文档库 最新最全的文档下载
当前位置:文档库 › 电力电子简答2

电力电子简答2

1、晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么?
R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。R的作用为:使L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。

2、维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?
答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸管由导通变为关断, 可利用外加电压和外电路的作用使流过晶闸管的电流降
到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断

3.为使晶闸管变流装置正常工作,触发电路必须满足什么要求?
A、触发电路必须有足够的输出功率;B、触发脉冲必须与主回路电源电压保持同步;C、触发脉冲要有一定的宽度,且脉冲前沿要陡;D、触发脉冲的移相范围应能满足主电路的要求;

4.晶闸管的导通条件和关断条件。
晶闸管的导通条件:加正向阳极电压,同时加上足够的正向门极电压。(3分)
晶闸管的关断条件:利用外加电压和外电路的作用使流过晶闸管的电流小于维持电流,晶闸管即关断,在实际电路中常采用使阳极电压反向、减小阳极电压、或增大回路阻抗等方式

5、晶闸管触发的触发脉冲要满足哪几项基本要求?
A:触发信号应有足够的功率。
B触发脉冲应有一定的宽度,脉冲前沿尽可能陡,使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
C:触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。

6、 对晶闸管的触发电路有哪些要求?
答:为了让晶闸管变流器准确无误地工作要求触发电路送出的触发信号应有足够大的电压和功率;门极正向偏压愈小愈好;触发脉冲的前沿要陡、宽度应满足要求;要能满足主电路移相范围的要求;触发脉冲必须与晶闸管的阳极电压取得同步。

7.正确使用晶闸管应该注意哪些事项?
答:由于晶闸管的过电流、过电压承受能力比一般电机电器产品要小的多,使用中除了要采取必要的过电流、过电压等保护措施外,在选择晶闸管额定电压、电流时还应留有足够的安全余量。另外,使用中的晶闸管时还应严格遵守规定要求。此外,还要定期对设备进行维护,如清除灰尘、拧紧接触螺钉等。严禁用兆欧表检查晶闸管的绝缘情况。

8、 晶闸管整流电路中的脉冲变压器有什么作用?
答:在晶闸管的触发电路采用脉冲变压器输出,可降低脉冲电压,增大输出的触发电流,还可以使触发电路与主

电路在电气上隔离,既安全又可防止干扰,而且还可以通过脉冲变压器多个二次绕组进行脉冲分配,达到同时触发多个晶闸管的目地。

9.晶闸管的过电流保护常用哪几种保护方式?其中哪一种保护通常是用来作为“最后一道保护”用?
答:晶闸管的过电流保护常用快速熔断器保护;过电流继电器保护;限流与脉冲移相保护和直流快速开关过电流保护等措施进行。其中快速熔断器过电流保护通常是用来作为“最后一道保护”用的。

10.什么是逆变失败?逆变失败后有什么后果?形成的原因是什么
逆变失败指的是:逆变过程中因某种原因使换流失败,该关断的器件末关断,该导通的器件末导通。从而使逆变桥进入整流状态,造成两电源顺向联接,形成短路。逆变失败后果是严重的,会在逆变桥与逆变电源之间产生强大的环流,损坏开关器件。产生逆变失败的原因:一是逆变角太小;二是出现触发脉冲丢失;三是主电路器件损坏;四是电源缺相等。

11.实现有源逆变必须满足哪两个必不可少的条件?
直流侧必需外接与直流电流Id同方向的直流电源E,其数值要稍大于逆变器输出平均电压Ud,才能提供逆变能量。
逆变器必需工作在β<90o(α>90o)区域,使Ud< 0,才能把直流功率逆变为交流功率返送电网。


12.逆变产生的条件及对可进行有源逆变的电路的要求。
逆变产生的条件:①要有直流电动势,其极性须和晶闸管导通方向一致,其值应大于变流电路直流侧的平均电压。②要求晶闸管的控制角α〉π/2,使Ud为负值。(4分)
欲实现有源逆变,只能采用全控电路,半控桥或有续流二极管的电路不能实现有源逆变。(2分)

13.什么是有源逆变?实现逆变的条件是什么?
把直流变成交流电称为逆变。当交流侧接在电网上,即交流侧接有电源时,称为有源逆变。
实现逆变的条件:1)要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流电路直流测的平均电压。2)要求晶闸管的控制角 ,使Ud为负值。


