变化要在B线圈中感应出电流,判定出B中的电流是关键.

【例3】如图17-52所示,MN是一根固定的通电长导线,电流方

向向上,今将一金属线框abcd放在导线上,让线圈的位置偏向导

线左边,两者彼此绝缘,当导线中电流突然增大时,线框整体受力

情况[ ]

A.受力向右 B.受力向左

C.受力向上 D.受力为零

点拨:用楞次定律分析求解,要注意线圈内“净”磁通量变化.参考答案:A

【例4】如图17-53所示,导体圆环面积10cm2,电容器

的电容C=2μF(电容器体积很小),垂直穿过圆环的匀强

磁场的磁感强度B随时间变化的图线如图,则1s末电容

器带电量为________,4s末电容器带电量为________,

带正电的是极板________.

点拨:当回路不闭合时,要判断感应电动势的方向,可假想回路闭合,由楞次定律判断出感应电流的方向,感应电动势的方向与感应电流方向一致.参考答案:0、2×10-11C;a;

变压器·典型例题解析

【例1】一只电阻、一只电容器、一只电感线圈并联后接入手摇交流发电机的输出端.摇动频率不断增加,则通过它们的电流I R、I C、I L如何改变[ ]

A.I R不变、I C增大、I L减小

B.I R增大、I C增大、I L减小

C.I R增大、I C增大、I L不变

D.I R不变、I C增大、I L不变

解答:应选C.点拨:手摇发电机的磁场、线圈形状和匝数都是不变的,输出电压与频率成正比.纯电阻电路中,电阻R与频率无关,I R=U/R,所以I R与频率成正比;纯电容电路中,容抗X C=1/2πfC,IC=U/X C=2πfCU,与频率的二次方成正比;纯电感电路中,X L=2πfL,I L =U/X L=U/2πfL,与频率无关.

【例2】图18-17为理想变压器,它的初级线圈接在交流电

源上,次级线圈接在一个标有“12V 100W”的灯泡上.已知变

压器初、次级线圈匝数之比为18∶1,那么灯泡正常工作时,

图中的电压表读数为________V,电流表读数为________A.

解答:由公式U1/U2=n1/n2,得U1=U2n1/n2=216(V);因理想

变压器的初、次级功率相等, 所以I1=P1/U1=P2/U2=0.46(A)

即电压表、电流表读数分别为216V、0.46A.

点拨:分析理想变压器问题时应注意正确应用电压关系和电流关系、特别是初、次级功率相

等的关系.

【例3】如图18-18所示,甲、乙两电路是电容器的两种不同的接法,它们各在什么条件下采用?应怎样选择电容器?

点拨:关键是注意容抗与交流电的频率成

反比.甲应是电容较大的电容器,乙应是

电容较小的电容器. 参考答案:

甲是电容较大的电容器通交流,阻直流、

乙是电容较小的电容器通直流,去掉交流.

【例4】如图18-19所示,理想变压器的两个次级线圈分别接有“24V

12W”、“12V 24W”的灯泡,且都正常发光,求当开关断开和闭合时,

通过初级线圈的电流之比.

点拨:关键是初、次级功率始终相等.参考答案:1∶3.

日光灯原理·典型例题解析

【例1】如图17-102所示的电路,L为自感线圈,R是一个灯泡,E是

电源,当开关S闭合瞬间,通过电灯的电流方向是________.当S断开

瞬间,通过电灯的电流方向是________.

解析:S闭合时,流经R的电流A→B.当S断开瞬间,由于电源提供给

R的电流很快消失,而线圈中电流减小时要产生一个和原电流方向相同

的自感电动势来阻碍原电流减小,所以线圈此时相当于一个电源,与电灯R构成放电电路.故通过R的电流方向是B→A.

点拔:S闭合瞬间与S断开瞬间线圈产生的自感电动势方向不同.

【例2】如图17-103所示,电源电动势E=6V,内阻不计,A、B两灯都

标有“6V、0.3A”,电阻R和线圈L的直流电阻R L均为20Ω,试分析:

在开关S闭合和断开的极短时间内流过A、B两灯的电流变化情况?

解析:S闭合到电路稳定的极短时间内,随着L中的电流逐渐变化.A、B

两灯中电流分别从0.1 A和0.2 A逐渐增加和减少为0.15 A;S断开时A

中的电流由0.15 A立即变为零,B中的电流由向右0.15 A立即变为向左

0.15 A,然后逐渐减为零.

点拨:线圈作为瞬间电流源只能使得电流强度从原有值开始变化.

