文档库 最新最全的文档下载
当前位置:文档库 › 基于OptiStruct的弹簧片形状优化

基于OptiStruct的弹簧片形状优化

基于OptiStruct的弹簧片形状优化
基于OptiStruct的弹簧片形状优化

基于OptiStruct 的弹簧片形状优化

杜海涛 余慧杰 丁晓红

上海理工大学机械工程学院 200093

摘要: 应用HyperWorks 的OptiStruct 模块优化减振系统中的弹簧片形状,降低结构的固

有频率,避免结构在高频信号激励下发生共振。形状优化后,结构固有频率由原来的23.5Hz 降为14Hz 。

关键词:HyperWorks ,OptiStruct ,减振装置,形状优化,固有频率,灵敏度分析

1 引言

某微型振荡器对工作环境要求比较苛刻,单纯放在电柜里,在外界激励下易发生强烈振动,影响振荡器的正常工作。现根据振荡器的工作原理,设计一种支架式的减振装置:用等截面的四支铜片构造一支撑结构,下端固定在电柜上,上端托起一平台,振荡器固定于平台上。由于外界激励信号为高频信号,因此减振装置的固有频率越低越好。

为了使支撑结构在一定刚度要求下具有较小的固有频率,需对支撑结构进行优化设计。

2 原始弹簧片的刚度分析及系统固有频率计算

减振系统由四支形状相同的铜片和与之相连的重110g 的托盘构成,如图1所示。在相同截面下,铜片的形状直接决定了单个弹簧片的刚度,由于弹簧片本身的质量相对于托盘质量很小,对系统的固有频率影响较小,故其质量可忽略不计,那么整个减振装置的刚度则由四个弹簧片的刚度并联而成。

由于结构的对称性,可只取其中一支来分析。铜片的材料属性E =130GPa ,u =0.35,密度为8230Kg/m 3 ,采用矩形截面,尺寸宽为b =2mm ,厚t =0.25mm 。在XOY 平面内建立如图2所示的有限元模型:一端全约束,另一端沿Y 方向施加垂直向下的力。

经分析单支弹簧片的垂直刚度k ′为:

m N S F k 6000005

.03.0===

′ (1) 式中,F ——集中载荷,S ——加载点在Y 方向上的位移

则减振装置的固有频率f 为

.5Hz 2342121=′

==

m

k m k f ππ (2) 式中,k ——减振装置的刚度,m ——托盘质量

3.弹簧片结构的形状优化

形状优化是一种细节设计方法,是设计人员对模型结构变化有了一定思路进行的设计。目的是通过改变某些形状参数来实现好的力学性能,如应力、位移等。在形状优化中,通过修改网格节点的位置以改变结构的形状。在HyperMesh 中,通过HyperMorh 实现网格变形。OptiStruct 通过HyperMorph 进行区域变形,建立形状变量,以形状变量为设计变量进行优化计算。本文通过形状优化使弹簧片的刚度降低。

3.1 弹簧片的优化设计

根据模型的结构特点,用beam 梁单元来进行有限元计算。充分构造弹簧片可能的变形形状,分别对其灵敏度分析,从中找出对弹簧片刚度影响显著的若干形状变量。经分析,改变弹簧片圆弧部分的半径、弧度及直线部分与水平方向的倾角对弹簧片的刚度影响较大,因此定义这三个参数作为优化设计变量。设初始形状如图3(a)所示,半径、弧度、倾角的形状变量分别如图3(b)、3(c)、3(d)所示,半径、弧度、倾角的叠加形状变量如图3(e)所示。

优化设计的数学模型可以表述为: Minimize: k ′ subject to : d max <3mm

design variable : x 1、x 2、x 3、x 4

式中:k ′——弹簧片的刚度,d max ——加载点在Y 方向上的最大位移,x 1、x 2、x 3、x 4——形状变量

3.2 形状优化设计结果分析与比较

目标函数迭代三次后收敛,如图4所示。形状优化后的初始结果如图5所示。进行光顺处理后得到如图6示的形状。

对优化后的结果进行同样的约束和加载,经计算刚度为214.3N/m ,则由公式(2)得减振装置的固有频率为14Hz ,由原来的23.5降为14,降低了40%,优化效果显著。优化后的形状如图6所示,形状变量的改变值如表1所示,倾角由原来的37.73变为36.87,弧度由141变为168.7,半径由5mm 增加到7.8mm 。

表1 优化前后参数比较

4 分析与结论

通过弹簧片的形状优化,减振系统的固有频率降低。与传统的设计方法相比,大大减少了重复设计形状的次数。

在形状优化时,首先要进行初步的形状变量的灵敏度分析,找出对力学性能影响比较大的若干形状变量,既要充分设计形状变量的变化范围以拓宽目标值的寻优空间,又要避免不必要的形状变量设计导致的优化复杂和影响全局。

5 参考文献

[1] HyperWorks User Manual

[2] 李楚琳、张胜兰、冯樱等. HyperWorks 分析应用实例[M].北京:机械工业出版社,2008 [3] 张胜兰、郑冬黎等. 基于HyperWorks 的结构优化设计技术[M].北京:机械工业出版社,

2008

37.7314136.87168.7

运输优化模型参考

运输问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公司 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