14.无源逆变电路和有源逆变电路有何不同?
答:两种电路的不同主要是:有源逆变电路的交流侧接电网即交流侧接有电源。而无源逆变电路的交流侧直接和负载联接。

15.PWM逆变电路的控制方法主要有哪几种?简述异步调制与同步调制各有哪些优点?
答:(1)PWM逆变电路的常用控制方法有两种,一是计算法;二是调制法。其中调制法又可分为两种,一是异步调制法;二是同步调制法。
(2)通常异步调制法是保持载波频率不变,信号频率根据需要而改变时,载波比是变化的。优点是:信号频率较低时载波比较大

,一周期内脉冲数较多,输出较接近正弦波。
(3)同步调制时,保持载波比为常数,并在变频时使载波和信号波保持同步变化。优点是:信号波一周内输出的脉冲数是固定的,脉冲相位也是固定的,对称性好。

16.试说明PWM控制的基本原理。
答:PWM控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。效果基本相同是指环节的输出响应波形基本相同。上述原理称为面积等效原理
以正弦PWM控制为例。把正弦半波分成N等份,就可把其看成是N个彼此相连的脉冲列所组成的波形。这些脉冲宽度相等,都等于π/N,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到PWM波形。各PWM脉冲的幅值相等而宽度是按正弦规律变化的。根据面积等效原理,PWM波形和正弦半波是等效的。对于正弦波的负半周,也可以用同样的方法得到PWM波形。可见,所得到的PWM波形和期望得到的正弦波等效。

17.单极性和双极性PWM调制有什么区别?三相桥式PWM型逆变电路中,输出相电压(输出端相对于直流电源中点的电压)和线电压SPWM波形各有几种电平?
答:三角波载波在信号波正半周期或负半周期里只有单一的极性,所得的PWM波形在半个周期中也只在单极性范围内变化,称为单极性PWM控制方式。
三角波载波始终是有正有负为双极性的,所得的PWM波形在半个周期中有正、有负,则称之为双极性PWM控制方式。
三相桥式PWM型逆变电路中,输出相电压有两种电平:0.5Ud和-0.5 Ud。输出线电压有三种电平Ud、0、- Ud。

18.特定谐波消去法的基本原理是什么?设半个信号波周期内有10个开关时刻(不含0和??时刻)可以控制,可以消去的谐波有几种?
答:首先尽量使波形具有对称性,为消去偶次谐波,应使波形正负两个半周期对称,为消去谐波中的余弦项,使波形在正半周期前后1/4周期以??/2为轴线对称。
考虑到上述对称性,半周期内有5个开关时刻可以控制。利用其中的1个自由度控制基波的大小,剩余的4个自由度可用于消除4种频率的谐波。

19.什么是异步调制?什么是同步调制?两者各有何特点?分段同步调制有什么优点?
答:载波信号和调制信号不保

持同步的调制方式称为异步调制。在异步调制方式中,通常保持载波频率fc 固定不变,因而当信号波频率fr变化时,载波比N是变化的。
异步调制的主要特点是:在信号波的半个周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称。
这样,当信号波频率较低时,载波比N较大,一周期内的脉冲数较多,正负半周期脉冲不对称和半周期内前后1/4周期脉冲不对称产生的不利影响都较小,PWM波形接近正弦波。
而当信号波频率增高时,载波比N减小,一周期内的脉冲数减少,PWM脉冲不对称的影响就变大,有时信号波的微小变化还会产生PWM脉冲的跳动。这就使得输出PWM波和正弦波的差异变大。对于三相PWM型逆变电路来说,三相输出的对称性也变差。
载波比N等于常数,并在变频时使载波和信号波保持同步的方式称为同步调制。
同步调制的主要特点是:在同步调制方式中,信号波频率变化时载波比N不变,信号波一个周期内输出的脉冲数是固定的,脉冲相位也是固定的。
当逆变电路输出频率很低时,同步调制时的载波频率fc也很低。fc过低时由调制带来的谐波不易滤除。当负载为电动机时也会带来较大的转矩脉动和噪声。
当逆变电路输出频率很高时,同步调制时的载波频率fc会过高,使开关器件难以承受。
此外,同步调制方式比异步调制方式复杂一些。
分段同步调制是把逆变电路的输出频率划分为若干段,每个频段的载波比一定,不同频段采用不同的载波比。其优点主要是,在高频段采用较低的载波比,使载波频率不致过高,可限制在功率器件允许的范围内。而在低频段采用较高的载波比,以使载波频率不致过低而对负载产生不利影响。