【例3】下列说法中正确的是 [ ]

A.电路中电流越大,自感电动势越大

B.电路中电流变化越大,自感电动势越大

C.线圈中电流均匀增大,线圈的电感系数也将均匀增大

D.线圈中电流为零时,自感电动势不一定为零

点拨:注意区分物理量,物理量的变化量,物理量的变化率参考答案:D

【例4】如图17-104所示,多匝线圈和电池的内阻均为零,两个电

阻的阻值均为R,开关S原来打开着,电路中的电流为I.现将S闭

合,于是电路中产生感应电动势,此自感电动势的作用是[ ]

A.使电路中的电流减小,最后由I减到零

B.有阻碍电流的作用,最后电流小于I

C.有阻碍电流增大的作用,故电流总保持不变

D.有阻碍电流增大的作用,但电流还是增大,最后变为2I

点拨:自感作用阻碍的是电流的变化而不是电流.同时,“阻碍”不是“阻止”.

参考答案:D

相交流电·典型例题解析

【例1】在图18-30中输电线总电阻为1Ω,输送的电功率P=

100kW.在下列两种情况下分别求出输电电流I,输电线上损耗的

功率P损.①输电电压U输=400V;②输电电压U输=10kV.

解答:根据公式P=IU输先求出输电线上电流I,输电线上的损耗

功率为P线=I2R线,用户得到的功率P用=P-P线.解得:①I=250A,P线=62.5kW;②I′=10A,P线′=0.1kW.点拨:注意输电电压的变化所对应的各个物理量的变化.此题说明远距离送电必须采用高压送电的道理.

【例2】三相交流发电机的三个线圈中A相的电压为u=311sin100πtV,那么 [ ]

A.三个线圈中交流电的频率都是50Hz

B.在t=0时,其他两个线圈的输电电压为零

C.若按Y形接法,任意两线间的电压的最大值为380V

D.若按△形接法,任意两线间的电压的有效值为220V

点拨:三相交流发电机的每个线圈的频率、电压的有效值(或最大值)均相同,但由于不同步,所以任一时刻的瞬时值不同.在两种连接方式中线电压和相电压的关系不同.解答:正确答案是A、D.

自感与涡流典型例题

【例1】如图所示电路,A、B灯电阻均为R,闭合K1打开K2时,两

灯亮度一样,若再闭合K2待稳定后将K1断开,则断开瞬间:

A.B灯立即熄灭

B.A灯过一会儿才熄灭

C.流过B灯的电流方向是c→d

D.流过A灯的电流方向是b→a

【分析】电路中有一线圈L,在稳定的恒定电流路中,线圈相当于电阻很小的导线;当电路中的电流发生变化时,线圈会产生自感电动势阻碍电流的变化。【解答】 K1、K2闭合电路稳定时,灯A、B亮度相同,但都较弱,当K1断开的瞬间,B灯立即熄灭,但线圈L产生自感电动势,(加强原电流方向)在闭合回路cba中有自感电流,所以A灯不能立即熄灭,有b→a方向的电流通过。∴正确选项为A、B、D【说明】自感现象是一种特殊的电磁感应现象,它仍遵循楞次定律和法拉第电磁感应定律的规律,它是一种相当普遍的现象,只要电路中的电流发生变化,在线圈中都会有程度不同的自感现象发生。我们需要利用自感时,可加大自感系数,需要减弱自感影响时,可减小自感系数。

【例2】:在图所示的电路中,两个相同的电流表G1和G2的零点在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆;当电流从“—”接线柱流入时,指针向左摆。在电路接通后再断开开关K的瞬间,下列说法中正确的是 [ ]

A、G1指针向右摆,G2指针向左摆

B、G1指针向左摆,G2指针向右摆

C、两表指针都向右摆

D、两表指针都向左摆

【分析】当开关K闭合时,流经电感线圈L的电流方向为自左向右流动。当断开开关K的瞬间,通过线圈L的电流将变小,根据楞次定律,必然感应电流方向与原电流方向相同,也将是自左向右流,以阻碍原电流减小的变化。这样在由L、G2、R及G1组成的闭合电路中,感应电流将从G2的负接线柱流入,因而G2的指针向左偏;感应电流将从G1的正接线柱流入,因而G1的指针向右偏。