遗传算法在交叉口配时优化中的应用

遗传算法在交叉口配时优化中的应用 摘要:介绍r模糊控制、人匸神经网络、遗传算法、蚁群算法、粒子群算法、女智能体等智能控制方法,详细分析了遗传算法的在交通控制领域的实际应用案例,更深入了解和学握了交通智能算法的应用。 关键词:优化:相位;配时参数:遗传算法 1引言 随着社会经济的发展,交通量急剧增长,交通拥堵加剧,交通事故频发,特别是在一些大城市,交通问题已成为制约城市经济发展的瓶颈⑴。为此,人们提岀建立智能交通系统(ITS)。作为ITS的重要组成部分,交通管理系统(ATMS〉在改善交通流秩序、提高交通安全性等方面发挥积极的作用。英中,交通信号优化控制是保证城市交通安全、有序、畅通、快速、高效运行的重要途径。当前,随着交通控制智能化的不断提高,智能控制方法在交通信号控制的重要性日益凸显。按照控制原理的不同,传统的交通信号控制分为宦时控制和感应控制。左时控制按事先设左的配时方案运行,英配时的依据是交通量历史数据°感应控制是某相位绿时根据车流量的变化而改变的一种控制方式,其中车流量可由安装在平面交叉口进口道上的车辆检测器测量。这两种控制方法存在共同的局限性:以数学模型为基础。由于城市交通系统中被控对象过程的非线性、较大的随机「?扰、过程机理错综复杂以及现场车辆检测的误差,建立精确的数学模型非常困难,这就适成了算法本身就有一定的缺陷。即使经过多次简化己建立的数学模型,它的求解还须简化计算才能完成。所以传统的交通控制方法并不能有效地解决目前复杂的交通问题。针对传统交通控制的固有缺陷和局限性,许多学者将模糊控制、神经网络、遗传算法、蚁群算法、多智能体技术等人工智能基础研究方法同常规交通控制方法结合应用。 2交通优化智能算法 2.1模糊逻辑 模糊逻辑是一种处理不确左性、非线性等问题的有力工具,与人类思维的某些特征相一致,故嵌入到推理技术中具有良好效果。模糊逻借不需要获取模型中的复杂关系,不需要建立精确的数学模型,是一种基于规则的智能控制方式,特别适用于具有较大随机性的城市交通控制系统。 2.2人工神经网络 人工神经网络是模拟生物的神经结构以及其处理信息的方式来进行计算的一种算法。它具有自适应、自组织和自学习能力,在认知处理、模式识别方而有很强的优势,最显著特点是具有学习功能。人工神经网络适用于非线性时变性系统的模拟与在线控制,交通控制系统正是一个非线性、时变系统。 2.3遗传算法 遗传算法是运用仿生原理实现在解空间的快速搜索,广泛应用于解决大规模组合优化问题。它是一种比较先进的参数寻优算法,对于不易建立数学模型的场合实实用价值较为突出,是以同样适用于交通工程。1997年,Kiseok和Michael等应用遗传算法对交通网络内的交叉口信号相位进行设计⑴,在交叉口形成的冲突点,结果显示该方法给出的相位方案要优于TRANSYT给岀的方案。同年,Memon等人给出了利用遗传算法进行信号配时方案设汁的研究结果。陈小锋,史忠科针对典型的多车道双向交叉路口的交通流分布, 建立四相位控制的动态交通控制模型,采用遗传算法同时对信号周期时长和相位绿灯持续时间进行优化⑶。承向军等对到达车辆数目进行模糊分类,将不同数量车辆的信号控制决策方案以规则集形式存储在知识库中,利用改进的遗传算法对交叉口信号模糊控制器的模糊规则进行优化,建立了新的优化算法【旬。顾榕等

基于Altair+OptiStruct的复合材料优化技术

复合材料优化技术 的 CompositeOptimizationTechnologyBasedonAltairOptiStruct澳汰尔工程软件(上海)有限公司洪清泉邬旭辉 AltairOptiStruct是一个是以有限元法为基础,面向产品设计、分析和优化的有限元和结构优化求解器,拥有全球最先进的优化技术,可提供最全面的优化方法,包括拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化。这些方法可以对静力、模态、屈曲、频响等分析过程进行优化,其稳健高效的优化算法允许在模型中定义上百万个设计变量,支持常见的结构响应,包括:位移、速度、加速度、应力、应变、特征值、屈曲载荷因子、结构柔度以及各响应量的组合等。此外,OptiStruct提供了丰富的参数设置,包括优化求解参数和制造加工工艺参数等,方便用户对整个优化过程进行控制,确保优化结果便于加工制造,从而极具工程实用价值。 OptiStruct提供了从金属到复合材料的完整的优化解决方案,可以考虑各铺层的应力、应变、失效和屈曲等性能约束,提供了前所未有的复合材料优化解决方案。 拓扑优化 拓扑优化的基本思想是将寻求结构的最优拓扑/布局问题转化为在给定的设计区域内寻求材料最优分布的问题。 例如,在矩形设计空间内,承受 弯矩的最佳结构样式是工字型梁,承 受扭矩的最佳结构样式是矩形管梁。 OptiStruct可以在给定的设计空间 内,在给定的载荷边界条件下,找到 满足性能指标的最佳的材料分布,从 而确定出最佳的结构形式。 自由尺寸优化 利用拓扑优化找出最佳的零部 件结构样式后,根据该样式初步设计 出零件,然后进行自由尺寸优化。自 由尺寸优化适合于用壳单元建模的 零件,对金属零件而言,每个单元的 厚度就是一个变量,其厚度可在某个 范围之间连续变化。 自由尺寸优化可以应用到复合 材料的优化设计中。将复合材料建 模为角度一定(0。、45。、一45。、90。 等)的几个“大层”(相对于实际厚 度很薄的单个铺层),此时每个单元 的每一层的都是一个厚度变量,优化 后可以得到其最佳厚度。 尺寸优化 尺寸优化可以对有限元模型的 各种参数,例如板的厚度、梁截面尺 寸、材料属性等进行优化。在得到各 角度“大层”的组成形状之后,对复 合材料进行重新建模,将每种形状重 新建成一个“大层”,优化得到每种 形状的具体厚度,除以实际铺层的厚 度,就可以得到每种角度每种形状的 铺层的数目了。 铺层层叠次序优化 有了每种角度每种形状的实际 铺层数目,接下来就要优化实际铺层 层叠的次序,从而最终制造出复合材 料零件。确定铺层次序时,需要考虑 铺层对称性、每种铺层的最大层叠数 目等。HyperShuffle模块可以自动 确定最佳的铺层层叠次序,满足复合 材料制造工艺要求。 结束语 AltairOptiStruct9.0具有完整 的复合材料优化设计解决方案,通过 综合应用拓扑优化、自由尺寸优化、 尺寸优化、铺层层叠次序优化等技 术,提供了从最初的零件结构样式, 到铺层形状和厚度分布,到铺层角度 和层数的确定,到最终铺层层叠次序 的各个阶段的优化设计方法,为复合 材料零件的设计提供了创新的、符合 工程实际的方法。 (责编侧卫) 2008年第22期?航空制造技术103 万方数据