20..什么是SPWM 波形的规则化采样法?和自然采样法比规则采样法有什么优点?
答:规则采样法是一种在采用微机实现时实用的PWM波形生成方法。规则采样法是在自然采样法的基础上得出的。规则采样法的基本思路是:取三角波载波两个正峰值之间为一个采样周期。使每个PWM脉冲的中点和三角波一周期的中点(即负峰点)重合,在三角波的负峰时刻对正弦信号波采样而得到正弦波的值,用幅值与该正弦波值相等的一条水平直线近似代替正弦信号波,用该直线与三角波载波的交点代替正弦波与载波的交点,即可得出控制功率开关器件通断的时刻。
比起自然采样法,规则采样法的计算非常简单,计算量大大减少,而效果接近自然采样法,得到的SPWM波形仍然很接近正弦波,克服了自然采样法难以在实时控制中在线计算,在工程中实际应用不多的缺点




21.根据对输出电压平均值进行控制的方法不同,直流斩波电路可有哪三种控制方式?并简述其控制原理。
答:(1)第一种调制方式为:保持开关周期不变,改变开关导通时间ton称为脉宽调制。简称“PWM”调制。
(2)第二种调制方式为:保持开关导通时间ton不变,改变开关周期,称为频率调制。简称为“PFM”调制。
(3)第三种调制方式为:同时改变周期T与导通时间ton。使占空比改变,称为混合调制。



22.为什么升压斩波电路能使输出电压高于电源电压?
1)是L储能之后具有使电压泵升的作用。2)是电容C可将输出电压保持住。

23.电压型逆变电路中反馈二极管的作用是什么?
答:电压型逆变器当交流侧为阻感性负载时,需要向电源反馈无功功率。直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂开关器件都反并联了反馈二极管。

24.GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能?
答:GTO和普通晶阐管同为PNPN结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益α1和α2,由普通晶阐管的分析可得,α1+α2=1 是器件临界导通的条件。α1+α2>1两个等效晶体管过饱和而导通;α1+α2<1不能维持饱和导通而关断。GTO之所以能够自行关断,而普通晶闸管不能,是因为GTO与普通晶闸管在设计和工艺方面有以下几点不同:
l)GTO在设计时α2较大,这样晶体管V2控制灵敏,易于GTO关断;
2)GTO导通时α1+α2的更接近于l,普通晶闸管α1+α2>=1.5,而GTO则为α1+α2~1.5 ,GTO的饱和程度不深,接近于临界饱和,这样为门极控制关断提供了有利条件;
3)多元集成结构使每个GTO元阴极面积很小,门极和阴极间的距离大为缩短,使得P2极区所谓的横向电阻很小,从而使从门极抽出较大的电流成为可能。

25. 与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得它具有耐受高电压电流的能力?
答1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。
2.P区和N区之间多了一层低掺杂N区,也称漂移区。低掺杂N区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N区就可以承受很高的电压而不被击穿。

26. 试分析IGBT和电力MOSFET在内部结构和开关特性上的相似与不同之处.
IGBT比电力MOSFET在背面多一个P型层,IGBT开关速度小,开关损耗少具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小。开关速度低于电力MOSFET。电力MOSFET开关速

度快,输入阻抗高,热稳定性好。所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题。
IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,ⅠGBT是电压驱动型器件,IGBT的驱动多采用专用的混合集成驱动器。 电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。

27.目前常用的全控型电力电子器件有哪些?
答:门极可关断晶闸管, 电力晶闸管,电力场效应晶体管,绝缘栅双极晶体管。

28.试写出DC→DC、DC→AC、AC→AC和AC→DC转换器的名称。
.答:转换器的名称对应如下:DC→DC:斩波器或脉宽调制变换器。 DC→AC:逆变器
AC→AC:变频器 AC→DC:整流器

29.整流电路多重化的主要目的是什么?
整流电路多重化的主要目的是:(1)在采用相同的器件时可以达到更大的功率。(2)可以减少交流侧输入电流的谐波或提高功率因数

30.设单相全控整流电路的直流侧接大电感负载,负载两端并接续流二极管对直流输出电压有什么作用?
单相全控整流电路并接蓄流二极管是为了使交流电压进入负半周时,由蓄流二极管蓄流,使晶闸管关断,提高整流输出电压的平均值。