【解答】 A 【说明】这是断电自感现象,自感电流流经由L和R组成的闭合回路,因此通过两电流表的电流方向必然相反。

【例3】在水平放置的光滑导轨上,沿导轨固定一个条形磁铁如图1。

现有铜、铝和有机玻璃制成的滑块甲、乙、丙,使它们从导轨上的A

点以某一初速向磁铁滑去。各物块在拜碰上磁铁前的运动情况将是

[ ]

A.都作匀速运动 B.甲、乙作加速运动

C.甲、乙作减速运动 D.乙、丙作匀速运动

【说明】本题容易误解选A是出于如下考虑:因为铜、铝、有机玻璃都属非铁磁性物质,它们在磁场里不能被磁化,因而不会受到磁铁的引力,故作匀速运动。【解答】正确选项C。

但本问题有新的物理现象再现:同属金属的铜块、铝块向磁铁靠近时,穿过它们的磁通量发生改变,因此在其内部会产生感应电流I,如图2,这个电流在金属块内部自成回路,好像水的旋涡一样,故叫涡流。既有感应电流形成,则感应电流的效果对产生它的原因总起阻碍作用,所以铜块、铝块向磁铁的运动会受阻而减速。有机玻璃为非金属,不产生涡流现象.

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐) 一、单项选择题 1.下列说法中正确的是( ) A .在静电场中电场强度为零的位置,电势也一定为零 B .放在静电场中某点的检验电荷所带的电荷量q 发生变化时,该检验电荷所受电场力F 与其电荷量q 的比值保持不变 C .在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零 D .磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定 2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。如关系式U=IR ,既反映了电压、电流和电阻之间的关系,也确定了V (伏)与A (安)和Ω(欧)的乘积等效。现有物理量单位:m (米)、s (秒)、N (牛)、J (焦)、W (瓦)、C (库)、F (法)、A (安)、Ω(欧)和T (特) ,由他们组合成的单位都与电压单位V (伏)等效的是( ) A .J/C 和N/C B .C/F 和/s m T 2? C .W/A 和m/s T C ?? D .ΩW ?和m A T ?? 3.如图所示,重力均为G 的两条形磁铁分别用细线A 和B 悬挂在水平的天 花板上,静止时,A 线的张力为F 1,B 线的张力为F 2,则( ) A .F 1 =2G ,F 2=G B .F 1 =2G ,F 2>G C .F 1<2G ,F 2 >G D .F 1 >2G ,F 2 >G 4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为( ) A .1/2 B .1 C .2 D .4 5.如图所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中a 、b 、c 处进入

高中物理磁场经典习题含答案

寒假磁场题组练习 题组一 1.如图所示,在xOy平面内,y ≥ 0的区域有垂直于xOy平面向里的匀强磁场,磁感应强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 在着沿ad方向的匀强电场,场强大小为E,一粒子源不断地从a处的小孔沿 ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好 从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场, 磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重 力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 题组二 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1 = T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = m的匀强磁场B2。某时刻一质量m = ×10-8 kg、电量q = +×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为( m,0)的P点以速度v = ×103 m/s沿y轴正方 向运动。试求: (1)微粒在y轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y轴时速度方向与y轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,

方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。 (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。 题组三 7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布 在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最 后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区和II 区中磁感应强度的大小(忽略粒子重力)。 8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度射出,求粒子在A 点的初速度的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间; (3)在图(b )中,若粒子从A 点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少? A 23

1.2磁场典型例题.

磁场典型例题 类型题■ 分析求解磁感强度 磁感强度B 是磁场中的重要概念,求解磁感强度的方法一般有:定义式法、矢量叠加法等。 【例题1】如图中所示,电流从 A 点分两路通过对称的环形分路汇合于 B 点,在环形分路的中心 0处的 磁感强度( ) A. 垂直环形分路所在平面,且指向“纸内”。 B. 垂直环形分路所在平面,且指向“纸外”。 C. 在环形分路所在平面内指向 B 。 D. 磁感强度为零。 【例题2】电视机显象管的偏转线圈示意图如图所示,某时刻电流方向如图所示。则环心 向为( ) A .向下 B .向上 C.垂直纸面向里 D .垂直纸面向外 【例题3】安培秤如图所示,它的一臂下面挂有一个矩形线圈,线圈共有 N 匝,它的下部悬在均匀磁场 B 内,下边一段长为 L ,它与B 垂直。当线圈的导线中通有电流 I 时,调节砝码使两臂达到平衡;然后使电 流反向,这时需要在一臂上加质量为 m 的砝码,才能使两臂再达到平衡。求磁感强度 B 的大小。 专业、专心、成就学生梦想 个性化辅导学案 0处的磁场方