打印机取纸弹簧的优化设计

打印机取纸弹簧的优化设计 摘要:分析打印机取纸机构中的弹簧设计特点,以弹簧的体积最小和疲劳安全系数最大为优化目标,利用转换目标法和构造惩罚函数法建立多目标优化设计数学模型。结合实例采用模拟退火优化设计方法求解,得到满足实际需要的最优化参数,对弹簧的设计具有理论指导意义。 关键词:弹簧转换目标法多目标优化模拟退火 1.引言 打印机已经不仅仅是办公设备,还可用在装潢,广告等领域,有些家庭也配有打印机;它不但可以在纸上打印文件,照片,发票,还可以打印在瓷砖,大理石,木板等装修的材料上提供丰富多彩的内容和创意;从针式,黑白喷墨,彩色喷墨到激光打印机,现在也已经有3D 打印机打印模型等。 取纸机构是办公打印机不可缺少的部分,如图(1)所示。弹簧作为重要元件,其主要作用为根据纸盘里纸张厚度的变化,通过弹簧拉伸力的变化,给取纸轮一个稳定范围的摩擦力,进而能保证稳定的取纸工序。一般的取纸机构存在着弹簧拉力不稳定,寿命短和不良率高等问题。因此研究弹簧的K值、疲劳安全性,对打印机取纸机构的稳定性是非常有必要的,从而降低成本。 2.弹簧优化模型的建立 2.1 设计变量的确定 影响弹簧的K值和疲劳安全系数的设计变量主要有弹簧簧丝的直径d,有效圈数n及旋绕比C,即: 2.2 体积和疲劳安全系数目标函数的确定 K值和疲劳安全系数是取纸机构弹簧的重要性能指标,因此合理地优化设计取纸机构中的拉伸弹簧,需要把弹簧体积最小和疲劳安全系数最大作为目标函数。 1)令F1(X)表示弹簧体积的目标函数,有: 2)令F2(X)表示疲劳安全系数的目标函数,有: C为旋绕比; F1,F2——弹簧所受的最小、最大的交变载荷,利用牛顿力学计算出弹簧的受力

优化模型在生活中的应用

优化模型在生活中的应用 人类生活在丰富多彩、变化万千的现实世界里,无时无刻不在运用智慧和力量去认识、利用、改造这个世界,从而不断地创造出日新月异、五彩缤纷的物质文明和精神文明。而在我们认识、利用和改造世界时我们往往离不开数学方法,数学建模则是利用数学方法解决实际问题的一种实践。通过抽象,简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 人们生活是离不开数学的,衣食住行等各个方面都需要数学,倘若能在这些实际问题中建立各种各样的比较典型的数学模型,在遇到生活中的这些琐碎小事时,就能更高效、更正确地进行处理了。 必须说明的是,建立数学模型需要用系统的某种特征的本质的数学表达式(或是用数学术语)对部分现实世界的描述即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述所研究的客观对象或系统在某一方面的存在规律。 优化模型是生活过程中必须用到的的数学模型,其建立目的就是为了得到最大化的工作效益以及减少投资等一系列最优条件。一般来说,我们在生活中经常应用这种模型,却没有将其抽象出来,明文对其进行规定。 1.模型类型说明举例 在姜启源先生等人主编的《数学模型》一书中提到过这样一个例子: “一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天增加2公斤.目前生猪出售的市场价格为每公斤8元,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生猪。” 在上述描述中,我们将设计到的特征,用数值明确地表示出来,通过构建数学式子便可很快的计算出最佳的出售时机。建模解答过程如下: 模型假设每天投入4元资金使生猪体重每天增加常数r(=2公斤);生猪出售的市场价格每天降低常数g(=0.1元). 模型建立给出以下记号:t ~时间(天).w ~生猪体重(公斤);~p 单价 (元/公斤);R-出售的收入(元);C-t 天投入的资金(元);Q-纯利润(元). 按照假设,)1.0(8),2(80=-==+=g gt p r rt w .又知道t C pw R 4,==,再考虑到纯利润应扣掉以当前价格(8元/公斤)出售80公斤生猪的收入,有808?--=C R Q ,得到目标函数(纯利润)为 其中1.0,2==g r .求)0(≥t 使)(t Q 最大.

钢板弹簧简化模型有限元分析

湖北汽车工业学院 Hubei Automotive Industries Institute 分析计算说明书 课程名称车辆工程专业课程设计 设计题目钢板弹簧简化模型的有限元分析 班级 T843-2 专业车辆工程学号 20080430232 学生姓名杨强 指导教师(签字) 起止日期2011年 12 月 19 日- 2011 年 12 月 30 日2012年 2 月 20 日- 2012 年 2 月 24 日

目录 1 引言 (3) 2设计要求 (3) 3 分析所用数据 (4) 4 分析过程 (4) 4.1简化模型一的分析过程 (4) 4.1.1模型的建立及网格划分 (4) 4.1.2 加载与求解 (6) 4.1.3 收敛性分析 (12) 4.2简化模型2的分析过程 (14) 4.2.1建模 (14) 4.2.2网格划分 (14) 4.2.3加载与求解 (15) 4.2.4简化模型二的优化设计 (18) 5 课程设计的心得体会 (22) 6 参考文献 (22)