31.什么是整流电路?它是利用功率开关器件的什么特性来实现?
整流电路是一种AC-DC变换电路,它是利用功率开关器件的单向导电的非线性特点来实现整流。

32.换流方式各有那儿种?各有什么特点?
答:换流方式有4种:
器件换流:利用全控器件的自关断能力进行换流。全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强追施加反向电压换流称为强迫换流。通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。

33.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点?
答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要持点是:
①直流侧为电压源或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形

和相位因负载阻抗情况的不同而不同。③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。直流侧电流基本无脉动,直流回路呈现高阻抗。②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。③当交流侧为阻感负载时需要提供无功功率,直流测电惑起缓冲无功能量的作用。因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。

34.电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变电路中没有反馈二极管?
答:在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起 缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。

35.并联谐振式逆变电路利用负载电压进行换相,为保证换相应满足什么条件?
答;假设在t时刻触发VT2、VT3使其导通,负载电压u。就通过VT2、VT3施加在VTl、VT4上,使其承受反向电压关断,电流从VTl、VT4向VT2、VT3转移触发VT2、VT3时刻/必须在u。过零前并留有足够的裕量,才能使换流顺利完成。

36.串联二极管式电流型逆变电路中,二极管的作用是什么?试分析换流过程。
答:二极管的主要作用,一是为换流电容器充电提供通道,并使换流电容的电压能够得以保持,为晶闸管换流做好准备;二是使换流电容的电压能够施加到换流过程中刚刚关断的晶闸管上,使晶闸管在关断之后能够承受一定时间的反向电压,确保晶闸管可靠关断,从而确保晶闸管换流成功。
以VTl和VT3之间的换流为例,串联二极管式电流型逆变电路的换流过程可简述如下:
给VT3施加触发脉冲,由于换流电容C13电压的作用,使VT3导通而VTl被施以反向电压而关断。直流电流Id从VTl换到VT3上,C13通过VDl、U相负载、W相负载、VD2、VT2、直流电源和VT3放电,如图5-16b所示。因放电电流恒为/d,故称恒流放电阶段。在C13电压Uc13下降到零之前,VTl一直承受反压,只要反压时间大于晶闸管关断时间rq,就能保证可靠关断。
Uc13降到零之后在U相负载电感的作用下,开始对C13反向充电。如忽略负载冲电阻的压降,则在Uc13=0时刻后,二极管

VD3受到正向偏置而导通,开始流过电流,两个二极管同时导通,进入二极管换流阶段,如图5-16c所示。随着C13充电电压不断增高,充电电流逐渐减小,到某一时刻充电电流减到零,VDl承受反压而关断,二极管换流阶段结束。之后,进入VT2、VT3稳定导逗阶段,电流路径如图5-Ⅰ6d所示。

37.逆变电路多重化的目的是什么?如何实现?串联多重和并联多重逆变电路备用于什么场合?
答:逆变电路多重化的目的之一是使总体上装置的功率等级提高,二是可以改善输出电压的波形。因为无论是电压型逆变电路输出的矩形电压波,还是电流型逆变电路输出的矩形电流波,都含有较多谐波,对负载有不利影响,采用多重逆变电路,可以把几个矩形波组合起来获得接近正弦波的波形。
逆变电路多重化就是把若干个逆变电路的输出按一定的相位差组合起来,使它们所含的某些主要谐波分量相互抵消,就可以得到较为接近正弦波的波形。组合方式有串联多重和并联多重两种方式。串联多重是把几个逆变电路的输出串联起来,并联多重是把几个逆变电路的输出并联起来。
串联多重逆变电路多用于电压型逆变电路的多重化。
并联多重逆变电路多用于电流型逆变电路的多重化。
在电流型逆变电路中,直流电流极性是一定的,无功能量由直流侧电感来缓冲。当需要从交流侧向直流侧反馈无功能量时,电流并不反向,依然经电路中的可控开关器件流通,因此不需要并联反馈二极管。


38.整流电路多重化的主要目的是什么?主要有哪几种形式?
整流电路多重化的主要目的包括两个方面:一是可以使装置总体的功率容量大,二是能够减少整流装置产生的谐波和无功功率对电网的干扰。
串联结构:可以提供较高的电压;并联结构:可以提高较大的电流。