判别物体在安培力作用下的运动方向,常用方法有以下四种: 1、电流元受力分析法:即把整段电流等效为很多段直线电流元,先用左手定则判出每小段电流元受安 培力方向,从而判出整段电流所受合力方向,最后确定运动方向。 2、特殊值分析法:把电流或磁铁转到一个便于分析的特殊位置 从而确定运动方向。 3、等效分析法:环形电流可以等效成条形磁铁、条形磁铁也可等效成环形电流、通电螺线管可等效成 很多的环形电流来分析。 4、推论分析法: ⑴ 两电流相互平行时无转动趋势,方向相同相互吸引,方向相反相互排斥; (2)两 电 流不平行时有转动到相互平行且方向相同的趋势。 【例题1】如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可 以自由移动,当导线通过电流 I 时,导线的运动情况是( )(从上往下看) (如转过90° )后再判所受安培力方向 , A .顺时针方向转动,同时下降 B ?顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D .逆时针方向转动,同时上升 【例题2】如图所示,两平行光滑导轨相距为 L=20cm 金属棒MN 的质量为m=10g, 电阻R=8Q ,匀强磁场磁感应强度 B 方向竖直向下,大小为 B=0.8T ,电源电动势为 E=10V,内阻r=1 Q 。当电键S 闭合时,MN 处于平衡,求变阻器 R1的取值为多少?(设 0 =45°) 【例题3】长L=60cm 质量为m=6.0X 10-2 kg ,粗细均匀的金属棒,两端用完全相同的弹簧挂起,放在磁 感强度为B=0.4T ,方向垂直纸面向里的匀强磁场中, 如图8所示,若不计弹簧重力,问⑴ 要使弹簧不伸长, 金属棒中电流的大小和方向如何 ?(2)如在金属中通入自左向右、 大小为I=0.2A 的电流,金属棒下降X 1=1cm 若通入金属棒中的电流仍为 0.2A ,但方向相反,这时金属棒下降了多少 XS 分析导体在安培力作用下的运动 | N l S B

磁场典型例题

磁场典型例题 【内容和方法】 本单元内容包括磁感应强度、磁感线、磁通量、电流的磁场、安培力、洛仑兹力等基本概念,以及磁现象的电本质、安培定则、左手定则等规律。 本单元涉及到的基本方法有,运用空间想象力和磁感线将磁场的空间分布形象化是解决磁场问题的关键。运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况是将力学知识与磁场问题相结合的切入点。 【例题分析】 在本单元知识应用的过程中,初学者常犯的错误主要表现在:不能准确地再现题目中所叙述的磁场的空间分布和带电粒子的运动轨迹:运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况时出错;运用几何知识时出现错误;不善于分析多过程的物理问题。 例1 如图10-1,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是:[ ] A.磁铁对桌面的压力减小 B.磁铁对桌面的压力增大 C.磁铁对桌面的压力不变 D.以上说法都不可能 【错解分析】错解:磁铁吸引导线而使磁铁导线对桌面有压力,选B。 错解在选择研究对象做受力分析上出现问题,也没有用牛顿第三定律来分析导线对磁铁的反作用力作用到哪里。 【正确解答】 通电导线置于条形磁铁上方使通电导线置于磁场中如图10-2所示,由左手定则判断通电导线受到向下的安培力作用,同时由牛顿第三定律可知,力的作用是相互的,磁铁对通电导线有向下作用的同时,通电导线对磁铁有反作用力,作用在磁铁上,方向向上,如图10-3。对磁铁做受力分析,由于磁铁始终静止,无通电导线时,N = mg,有通电导线后N+F′=mg,N=mg-F′,磁铁对桌面压力减小,选A。 例2 如图10-4所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变化是:[ ] A.先减小后增大 B.始终减小 C.始终增大 D.先增大后减小