钢板弹簧简化模型的有限元分析 1 引言 钢板弹簧是汽车非独立悬挂装置中常用的一种弹性元件。其作用是传递车轮与车身之间的力和力矩,缓和由于路面不平而传递给车身的冲击载荷,衰减冲击载荷所引起的振动,保证车辆的行驶平顺性。钢板弹簧结构简单,维修方便,成本低廉,在悬挂系统中可兼起导向作用,因此得到极为广泛的应用,其疲劳特性与阻尼特性对车辆行驶的可靠性和安全性有重要意义。本文对钢板弹簧简化模型结构进行有限元分析,弄清楚其应力分布的规律。采用各种网格对模型对模型划分,并作出了比较,计算了模型的最大misses应力和变形,用对称结构进行了计算,用目标驱动优化功能对模型做了结构优化设计。 2设计要求 图2.1 如图2.1所示钢板弹簧的简化模型,受力情况如上,要求: (1)采用四面体,六面体及自由方式进行网格划分,计算各情况的钢板弹簧三维简化模型的最大misses应力,变形和安全系数; (2)采用二维单元计算模型的最大misses应力,变形;利用结构的对称性对二维模型进行计算; (3)若钢板弹簧简化模型改为图2.2,分析结构的三维简化模型的最大misses应力,变形和安全系数;

交通红绿灯配时优化模型研究

交通红绿灯配时优化模型研究 在人民物质生活日益提高的今天,解决交通的拥堵状况成为一大难题。文章通过对三角湖路口的交通状况进行探究,利用采集到的数据,如车辆的到达率和离开率,车辆的延误时间等,建立良好的模型,对红绿灯的时长进行相应的优化,达到优化等待时间的目的,最后将一些影响甚微的因素考虑进来,使得优化更精确。 标签:车辆到达率;离开率;延误时间;红绿灯时长 1 概述 近年来,随着国內经济的迅猛发展,人们的交通出行方式开始多样化,但机动车通行依然占据着主导地位,随着我国机动车数量的不断增多,交通事故和交通拥堵的现象也开始频发,而交叉路口在其中起着至关重要的作用,合理的优化红绿灯配时不仅能缓解交通压力,还能达到节能减排的目的,促进可持续发展。本文利用目前流行的红绿灯模型优化实际通行道路。 2 模型假设 (1)车辆在通行过程中,无交通事故造成拥堵。(2)忽略人为造成的交通现象。(3)忽略天气影响。(4)交通信号灯正常工作。 3 模型的建立 因为在不同的交叉路口,交通量呈现很大的随机性,所以在统计不同方向和车道的车辆时要尤为注意(在本次试验的路口有2个方向是无法左转的)。通过对车流量信息的统计,为模型建立提供数据。因为路口交通情况复杂,有很多因素影响着交通,如:过马路的行人数量,车辆的车速等等,那么如何来评定一个路口的交通状况好坏呢,可以利用车辆的延误时间的作为参考因素,因为车辆作为交叉路口通行情况的主要制造者,车辆因为各种因素造成的延误时间越长,交通状况就越差,延误时间越短,交通状况就越好,因为每个方向的车辆数,车道数存在差异,因此将4个方向的车辆延误时间之和,即总延误时间,作为评定标准。 通过实地研究发现,车辆的延误时间和每个路口车辆的到达率,离开率以及信号周期有关。记d为交叉路口的车辆到达率(辆/s),c为交叉路口的车辆离开率(辆/s),T为交叉路口信号周期(s),t绿为绿灯持续时间,发现:t1时刻红灯亮时,车辆陆续停留在路口等候,那么到达的车辆数就是车辆达到率乘车辆等候时间n1=d×t等,等到t2时刻绿灯亮时,车辆安全通过路口,当然不一定所有的等候车辆都能一次通过,有的车辆可能要等待2次红灯,那么在绿灯亮到t3时刻,即等候车辆都能安全通过(本文为优化交通状况,故视为一次均通过),通过车辆数为n2=c×(t3-t2)。当然离开率要大于到达率(不造成拥堵)。可以知

基OptiStruct的复合材料优化技术

基OptiStruct的复合材料优化技术 作者:澳汰尔工程软件洪清泉邬旭辉 摘要:Altair OptiStruct为金属结构件提供了前所未有的优化手段,在各个行业取得了大量革命性的应用和创新的工程成果。针对复合材料在航空航天的广泛应用,Altair OptiStruct 提供了全面的、面向工程实际的复合材料优化技术。本文介绍了这项技术的应用过程,各个阶段的方法及结果。 Altair OptiStruct是一个是以有限元法为基础,面向产品设计、分析和优化的有限元和结构优化求解器,拥有全球最先进的优化技术,提供最全面的优化方法,包括拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化。这些方法可以对静力、模态、屈曲、频响等分析过程进行优化,其稳健高效的优化算法允许在模型中定义上百万个设计变量,支持常见的结构响应,包括:位移、速度、加速度、应力、应变、特征值、屈曲载荷因子、结构柔度、以及各响应量的组合等。此外,OptiStruct提供了丰富的参数设置,包括优化求解参数和制造加工工艺参数等,方便用户对整个优化过程进行控制,确保优化结果便于加工制造,从而极其具有工程实用价值。 OptiStruct自从1993年发布以来,被广泛而深入地应用到各行各业,在航空航天、汽车、机械等领域取得了大量革命性的成功应用,赢得了多个创新大奖。特别是在金属结构件优化方面,OptiStruct的技术已经非常成熟,目前欧洲和美国几乎所有的正在研发的汽车和飞机都采用了结构优化技术,进行了大量的系统级布局优化,零部件减重和性能提高设计。 目前,复合材料以其比强度、比模量高,耐腐蚀、抗疲劳、减震、破损安全性能好等优点,在工业界取得了越来越多的应用,特别是在航空航天方面,由于钢铁和有色合金很难满足日趋苛刻的重量,力学等设计性能要求,复合材料更是得到了广泛的应用,例如波音787飞机超过50%重量的零部件采用复合材料制造。