39.简要说明形成SPWM控制的工作原理。
将一个任意正弦波电压分成N等份,并把该任意波曲线每一等份所包围的面积都用一个与其面积相等的等幅矩形脉冲来代替,且矩形脉冲的中点与相应任意波等份的中点重合,得到一系列按照正弦规律变化而和正弦波等效的波形,这就是SPWM波形。
SPWM控制就是利用脉冲对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替所需要的正弦波形。

40.什么是零电压开关?什么是零电流开关?
零电压开关:使开关在开通或关断时开关处两端电压为零,则开关开通或关断时就不会产生损耗和噪音。
零电流开关:使开关在开通或关断时流过开关两端的电流为零,则开关开通或关断时就不会产生损耗和噪音。

41与信息电子电路中的二极管相比,电力二

极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力?
答:(1)电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。
(2)电力二极管在P区和N区之间多了一层低掺杂N区,也称漂移区。低掺杂N区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N区就可以承受很高的电压而不被击穿。

42.三相半波整流电路的共阴极接法与共阳极接法,a、b两相的自然换相点是同一点吗?如果不是,它们在相位上差多少度?
答:三相半波整流电路的共阴极接法与共阳极接法,a、b两相之间换相的的自然换相点不是同一点。它们在相位上相差180°。

43.有两组三相半波可控整流电路,一组是共阴极接法,一组是共阳极接法,如果它们的触发角都是?,那末共阴极组的触发脉冲与共阳极组的触发脉冲对同一相来说,例如都是a相,在相位上差多少度?
答:相差180°。

44.单相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波?其中幅值最大的是哪一次?变压器二次侧电流中含有哪些次数的谐波?其中主要的是哪几次?
答:单相桥式全控整流电路,其整流输出电压中含有2k(k=1、2、3…)次谐波,其中幅值最大的是2次谐波。变压器二次侧电流中含有2k+1(k=1、2、3……)次即奇次谐波,其中主要的有3次、5次谐波。

45.三相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波?其中幅值最大的是哪一次?变压器二次侧电流中含有哪些次数的谐波?其中主要的是哪几次?
答:三相桥式全控整流电路的整流输出电压中含有6k(k=1、2、3……)次的谐波,其中幅值最大的是6次谐波。变压器二次侧电流中含有6k?1(k=1、2、3……)次的谐波,其中主要的是5、7次谐波。

46.带平衡电抗器的双反星形可控整流电路与三相桥式全控整流电路相比有何主要异同?
答:带平衡电抗器的双反星形可控整流电路与三相桥式全控整流电路相比有以下异同点:
①三相桥式电路是两组三相半波电路串联,而双反星形电路是两组三相半波电路并联,且后者需要用平衡电抗器;
②当变压器二次电压有效值U2相等时,双反星形电路的整流电压平均值Ud是三相桥式电路的1/2,而整流电流平均值Id是三相桥式电路的2倍。
③在两种电路中,晶闸管的导通及触发脉冲的分配关系是一样的,整流电压ud和整流电流id的波形形状一样。

47.12脉波、24脉波整流电路的整流输出电压和交流输入电流中各含哪些次数的谐波?
答:12脉波电路整流电路的交流输入电流中含有11次、13次

、23次、25次等即12k?1、(k=1,2,3???)次谐波,整流输出电压中含有12、24等即12k(k=1,2,3???)次谐波。
24脉波整流电路的交流输入电流中含有23次、25次、47次、49次等,即24k?1(k=1,2,3???)次谐波,整流输出电压中含有24、48等即24k(k=1,2,3???)次谐波。

48.单相桥式全控整流电路、三相桥式全控整流电路中,当负载分别为电阻负载或电感负载时,要求的晶闸管移相范围分别是多少?
答:单相桥式全控整流电路,当负载为电阻负载时,要求的晶闸管移相范围是0 ~ 180?,当负载为电感负载时,要求的晶闸管移相范围是0 ~ 90?。
三相桥式全控整流电路,当负载为电阻负载时,要求的晶闸管移相范围是0 ~ 120?,当负载为电感负载时,要求的晶闸管移相范围是0 ~ 90?。