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

磁场典型题

磁场典型题 一、磁场的叠加 例1 已知长直通电导线在周围某点产生磁场的磁感应强度大小与电流大小成正比、与该点到导线的距离成反比。4根电流大小相同的长直通电导线a 、b 、c 、d 平行放置,它们的横截面的连线构成一个正方形,O 为正方形中心,a 、b 、c 中电流方向垂直纸面向里,d 中电流方向垂直纸面向外,则a 、b 、c 、d 长直通电导线在O 点产生的合磁场的磁感应强度 B ( ) A.大小为零 B.大小不为零,方向由O 指向d C.大小不为零,方向由O 指向c D.大小不为零,方向由O 指向a 例3[2017·湖南十三校联考] 如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒 定电流,方向如图所示,这时O 点的磁感应强度大小为B 1,若将N 处长直导线移至 P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( ) A.1∶1 B .1∶2 C.3∶1 D.3∶2 二、安培力的计算 例1 将长为l 的导线弯成16 圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示。若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( ) A.IlB ,水平向左 B .IlB ,水平向右 C.3IlB π,水平向左 D.3IlB π ,水平向右 例2. 两条直导线相互垂直,如图所示,但相隔一小段距离,其中一条AB 是固定的,另一条CD 能自由转动,当电流按如图所示的方向通入两条导线时,CD 导线将( )

高二物理 磁场 磁感线 典型例题解析

磁场磁感线典型例题解析 【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知 [ ] A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针 B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针 C.可能是小磁针正上方有电子流自南向北通过 D.可能是小磁针正上方有电子流自北向南水平通过 解答:正确的应选C. 点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键. 【例2】下列关于磁感线的说法正确的是 [ ] A.磁感线上各点的切线方向就是该点的磁场方向 B.磁场中任意两条磁感线均不可相交 C.铁屑在磁场中的分布所形成的曲线就是磁感线 D.磁感线总是从磁体的N极出发指向磁体的S极 解答:正确的应选AB. 点拨:对磁感线概念的理解和磁感线特点的掌握是关键. 【例3】如图16-2所示为通电螺线管的纵剖面图,试画出a、b、c、d四个位置上小磁针静止时N极的指向. 点拨:通电螺线管周围的磁感线分布是小磁针静止时N极指向的根据.【例4】如图16-3所示,当铁心AB上绕有一定阻值的线圈后,在AB间的小磁针静止时N极水平向左,试在图中铁心上的A、B两侧绕上线圈,并与电源连接成正确的电路.

点拨:根据小磁针静止时N极指向确定铁心的N极、S极,再定绕线方向. 跟踪反馈 1.下列说法正确的是 [ ] A.磁感线从磁体的N极出发,终止于磁体的S极 B.磁感线可以表示磁场的方向和强弱 C.磁铁能产生磁场,电流也能产生磁场 D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S极 2.首先发现电流磁效应的科学家是 [ ] A.安培 B.奥斯特 C.库仑 D.麦克斯韦 3.如图16-4所示,若一束电子沿y轴正方向运动,则在z轴上某点A 的磁场方向应是 [ ] A.沿x轴的正向 B.沿x轴的负向 C.沿z轴的正向

第五章 稳恒磁场典型例题

第五章 稳恒磁场 设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。 解:如图所示 令 110A I H e r = 220A I H e r = 由稳恒磁场的边界条件知, 12t t H H = 12n n B B = 又 B μ= 且 n H H = 所以 1122H H μμ= (1) 再根据安培环路定律 H dl I ?=? 得 12I H H r π+= (2) 联立(1),(2)两式便解得 ,

2112 0I I H r r μμμμπμμπ=? =?++ 01212 0I I H r r μμμμπμμπ= ? =?++ 故, 01110I B H e r θμμμμμπ==?+ 02220I B H e r θμμμμμπ== ?+ 212()M a n M M n M =?-=? 2 20 ( )B n H μ=?- 00()0I n e r θμμμμπ-= ???=+ 222()M M M J M H H χχ=??=??=?? 00 00(0,0,)z J Ie z μμμμδμμμμ--=?=?++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势 A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。 ? 解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分 量,而与φ,z 无关。由2A ?的柱坐标系中的表达式可知,只有一个分量,即 210A J μ?=- 220A ?= 此即 1 01()A r J r r r μ??=-?? 2 1()0A r r r r ??=?? 通解为 21121 ln 4 A Jr b r b μ=-++

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q , 质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. a b c d A C F D (a ) (b )