弹簧的优化设计

弹簧实例优化 一、设计数据及理念 1)设计基本数据 本文要求设计一个某型内燃机用的气门弹簧。弹簧的材料采用 50CrVA,工作载荷F = 680N ,工作行程为h = 16.59mm,工作频率为f r= 25Hz,疲劳寿命按照N ≥106计算。另外弹簧的疲劳剪切强度为[τ] = 405Pa,弹簧丝直径要求2.5mm ≤d ≤ 9mm,弹簧外径要求30mm ≤D ≤ 60mm,工作圈数要求3 ≤n ≤6,支撑圈数为n2 =1.8 (采用YI 型端部结构),弹簧指数要求C ≥ 6,弹簧压并高度为λ b =1.1h =18.25mm。 2)设计理念:设计弹簧的尺寸,保证它重量最轻、自由度最小和自振频率最高。 二、建立弹簧数学模型 如图为弹簧的结构参数图,主要包括设计弹簧的尺寸,保证它重量最轻、自由度最小和自振频率最高。主要包括弹簧的钢丝直径d,弹簧的大径D、弹簧的中 径D 2、弹簧的小径D 1 、工作圈n、节距t,以及高度H 等。 (1)设计变量:

???? ? ? ?=????? ? ?=n D d x x x x 2 3 2 1 (2)目标函数: 目标函数可以根据各个弹簧的应用状况,或者是特殊要求来建立,通常情况下主要包括以下几方面:要使疲劳安全系数最大;1阶自振频率最大或者最小;外径或高度最小;弹簧的成本最小;质量或者体积最小等。本文共选取弹簧结构重量最轻、弹簧的自由高度最小和弹簧的自振频率最高这三个目标函数,属于多目标优化问题。 1)结构重量最轻:4 / d g D )n (n W 2 22πρπ+= 即: )8.1(10*8148.1)(3 2 2 1 4 1 +=-x x x x f 2)自由高度最小:b d n n H λ+-+=)5.0(2 即: 25.18)3.1()(3 1 2 ++=x x x f 3)自振频率最高:n D d f r 22 5 10*56.3= 即:1 3 2 2 6 3 /10*809.2)(x x x x f -= 为了使这3 个分目标函数与附加的目标函数有相同的数量级,现对它们做以 下处理:)3,2,1()()(=--='i L H L x f x f i i i i i 式中,f i (x)代表的是各个分目标函数的实际值;而Li 和Hi 则分别代表各个 分目标函数的理想值与非理想值;式中如果出现f i (x)= L i ,换算值0='i f ; 如果 f i (x)= H i ,则换算值1='i f 。 (3)约束条件 约束条件可以从对弹簧的功能要求以及结构的限制列出,主要包括强度条件 (弹簧丝截面上的最大扭转剪应力不能超过许用应力)、刚度条件、弹簧的指数条

基于OptiStruct的结构优化设计方法

基于OptiStruct的结构优化设计方法 作者:张胜兰 优化设计是以数学规划为理论基础,将设计问题的物理模型转化为数学模型,运用最优化数学理论,以计算机和应用软件为工具,在充分考虑多种设计约束的前提下寻求满足预定目标的最佳设计。有限元法(FEM)被广泛应用于结构分析中,采用这种方法,任意复杂的问题都可以通过它们的结构响应进行研究。最优化技术与有限元法结合产生的结构优化技术逐渐发展成熟并成功地应用于产品设计的各个阶段。 一、OptiStruct结构优化方法简介 OptiStruct是以有限元法为基础的结构优化设计工具。它提供拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化,这些方法被广泛应用于产品开发过程的各个阶段。概念设计优化――用于概念设计阶段,采用拓扑(Topology)、形貌(Topography)和自由尺寸(Free Sizing)优化技术得到结构的基本形状。详细设计优化――用于详细设计阶段,在满足产品性能的前提下采用尺寸(Size)、形状(Shape)和自由形状(Free Shape)优化技术改进结构。拓扑、形貌、自由尺寸优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。经过设计人员修改过的设计方案可以再经过更为细致的形状、尺寸以及自由形状优化得到更好的方案。最优的设计往往比概念设计的方案结构更轻,而性能更佳。表1简单介绍各种方法的特点和应用。

OptiStruct提供的优化方法可以对静力、模态、屈曲、频响等分析过程进行优化,其稳健高效的优化算法允许在模型中定义成千上万个设计变量。设计变量可取单元密度、节点坐标、属性(如厚度、形状尺寸、面积、惯性矩等)。此外,用户也可以根据设计要求和优化目标,方便地自定义变量。 在进行结构优化过程中,OptiStruct允许在有限元计算分析时使用多个结构响应,用来定义优化的目标或约束条件。OptiStruct支持常见的结构响应,包括:位移、速度、加速度、应力、应变、特征值、屈曲载荷因子、结构应变能、以及各响应量的组合等。 OptiStruct提供丰富的参数设置,便于用户对整个优化过程及优化结果的实用性进行控制。这些参数包括优化求解参数和制造加工工艺参数等。用户可以设定迭代次数、目标容差、初始步长和惩罚因子等优化求解参数,也可以根据零件的具体制造过程添加工艺约束,从而得到正确的优化结果并方便制造。此外,利用OptiStruct软件包中的OSSmooth工具,可以将拓扑优化结果生成为IGES等格式的文件,然后输入到CAD系统中进行二次设计。