49.多相多重斩波电路有何优点?
答:多相多重斩波电路因在电源与负载间接入了多个结构相同的基本斩波电路,使得输入电源电流和输出负载电流的脉动次数增加、脉动幅度减小,对输入和输出电流滤波更容易,滤波电感减小。 此外,多相多重斩波电路还具有备用功能,各斩波单元之间互为备用,总体可靠性提高。

50.试分析正激电路和反激电路中的开关和整流二极管在工作时承受的最大电压。
解:正激电路和反激电路中的开关和整流二极管在工作时承受最大电压的情况如下表所示:
开关S 整流二极管VD
正激电路 (1+N1/N3)U1 U1*N2/N3
反激电路 Ui+Uo*N1/N3 Ui*N2/N1+Uo

51.试分析全桥、半桥和推挽电路中的开关和整流二极管在工作中承受的最大电压,最大电流和平均电流。
答:以下分析均以采用桥式整流电路为例。
①全桥电路
最大电压 最大电流 平均电流
开关S Ui Id*N2/N1 Id*N2/(2*N1)
整流二极管 Ui*N2/N1 Id Id/2
②半桥电路
最大电压 最大电流 平均电流
开关S Ui Id*N2/N1 Id*N2/(2*N1)
整流二极管 Ui*N2/(2*N1) Id Id/2

③推挽电路 (变压器原边总匝数为2N1)
最大电压 最大电流 平均电流
开关S 2*Ui Id*N2/N1 Id*N2/(2*N1)
整流二极管 Ui*N2/N1 Id Id/2

52.全桥和半桥电路对驱动电路有什么要求?
答:全桥电路需要四组驱动电路,由于有两个管子的发射极连在一起,可共用一个电源所以只需要三组电源;半桥电路需要两组驱动电路,两组电源

53.试分析全桥整流电路和全波整流电路中二极管承受的最大电压,最大电流和平均电流。
解:两种电路中二极管承受最大电压:电流及平均电流的情况如下表所示:
最大电压 最大电流 平均电流
全桥整流 Um Id Id/2
全波整流 2Um Id Id/2

54.交流调压电路和交流调功电路有什么区别?二者各运用于什么

样的负载?为什么?
答::交流调压电路和交流调功电路的电路形式完全相同,二者的区别在于控制方式不同。交流调压电路是在交流电源的每个周期对输出电压波形进行控制。而交流调功电路是将负载与交流电源接通几个波,再断开几个周波,通过改变接通周波数与断开周波数的比值来调节负载所消耗的平均功率。
交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。在供用电系统中,还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。
交流调功电路常用于电炉温度这样时间常数很大的控制对象。由于控制对象的时间常数大,没有必要对交流电源的每个周期进行频繁控制。

55.交交变频电路的最高输出频率是多少?制约输出频率提高的因素是什么?
答:一般来讲,构成交交变频电路的两组变流电路的脉波数越多,最高输出频率就越高。当交交变频电路中采用常用的6脉波三相桥式整流电路时,最高输出频率不应高于电网频率的1/3~1/2。当电网频率为50Hz时,交交变频电路输出的上限频率为20Hz左右。
当输出频率增高时,输出电压一周期所包含的电网电压段数减少,波形畸变严重,电压波形畸变和由此引起的电流波形畸变以及电动机的转矩脉动是限制输出频率提高的主要因素。

56.交交变频电路的主要特点和不足是什么?其主要用途是什么?
答:交交变频电路的主要特点是:只用一次变流效率较高;可方便实现四象限工作,低频输出时的特性接近正弦波。
交交变频电路的主要不足是:接线复杂,如采用三相桥式电路的三相交交变频器至少要用36只晶闸管;受电网频率和变流电路脉波数的限制,输出频率较低;输出功率因数较低;输入电流谐波含量大,频谱复杂。
主要用途:500千瓦或1000千瓦以下的大功率、低转速的交流调速电路,如轧机主传动装置、鼓风机、球磨机等场合。

57.三相交交变频电路有那两种接线方式?它们有什么区别?
答:三相交交变频电路有公共交流母线进线方式和输出星形联结方式两种接线方式。
两种方式的主要区别在于:公共交流

母线进线方式中,因为电源进线端公用,所以三组单相交交变频电路输出端必须隔离。为此,交流电动机三个绕组必须拆开,共引出六根线。
而在输出星形联结方式中,因为电动机中性点和变频器中中性点在一起;电动机只引三根线即可,但是因其三组单相交交变频器的输出联在一起,其电源进线必须隔离,因此三组单相交交变频器要分别用三个变压器供电。