高中物理磁场经典例题.doc

1.【辽宁省丹东市四校协作体2011 届高三第二次联合考试】 如图所示,质量为 ,带电荷量 m 为+ q 的 P 环套在固定的水平长直绝缘杆上,整个装置处在垂直于杆的水平匀强磁场中, mg ,则 ( ) 磁感应强度大小 B .现给环一向右的初速度 v 0 v 0> qB A .环将向右减速,最后匀速 B .环将向右减速,最后停止运动 C .从环开始运动到最后达到稳定状态,损失的机械能是 1 2 2mv D .从环开始运动到最后达到稳定状态,损失的机械能是 1 2 - 1 mg 2 2mv 2 m qB 1.[ 答案 ] AD [ 解析] 环在向右运动过程中受重力 mg ,洛伦兹力 F ,杆对环的支持力、摩擦力作用, mg 由于 v 0>qB ,∴ qv 0B >mg ,在竖直方向有 qvB =mg + F N ,在水平方向存在向左的摩擦力作用, 所以环的速度越来越小,当 N =0 时, f = 0,环将作速度 v mg 1 =的匀速直线运动, A 对 B F F qB 错,从环开始运动到最后达到稳定状态,损失的机械能为动能的减少,即 1 2 1 mg 2 , 2mv - 2m qB 故 D 对 C 错,正确答案为 A D . 2. 【重庆市万州区 2011 届高三第一次诊断】 如图所示,半径为 R 的光滑圆弧轨道处在匀强 磁场中,磁场方向垂直纸面(纸面为竖直平面)向里。两个质量为 m 、带电量均为 q 的正电荷 小球,分别从距圆弧最低点 A 高度为 h 处,同时静止释放后沿轨道运动。下列说法正确的是 A :两球可能在轨道最低点 A 点左侧相遇 B :两球可能在轨道最低点 A 点相遇 C :两球可能在轨道最低点 A 点右侧相遇 D :两球一定在轨道最低点 A 点左侧相遇 2. [答案]B [解析] 先对左球进行受力分析 , 如图所示 , 取小球运动的任一位置,小球在沿着轨道运动 的过程中始终受到竖直向下的重力 mg 和指向圆心的洛伦磁力 F 作用 , 而 mg 又可分解为指向圆 心方向和切线方向的 F1,F2。可知, F 和 F1 始终垂直小球的运动方向,在小球运动过程中不 改变小球的速度大小,而小球的速度的大小只与 F2 有关,对右球同样进行受力分析,它沿着 切线方向的力的变化与 F2 是相同的,所以两个小球运动到 A 所需的时间相同。在左球运动到 A 的过程中, F 不断增大,如果 F 始终小于 F1,那么两球便会在最低点 A 相遇,如果 F 在某点 大于 F1,那么小球便会被拉离轨道不能与右球在 A 点相遇,故答案是 B 。 3.【武昌区 2010 届高三年级元月调研测试】 如图所示,有一垂直于纸面向外的磁感应强度为 B 的有界匀强磁场(边界上有磁场) ,其边界为一边长为 L 的三角形, A 、 B 、 C 为三角形 的 顶点。 今有一质量为 、电荷量为+ q 的粒子(不计重 C 力 ), m

高中物理磁场经典习题(题型分类)含答案

磁场补充练习题 题组一 1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B ,一质量为m 、带电量大小为q 的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 2.如图所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E ,一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E 与磁感应强度B 的比值为多大? 题组二 3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v 水平射入,如图所示。为了使粒子不能飞出磁场,求粒子的速度应满足的条件。 4.如图所示的坐标平面内,在y 轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T 的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B 2。某时刻一质量m = 2.0×10-8 kg 、电量q = +4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m/s 沿y 轴正方向运动。试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B 2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d ,电压为U ;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。

高中物理带电粒子在磁场中的运动试题经典含解析

高中物理带电粒子在磁场中的运动试题经典含解析 一、带电粒子在磁场中的运动专项训练 1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ 垂直MN 放置,挡板的中点置于N 点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M 的上方取点A ,一比荷 q m =5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。 (1)求电场强度E 的大小; (2)求磁感应强度B 的大小; (3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。 【答案】(1) 16/N C (2) 21.610T -? (3) 43.910s -? 【解析】 【详解】 (1)带正电的粒子在电场中做类平抛运动,有:L=v 0t 2 122L qE t m = 解得E=16N/C (2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0 tan v qE t m θ= 可得θ=450粒子射入磁场时的速度大小为2v 0 粒子在磁场中做匀速圆周运动:2 v qvB m r = 由几何关系可知2r L = 解得B=1.6×10-2T

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题 许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明. 一、最值问题的解题关键——抓弦长 1.求最长时间的问题 例1 真空中半径为R=3×10-2m的圆形区域内, 有一磁感应强度为B=的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径 ab 一端 a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何(以 v0与 Oa 的夹角 表示)最长运动时间多长 小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.