汽车离合器膜片弹簧的优化设计

汽车离合器膜片弹簧的优化设计 发表时间:2018-03-14T14:47:21.667Z 来源:《建筑学研究前沿》2017年第30期作者:张文广 [导读] 在生产汽车的过程中,汽车的燃油经济性、舒适性和动力性是汽车生产者必须考虑的问题。 摘要:用来切断和传递汽车传动系统关键装置的汽车离合器,它作为汽车传动器中不可或缺的一部分,对汽车的整车性具有十分重要的影响。虽然膜片弹簧离合器也是一种普通的汽车离合器,但它与其它的汽车离合器相比,具有一些不可比拟的优点。 关键词:汽车离合器;膜片弹簧;优化设计 1 前言 在生产汽车的过程中,汽车的燃油经济性、舒适性和动力性是汽车生产者必须考虑的问题。而作为汽车重要组成部件的离合器,对汽车的生产者和汽车购买者必须考虑的汽车的三性能具有重大的影响。 2 膜片弹簧离合器的工作特点 设计产品需要很多种类的信息,不仅包括使用产品必需的几何实体信息,同时还包括使用工程的分析、生产制造、检测信息等多方面的信息。因而,产品模型的创建是将与关于产品的多种信息一同编辑到一个统一的模型中。这些被同时涵盖的信息包括产品的几何模型的信息、文件导入的信息、有限的网格划分、制造、检测以及加工信息;还包括产品的制造信息、检测流程的信息和计划信息等。这个统一的模型是一个覆盖了相当宽广的领域的产品,它具有其自身的自适应性,这种自适应性主要表现为将几个不同却有关联的组成部分进行有机的结合,用来满足不同时期、不同工程的应用。传统的汽车离合器使用的离合器是由周置旋转弹簧所构成的,由于它设计上被其推式结构的限制,使它对于现今汽车离合器扭转传递的要求已经不能满足。而为了让汽车的驾驶员在使用汽车的过程中更省力,以拉式结构创造的膜片弹簧离合器与之相比显然是一个十分正确的选择。因而这种拉式的膜片弹簧离合器被广泛应用于国内外的重型卡车中。它具有以下优点: 2.1膜片弹簧具有其它用来制造离合器的材料不可比拟的特点,即它的非线性特性,这种特性可以保证摩擦片有一个大致不变的磨损范围内的弹簧压力,同时,与圆柱螺旋弹簧在分离时压力升高相反,膜片弹簧在分离时弹簧压力会降低,这就相当于降低了离合器的踏板力。 2.2近年来,传动片式结构成为最广泛采用的压盘驱动方式,它具有许多对于汽车离合器的制造来说十分优良的特性,如:它在传动时没噪声、相当高的效率和定心精确度以及其良好的平衡性等。由于传动片使用时没有摩擦并且弹性好,使得它可以呈轴向运动。这相对于其他材料制造出来的离合器来说,也是一个很大的优势。 2.3膜片弹簧在其安装位置上也十分有优势。由于它与离合器轴的中心线呈对称的安装位置,使得它即使在离合器高度旋转式,它所受的压力也不会由于受到离心力的影响而降低离合器的压紧力。 2.4膜片弹簧是一个起着双重作用的工具,它对离合器起着同时分离和压紧杠杆的作用。这样的一种构造,简化了离合器的结构,减少了零件的数量以及零件质量,使得离合器在轴向尺寸上大大地缩短了。它还具有提高热容量的作用,这是由于它的相当小的膜片弹簧离合器的尺寸所造成的。此外,还可以利用其腾出的空间来改变汽车的散热条件。 2.5由于弹簧膜片接触的事压盘的整个圆面,因此它对于压盘的压力分布得十分均匀,与摩擦片的接触也相当良好。这样一来,它对摩擦片形成的磨损是较为均匀的,因此可以将摩擦片的使用期限延长。 2.6从其生产出发,膜片弹簧拥有结构十分简单的主要零件,这种零件方便大规模地生产,这不失为一个降低汽车生产成本的好办法。 3 膜片弹簧基本参数的选择 3.1 H/h比值和h的选择 比值H/h对膜片弹簧的弹性特性影响极大。为保证离合器压紧力变化不大和操纵轻便,汽车离合器用膜片弹簧的H/h一般为1.5~2.0,板厚2~4mm。本次设计H/h=1.75,h=2mm。 3.2 R/r比值和R、r的选择 研究表明,R/r越大,弹簧材料利用率越低,弹簧越硬,弹性特性曲线受直径误差的影响越大,且应力越高。根据结构布置和压紧力的要求,R/r一般为1.20~1.35。为使摩擦片上的压力分布较均匀,推式膜片弹簧的R值应取为大于或等于摩擦片的平均半径Rc,拉式膜片弹簧的r值应取为大于或等于Rc。而且,对于同样的摩擦片尺寸,拉式的R值比推式的大。这里R=90mm,r=70mm,R/r=1.286 3.3 α的选择 膜片弹簧自由状态下圆锥底角α与内截锥高度H关系密切,α=arctanH/(R-r),一般在9°~15°范围内。本次α=10°。 3.4分离指数目n的选取分离指数目n常取18,大尺寸膜片弹簧可取24,小尺寸膜片弹簧可取12。本次分离指数目n=18 3.5膜片弹簧小端内径r0及分离轴承作用半径rf的确定 r0由离合器的结构决定,其最小值应大于变速器第一轴花键的外径。rf应大于r0。本次设计r0=18mm,rf=20mm。 4 拉式膜片离合器关键零件的材料和制造工艺 国内膜片弹簧一般采用50CrVA,或是进口相应牌号的优质高精度钢板。为了保证其硬度、几何形状、金相组织、载荷特性和表面质量等要求,需进行一系列热处理。为了提高膜片弹簧的承载能力,要对膜片弹簧进行强压处理:即沿其分离状态的工作方向,超过彻底分离点后继续施加过量的位移,通过3~8次的过分离,便可使其高应力区发生塑性变形以产生残余反向应力。一般来说,经强压处理后,在同样的工作条件下,可提高膜片弹簧的疲劳寿命5%~30%。另外,还可以通过对膜片弹簧的凹面或双面进行喷丸处理,即以高速弹丸流喷射到膜片弹簧表面,使表层产生塑性变形,形成一定厚度的表面强化层,以增强弹簧疲劳强度。此外,为提高分离指的耐磨性,可对其端部进行高频感应加热淬火。为了防止膜片弹簧与压盘接触圆形处由于拉应力的作用产生裂纹,一般对该处进行挤压处理,以消除应力源。 膜片弹簧表面不得有毛刺、裂纹、划痕等缺陷,碟簧部分硬度为45~50HRC,分离指端硬度为55~62HRC,膜片弹簧的内、外半径公差一般为H11和h11,厚度公差偏差±0.025mm,上、下表面的表面粗糙度为1.6μm,底面的平面度一般要求小于0.1mm。膜片弹簧处于