58.在三相交交变频电路中,采用梯形波输出控制的好处是什么?为什么?
答:在三相交交变频电路中采用梯形波控制的好处是可以改善输入功率因数。 因为梯形波的主要谐波成分是三次谐波,在线电压中,三次谐波相互抵消,结果线电压仍为正弦波。在这种控制方式中,因为桥式电路能够较长时间工作在高输出电压区域(对应梯形波的平顶区), 角较小,因此输入功率因数可提高15%左右。


59.在移相全桥零电压开关PWM电路中,如果没有谐振电感L,电路的工作状态将发生哪些变化,哪些开关仍是软开关,哪些开关将成为硬开关?
答:如果没有谐振电感Lr,电路中的电容Cs1 ,Cs2与电感L仍可构成谐振电路,而电容Cs3,Cs4将无法与Lr构成谐振回路,这样,S3、S4将变为硬开关,S1、S2仍为软开关。

60.在零电压转换PWM电路中,辅助开关Sl和二极管VDI是软开关还是硬开关,为什么?
答:在S1开通时,Us1不等于零;在S1关断时,其上电流也不为零,因此S1为硬开关。由于电感L的存在,S1开通时的电流上升率受到限制,降低了S1 的开通损耗。由于电感L的存在,使VD1的电流逐步下降到零,自然关断,因此VD1为软开关。

61.为什么要对电力电子主电路和控制电路进行电气隔离?其基本方法有哪些?
答:一是安全,因为主回路和控制回路工作电压等级不一样、电流大小也不一样,各有各的过流保护系统。强电进入弱电系统会对弱电系统造成损坏;二是为了弱电系统的工作稳定性,因为弱电系统尤其模拟量型号很容易受到电磁干扰。
基本方法二种,电磁隔离,光电隔离。

62.电力电子器件过电压的产生原因有哪些?
答:过电压分为外因过电压和内因过电压两类。
外因过电压主要来自雷击和系统中的操作过程等外部原因,包括
(1)操作过电压:由分闸、合闸等开关操作引起的过电压。
(2)雷击过电压:由雷击引起的过电压。
内因过电压主要来自电力电子装置内部器件的开关过程,包括
(1)换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后,反向电流急剧减小,会由线路电感在器件两端感应出过电压。
(2)关断过电压:全控型器件在较高频率下工作,当

器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。

63.电力电子器件过电压和过电流保护各有哪些主要方法?
过压的保护器件有:稳压二级管;压敏二级管;双向触发二级管;过流的有:压敏电阻,晶闸管;继电器,还有一些是作电阻取样用IC作检测的保护等。

64.何为双PWM电路?其优点是什么?
答:双PWM电路中,整流电路和逆变电路都采用PWM控制,可以使电路的输入输出电流均为正弦波,输入功率因数高,中间直流电路的电压可调。当负载为电动机时,可工作在电动运行状态,也可工作在再生制动状态;通过改变输出交流电压的相序可使电动机正转或反转,因此,可实现电动机四象限运行。
65.什么是变频调速系统的恒压频比控制?
答:即对变频器的电压和频率的比率进行控制,使该比率保持恒定。这样可维持电动机气隙磁通为额定值,使电动机不会因为频率变化而导致磁饱和和造成励磁电流增大,引起功率因数和效率的降低。

66.何为UPS ? 试说明图8.11所示UPS系统的工作原理。
答:UPS是指当交流输入电源发生异常或断电时,还能继续向负载供电,并能保证供电质量,使负载供电不受影响的装置,即不间断电源。图8—11为用柴油发电机作为后备电源的UPS,其工作原理为:一旦市电停电,则蓄电池投入工作,同时起动油机,由油机代替市电向整流器供电,整流后再通过逆变器逆变为50Hz恒频恒压的交流电向负载供电,市电恢复正常后,再重新由市电供电。因为蓄电池只作为市电与油机之间的过渡,柴油发电机作为后备电源,所以此系统可保证长时间不问断供电。

67.简述软开关技术的原理及作用?
原理:为器件提供良好的开关工作条件,使得器件在零电压或零电流条件下进行状态转变,从而把器件的开关损耗降到最低水平。
作用:消除开关过程中电压,电流的重叠,降低它们的变化率,从而减小甚至消除损耗和开关噪音。