2 .求最小面积的问题 例2 一带电质点的质量为m,电量为q,以 平行于 Ox 轴的速度v从y轴上的a点射人如图 3 所示第一象限的区域.为了使该质点能从x 轴上的b点以垂直于x轴的速度 v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计. 小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长. 二、汇聚发散问题的解题关键——抓半径 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则

高二物理磁场对运动电荷的作用力·典型例题解析

磁场对运动电荷的作用力·典型例题解析 【例1】图16-49是表示磁场磁感强度B,负电荷运动方向v和磁场对电荷作用力f的相互关系图,这四个图中画得正确的是(B、v、f两两垂直) [ ] 解答:正确的应选A、B、C. 点拨:由左手定则可知四指指示正电荷运动的方向,当负电荷在运动时,四指指示的方向应与速度方向相反. 【例2】带电量为+q的粒子,在匀强磁场中运动,下面说法中正确的是 [ ] A.只要速度大小相同,所受洛伦兹力就相同 B.如果把+q改为-q,且速度反向且大小不变,则洛伦兹力的大小、方向均不变 C.只要带电粒子在磁场中运动,它一定受到洛伦兹力作用 D.带电粒子受到洛伦兹力越小,则该磁场的磁感强度越小 解答:正确的应选B. 点拨:理解洛伦兹力的大小、方向与哪些因素有关是关键. 【例3】如果运动电荷除磁场力外不受其他任何力的作用,则带电粒子在磁场中作下列运动可能成立的是 [ ] A.作匀速直线运动 B、作匀变速直线运动 C.作变加速曲线运动 D.作匀变速曲线运动 点拨:当v∥B时,f=0,故运动电荷不受洛伦兹力作用而作匀速直线运动.当v与B不平行时,f≠0且f与v恒垂直,即f只改变v的方向.故运动电荷作变加速曲线运动. 参考答案:AC 【例4】如图16-50所示,在两平行板间有强度为E的匀强电场,方向竖直向下,一带电量为q的负粒子(重力不计),垂直于电场方向以速度v飞入两

板间,为了使粒子沿直线飞出,应在垂直于纸面内加一个怎样方向的磁场,其磁感应强度为多大? 点拨:要使粒子沿直线飞出,洛伦兹力必须与电场力平衡. 参考答案:磁感应强度的方向应垂直于纸面向内,大小为E/v 跟踪反馈 1.关于带电粒子所受洛伦兹力f、磁感应强度B和粒子速度v三者方向之间的关系,下列说法正确的是 [ ] A.f、B、v三者必定均保持垂直 B.f必定垂直于B、v,但B不一定垂直于v C.B必定垂直于f、v,但f不一定垂直于v D.v必定垂直于f、B,但f不一定垂直于B 2.下列说法正确的是 [ ] A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力作用 B.运动电荷在某处不受洛伦兹力作用,则该处的磁感应强度一定为零 C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的动量 D.洛伦兹力对带电粒子不做功 3.如图16-51所示的正交电场和磁场中,有一粒子沿垂直于电场和磁场的方向飞入其中,并沿直线运动(不考虑重力作用),则此粒子 [ ] A.一定带正电 B.一定带负电 C.可能带正电或负电,也可能不带电 D.一定不带电 4.如图16-52所示,匀强电场方向竖直向下,匀强磁场方向水平向里,有一正离子恰能沿直线从左到右水平飞越此区域,则

电磁感应综合典型例题

电磁感应综合典型例题 【例1】电阻为R的矩形线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是_______.(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳热为 Q=W G=mg—2h=2mgh. 【解答】2mgh。

【说明】本题也可以直接从焦耳热公式Q=I2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感线产生的感应电流的大小为 cd边进入磁场时的电流从d到c,cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为 据匀速下落的条件,有

因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立(l)、(2)、(3)三式,即得线框中产生的焦耳热为 Q=2mgh. 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高h1=5m处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s2,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