基于OptiStruct的齿轮拓扑优化

基于OptiStruct的齿轮拓扑优化 作者:Simwe 来源:Altair发布时间:2013-03-25 【收藏】【打印】复制连接【大中小】我来说两句:(0) 逛逛论坛 基于OptiStruct的齿轮拓扑优化 罗利龙倪迎鸽王文智 西安710072 摘要:借助于Altair公司HyperWorks中OptiStruct模块,完成了对齿轮轮辐区的拓扑减重。介绍了OptiStruct拓扑模块用到的优化方法及原理,以及控制优化稳定收敛和可生产性的相关设置。优化结果减重效果明显,生产工艺简单。 关键词:OptiStruct,拓扑,齿轮,可生产性 0概述 近几十年来,人们的日常生活正在向高度机械化发展,人类很多行为都在逐步被一些高精度的机械设备所代替,而机械传动装置是各种机械设备实现其基本价值不可或缺的部分,其中齿轮传动又是最重要的传动装置之一。据史料记载,远在公元前400~200年的中国古代就开始使用简单的齿轮传动,作为人类伟大的四大发明之一的指南针就是以齿轮传动为主要机械装置。而近代直到18世纪,欧洲工业革命以后,齿轮传动的应用得到了飞速发展,从摆线齿轮到渐开线齿轮,直到20世纪初,齿轮传动以其平稳性、精确性、高效性、长寿命等优点得到了广泛应用。 齿轮被定义为轮缘上有齿的、能够连续啮合传递运动和动力的机械元件。在近代的欧洲,很多人针对齿轮的齿形和齿数开展了大量的研究和改进工作。从最初的摆线齿轮到现在的渐开线齿轮,从圆柱齿轮、锥齿轮再到曲线齿轮,人们根据更加先进合理的理论设计初适用于各种工况的齿轮,最终形成了一套标准供后人去参考查询。到现在为止,齿轮的理论已经发展的较为成熟,现在机械设计时基本都是直接参考设计标准,从标准中选择合适的齿轮应用。这样做的好处在于标准齿轮生产工艺成熟、与其它齿轮等传到装置的配合简单。但是,考虑到航空航天等一些以减重为重要指标的设计行业,只是从标准中选择就显得有些古板,但是完全重新设计又涉及到整个传动系统的重新设计。本文以飞机上某折叠机构齿轮为模型,在不改变齿数、齿形等参数的情况下借助Altair公司的HyperWorks软件对齿轮的轮辐区进行了减重拓扑设计,目的在于不影响结构传递运动和力的前提下尽量减小齿轮重量。 HyperWorks自带的优化模块包含了丰富的优化设置,可以解决多种多样的从拓扑到尺寸的优化设计。本文需要用到OptiStruct模块来完成拓扑优化,OptiStruct采用变密度法的材料插值模型来定义材料的流动规律。通过OptiStruct中先进的近似法和可靠的优化算法可以搜索得到最优的加载路径设计方案。与此同时,OptiStruct还可以考虑优化模型的可加工性,如对称约束、铸造结构的拔模方向等。设计完成以后还可以使用OSSmooth工具将优化结果生成为IGES等格式的文件,再到CAD软件里进行设计。 1OptiStruct的拓扑优化理论

基于Altair OptiStruct的复合材料优化技术

基于Altair OptiStruct的复合材料优化技术 Altair OptiStruct是一个是以有限元法为基础,面向产品设计、分析和优化的有限元和结构优化求解器,拥有全球最先进的优化技术,提供最全面的优化方法,包括拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化。这些方法可以对静力、模态、屈曲、频响等分析过程进行优化,其稳健高效的优化算法允许在模型中定义上百万个设计变量,支持常见的结构响应,包括:位移、速度、加速度、应力、应变、特征值、屈曲载荷因子、结构柔度、以及各响应量的组合等。此外,OptiStruct提供了丰富的参数设置,包括优化求解参数和制造加工工艺参数等,方便用户对整个优化过程进行控制,确保优化结果便于加工制造,从而极其具有工程实用价值。 OptiStruct自从1993年发布以来,被广泛而深入地应用到各行各业,在航空航天、汽车、机械等领域取得了大量革命性的成功应用,赢得了多个创新大奖。特别是在金属结构件优化方面,OptiStruct的技术已经非常成熟,目前欧洲和美国几乎所有的正在研发的汽车和飞机都采用了结构优化技术,进行了大量的系统级布局优化,零部件减重和性能提高设计。 目前,复合材料以其比强度、比模量高,耐腐蚀、抗疲劳、减震、破损安全性能好等优点,在工业界取得了越来越多的应用,特别是在航空航天方面,由于钢铁和有色合金很难满足日趋苛刻的重量,力学等设计性能要求,复合材料更是得到了广泛的应用,例如波音787飞机超过50%重量的零部件采用复合材料制造。 图1 波音787飞机材料分布 OptiStruct提供了从金属到复合材料的完整的优化解决方案,特别是其最新版本9.0,支持从最初的零件结构样式,到铺层形状和厚度分布,到铺层角度和层数的优化,到最终铺层层叠次序的各个阶段的优化设计方法,可以考虑各铺层的应力、应变、失效,屈曲等性能约束,提供了前所未有的复合材料优化解决方案,包括以下四个阶段: 拓扑优化