68.IGBT、GTR、GTO和电力MOSFET的驱动电路各有什么特点?
答:IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT的驱动多采用专用的混合集成驱动器。
GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,这样可加速开通过程,减小开通损耗,关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。
GTO驱动电路的特点是:GTO要求其驱动电路提供的驱动电流的前沿应有足够的幅值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和陡度要求

更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。
电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。


69.简述图5-1a所示的降压斩波电路工作原理。
答:降压斩波器的原理是:在一个控制周期中,让V导通一段时间ton,由电源E向L、R、M供电,在此期间,uo=E。然后使V关断一段时间toff,此时电感L通过二极管VD向R和M供电,uo=0。一个周期内的平均电压Uo=ton/(ton+toff)*E 。输出电压小于电源电压,起到降压的作用。

简述图5-2a所示升压斩波电路的基本工作原理。
答:假设电路中电感L值很大,电容C值也很大。当V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时电容C上的电压向负载R供电,因C值很大,基本保持输出电压为恒值Uo。设V处于通态的时间为ton,此阶段电感L上积蓄的能量为E*I1*ton 。当V处于断态时E和L共同向电容C充电并向负载R提供能量。设V处于断态的时间为toff,则在此期间电感L释放的能量为(Uo-E)I1toff 。当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即:E*I1*ton =(Uo-E)I1toff

化简得:Uo=T/toff*E

式中的T/toff>=1 ,输出电压高于电源电压,故称该电路为升压斩波电路

70.试分别简述升降压斩波电路和Cuk斩波电路的基本原理,并比较其异同点。
答:升降压斩波电路的基本原理:当可控开关V处于通态时,电源E经V向电感L供电使其贮存能量,此时电流为i1,方向如图3-4中所示。同时,电容C维持输出电压基本恒定并向负载R供电。此后,使V关断,电感L中贮存的能量向负载释放,电流为i2,方向如图3-4所示。可见,负载电压极性为上负下正,与电源电压极性相反。
稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即
shit0~T uL dt=0
当V处于通态期间,uL = E;而当V处于断态期间,uL = - uo。于是:
E*ton=Uo*toff
所以输出电压为:Uo=ton/toff*E=ton/(T-ton)E=α/(1-α)*E

改变导通比α?,输出电压既可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压,因此将该电路称作升降压斩波电路。

Cuk斩波电路的基本原理:当V处于通态时,E—L1—V回路和R—L2—C—V回路分别流过电流。当V处于断态时,E—L1—C—VD回路和R—L2—VD回路分别流过电流。输出电压的极性与电源电压极性相反。该电路的等效电路如图3-5b所示,相当于开关S在A、B两点之间交替切换。
假设电容C很大使电容电压uC的脉动足够小时。当开关S合到B点时,B点电压uB=0,A点电压uA= - uC;相反,当S合到A点时,uB= uC,uA=0。因此,B点电压uB的平均值为UB=t

off/T*Uc (UC为电容电压uC的平均值),又因电感L1的电压平均值为零,所以E=UB=toff/T*Uc 。另一方面,A点的电压平均值为UA=-ton/T*Uc ,且L2的电压平均值为零,按图3-5b中输出电压Uo的极性,有Uo=ton/T*Uc 。于是可得出输出电压Uo与电源电压E的关系:
Uo=ton/toff*E=ton/(T-ton)E=α/(1-α)*E
两个电路实现的功能是一致的,均可方便的实现升降压斩波。与升降压斩波电路相比,Cuk斩波电路有一个明显的优点,其输入电源电流和输出负载电流都是连续的,且脉动很小,有利于对输入、输出进行滤波。

71.单相和三相SPWM波形中,所含主要谐波频率为多少?
答:单相SPWM波形中所含的谐波频率为:
nwc±kwr
式中,n=1,3,5,…时,k=0,2,4, …;n=2,4,6,…时,k=1,3,5, …
在上述谐波中,幅值最高影响最大的是角频率为wc的谐波分量。
三相SPWM波形中所含的谐波频率为:
nwc±kwr
式中, n=1,3,5,…时,k=3(2m-1)±1,m=1,2,…;
n=2,4,6,…时, k=6m+1,m=0,1,…
k=6m-1,m=1,2,…
在上述谐波中,幅值较高的是wc±2wr和2wc±wr。


相关文档
相关文档 最新文档