磁场典型例题解析

安培分子电流假说磁性材料·典型例题解析 【例1】关于分子电流,下面说法中正确的是 [ ] A.分子电流假说最初是由法国学者法拉第提出的 B.分子电流假说揭示了磁铁的磁场与电流的磁场具有共同的本质,即磁场都是由电荷的运动形成的 C.“分子电流”是专指分子内部存在的环形电流 D.分子电流假说无法解释加热“去磁”现象 点拨:了解物理学发展历史,不仅能做好这类题,也能帮助我们历史地去看待科学的发展进程.解答:正确的是B. 【例2】回旋加速器的磁场B=1.5T,它的最大回旋半径r=0.50m.当分别加速质子和α粒子时,求:(1)加在两个D形盒间交变电压频率之比. (2)粒子所获得的最大动能之比. 解析:(1)T=2π,故α=αα=2. (2)由r=可得v=,所以被加速粒子的动能=2/2=B2q2r2/2m.同一加速器最大半径r和所加磁场相同,故α=1. 点拨:比例法是解物理问题的有效方法之一.使用的程序一般是:根据研究对象的运动过程确定相应的物理规律,根据题意确定运动过程中的恒量,分析剩余物理量间的函数关系,建立比例式求解. 【例3】如图16-74所示是显像管电子束运动的示意图.设加 速电场两极间的电势差为U,垂直于纸平面

的匀强磁场区域的宽度为L ,要使电子束从磁场出来在图中所示120°范围内发生偏转(即上、下各偏转60°),磁感应强度B 的变化范围如何?(电子电量e 、质量m 已知) 点拨:这是彩色电视机显像管理想化以后的模型.先确定电子运动的圆心再结合几何知识求解.参考答案例. ≥≥3B 01232mU e 安培力 磁感应强度·典型例题解析 【例1】下列关于磁感应强度大小的说法中正确的是 [ ] A .通电导线受安培力大的地方磁感应强度一定大 B .磁感线的指向就是磁感应强度减小的方向 C .放在匀强磁场中各处的通电导线,受力大小和方向处处相同 D .磁感应强度的大小和方向跟放在磁场中的通电导线受力的大小和方向无关 点拨:磁场中某点的磁感应强度的大小和方向由磁场本身决定,磁感应强度的大小可由磁感线的疏密来反映.安培力的大小不仅与B 、I 、L 有关,还与导体的放法有关.解答: 正确的应选D . 【例2】如图16-14所示,其中A 、B 图已知电流 和其所受磁场力的方向,试在图中标出磁场方 向.C 、D 、E 图已知磁场和它对电流作用力的方向,试在图中标出电流方向或电源的正负极. [ ]

高二物理安培力 磁感应强度·典型例题解析

安培力磁感应强度·典型例题解析 【例1】下列关于磁感应强度大小的说法中正确的是 [ ] A.通电导线受安培力大的地方磁感应强度一定大 B.磁感线的指向就是磁感应强度减小的方向 C.放在匀强磁场中各处的通电导线,受力大小和方向处处相同 D.磁感应强度的大小和方向跟放在磁场中的通电导线受力的大小和方向无关 解答:正确的应选D. 点拨:磁场中某点的磁感应强度的大小和方向由磁场本身决定,磁感应强度的大小可由磁感线的疏密来反映.安培力的大小不仅与B、I、L有关,还与导体的放法有关. 【例2】如图16-14所示,其中A、B图已知电流和其所受磁场力的方向,试在图中标出磁场方向.C、D、E图已知磁场和它对电流作用力的方向,试在图中标出电流方向或电源的正负极. [ ] 解答:A图磁场方向垂直纸面向外;B图磁场方向在纸面内垂直F向下; C、D图电流方向均垂直于纸面向里;E图a端为电源负极. 点拨:根据左手定则,电流在磁场中受力的方向既要与磁感线垂直,还要与导线中的电流方向垂直,且垂直于磁感线与电流所决定的平面.【例3】画出图16-15中导线棒ab所受的磁场力方向.

点拨:画出正视图后,再用左手定则判定. 【例4】在水平匀强磁场中,用两根相同的细绳水平悬挂粗细均匀的直导线MN,导线中通以从M到N的电流I,此时绳子受力都是F,为使F=0,可采用下列方法中的 [ ] A.把电流强度增大到某一值 B.把电流强度减小到某一值 C.使电流I反向 D.使磁场B反向 点拨:用左手定则判定出磁场力方向,再根据平衡知识解决. 参考答案:A 跟踪反馈 1.下列等式中正确的是: [ ] A.1T=1Wb/m2 B.1T=1kg/(A·s2) C.1T=1kg·m2/(A·s2) D.1T=1N/(A·m) 2.磁场中某点的磁感线如图16-17所示,下列结论中正确的是

相关文档
相关文档 最新文档