OptiStruct结构优化技术的最新发展及应用

OptiStruct结构优化技术的最新发展及应用 作者:洪清泉曾神昌张攀 摘要:结构优化技术近年来在学术研究和商业软件开发方面都是一个热点,特别是美国Altair 公司的OptiStruct结构优化软件,领先却仍不断进取,其优化能力从静态发展到动态,从线性发展到非线性,从金属发展到复合材料,其应用领域从传统的汽车行业发展到航空、船舶、电子、建筑等行业,为工业界提供了强大的创新及轻量化设计工具,取得了大量工程成果。关键字:结构优化,动态优化,非线性优化,复合材料优化,Altair,OptiStruct 1 概述 结构优化技术是当前CAE技术发展的一个热点,在学术研究领域,变密度法、均匀化法、水平集法以及各种准则法等百家争鸣。相关商业软件的开发也很快,比较知名的有美国Altair 公司的OptiStruct,德国FE-DESIGN公司的Tosca,日本Quint公司的OptiShape,以及美国MSC公司的Nastran等。 结构优化技术在工业界的应用也逐渐成熟。从行业角度来讲,从早期的汽车零部件轻量化设计和飞机机身机翼的板、杆、梁及蒙皮尺寸优化,迅速发展到汽车、飞机和船舶的结构布局优化,电子产品的结构件及连接优化,建筑物和土木工程的结构布置等。从性能的角度来讲,早期主要是考虑金属零部件的线性静态和模态性能指标,如应力、应变、位移、频率等,现在已经拓展到金属和复合材料零部件的振动噪声性能、碰撞安全性能、疲劳性能、动态激励下的性能等。下面以Altair OptiStuct为例介绍结构优化方法、功能及应用。 2 OptiStruct软件介绍 OptiStruct是美国Altair公司的旗舰产品,是一个面向产品设计、分析和优化的有限元和结构优化求解器,拥有全球最先进的优化技术,提供最全面的优化方法。 OptiStruct采用密度法(SIMP)求解拓扑优化问题,基于数学规划法的优化框架,是目前公认最为稳健高效的方法,能够解决绝大多数工程问题。通过对中间密度单元进行惩罚,考虑各种加工制造约束,采用自适应步长及约束屏蔽等技术,确保工程师快速得到具有工程意义的优化结果。OptiStruct的优化求解流程如图1所示:

考虑人均延误和人均排放的信号配时优化模型

第50卷 第9期2018年9月 哈 尔 滨 工 业 大 学 学 报JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY Vol.50No.9Sep.2018 DOI:10.11918/j.issn.0367-6234.201706174考虑人均延误和人均排放的信号配时优化模型 刘 畅,魏丽英 (北京交通大学交通运输学院,北京100044) 摘 要:为将绿色交通二公交优先等理念融入交叉口信号配时优化的建模策略当中,建立以交叉口人均延误二人均CO 排放为优化指标,以各相位有效绿灯时间为自变量的多目标信号配时优化模型.在人均延误公式中引入公交折减系数,用以避免公交绝对优先对社会车辆通行效率的负面影响.模型求解过程中运用模糊折中规划方法使量纲不同的两个目标函数实现无量纲化,令其取值在(0,l );采用模糊偏好方法计算两个目标的隶属度函数的权重值,进而将多目标函数转化为单目标函数;然后利用自适应惯性权重和异步学习因子相结合的优化粒子群算法,基于MATLAB 软件平台实现单目标函数的求解;最后将模型应用于实际案例,对各目标值进行比较分析.结果表明:优化后人均延误下降了0.94s ,下降幅度为3.87%.人均CO 排放量下降了1.25g ,下降幅度为12.74%.说明优化后的信号配时方案对于延误和排放具有优化作用,验证了模型的有效性.关键词:城市交通;信号配时;模糊折中规划;信号交叉口;粒子群算法 中图分类号:U121文献标志码:A 文章编号:0367-6234(2018)09-0083-06 Signaltimingoptimizationmodelconsideringpercapitadelayandpercapitaemissions LIUChang,WEI Liying (School of Trafficand Transportation,Beijing Jiaotong University,Beijing 100044,China)Abstract:To introduce the green trafficidea and the bus priority idea into the modeling strategy of signal timing optimization for intersections,a multi-objective signal timing optimization model varying with the phase effective green light time was proposed by considering the per capita delay and per capita CO emissions as the indexes.The bus deduction coefficient was introduced into the delay per capita to overcome the negative effect of absolute priority on private car.The fuzzy compromise method was used to transform the two objective functions of different dimensions into a single objective function,and to determine the values of two dimensions lie in (0,l).Fuzzy preference method was used to determine the membership function weights in the single objective function.The improved PSO (particle swarm optimization )which combines the SAPSO (self-adaptive particle swarm optimization)and the AsyLnCPSO (asynchronous learning-factor changing particle swarm optimization)were used to solve the single objective function based on the MATLAB software platform.Finally,the model was applied to an actual case and the target values were compared and analyzed.Results showed that the per capita delay reduced by 0.94s and decreased by 3.87%after optimization.The per capita CO emission reduced by 1.25g and decreased by 12.74%.The optimized signal timing scheme has an optimal effect on delay and emission,and the validity of the model was observed.Keywords:urban traffic;signal timing;fuzzy compromise programming;signalized intersection;particle swarm optimization 收稿日期:2017-08-16 作者简介:刘 畅(1994 ),女,硕士研究生; 魏丽英(1974 ),女,副教授,硕士生导师通信作者:魏丽英,lywei@bjhttps://www.wendangku.net/doc/7517276115.html,.cn 交通拥堵和环境污染已成为许多国家和地区所面临的严峻挑战,发展公共交通和控制尾气排放被 认为是缓解这些问题的有效手段.国内外已有很多 学者展开这方面的研究,如文献[1]在公交专用道 不连续的情况下,建立了信号配时优化模型;文献 [2]提出了一种分析公交信号优先策略(绿灯早启和绿灯延长)对于车辆延误影响的分析方法;文献 [3]以总延误最小为目标优化信号周期,依据相位乘客流量比和相位饱和度确定绿信比.文献[4]根据公交车运行特性,在单点配时模型基础上,建立了定时式相邻交叉口的公交优先信号协调控制模型.但在已有研究中,评价指标多为车均延误二排队长度二通行能力等.同时以人均延误替代车均延误指标,以人均排放替代排放总量指标,可以体现以人为本和公交优先的思想,赋予公交一定的优先权,故本文建立了既考虑人均延误,又考虑人均排放的多目标信号配时优化模型,在保证公交运行效益的同时,万方数据

相关文档
相关文档 最新文档