文档库 最新最全的文档下载
当前位置:文档库 › 地下水对围岩稳定性和施工的影响

地下水对围岩稳定性和施工的影响

地下水对围岩稳定性和施工的影响
地下水对围岩稳定性和施工的影响

地下水对围岩稳定性和施工的影响

地下水对围岩的溶解、溶蚀、冲刷、软化、或产生静水压力、或引起膨胀压力,改变了岩石的物理力学性质,破坏了岩体的完整性,降低了岩石的强度,从而引起围岩的变形破坏,失稳坍塌以及由地下水引起的隧道涌水

一、地下水支软弱围岩的影响

地下水对软弱围岩的影响,比对完整性较好的硬质岩的影响更显著。软岩在地下水的冲刷或进入细微裂隙时,使岩石产生软化或泥化,从而降低了岩石的强度,使岩石呈非常不稳定状态,易产生塑性变形或崩解,引起坍塌。在弱胶结的砂岩和断层的糜陵岩中,由于地下水的活动,可能产生流动和潜浊,易形成泥砂石流状的塌方。

二、地下水对具膨胀性的围岩影响

在含膨胀性矿物的岩石或在岩盐,石膏等膨胀岩中,如无地下水影响,则岩体的膨胀变形不显著,对围岩的稳妥定性影响相对要小得多。如遇地下水则产生吸水膨胀现象,从而使围岩压力增大,致使隧道产生顶板悬重,边墙外鼓,底板隆起的现象。

三、地下水对软弱面的影响

地下水活动将软弱结构面中的物质软化或泥化,使结构面的抗剪强度降低,摩阻力、内聚力减小。

三、隧道涌水对施工的影响

隧道涌水的类型:

1 、干燥

2、渗水:沿裂隙或孔隙浸出的渗水和雨状滴水

3、线状涌水

4、帘幕式涌水:沿某一倾斜的结构面呈帘幕状的涌水

5、股状涌水:小股状态100m3/d,中股状态度100—1000 m3/d

隧道开挖围岩稳定性分析

隧道开挖围岩稳定性分析 发表时间:2020-04-03T01:52:44.878Z 来源:《建筑学研究前沿》2019年24期作者:马智勇[导读] 我国西部地区地质条件复杂,存在岩溶、高地应力等复杂地质体。隧道穿越这些复杂地质构造时,会产生严重的变形破坏。 中铁二十局集团有限公司 摘要:我国西部地区地质条件复杂,存在岩溶、高地应力等复杂地质体。隧道穿越这些复杂地质构造时,会产生严重的变形破坏。如果处理不当,可能造成重大事故,造成人员和财产损失。在开挖过程中,不同的开挖方法对隧道围岩的影响也会不同,导致隧道围岩应力重分布的差异很大。围岩应力应变随开挖断面的变化而变化。目前,对围岩稳定性的判断方法主要有理论分析、工程类比和数值分析,其中数值分析法是最适合分析隧道施工的方法。 关键词:隧道开挖;围岩;稳定性 1地形地貌 隧道高程93.05m~640.1m,相对高差547.05m,地层岩性主要为中侏罗统自流井组(J2Z)和沙溪庙组、下侏罗统和上三叠统香溪组(t3-j1x)。岩性为砂岩、泥岩、砂质泥岩、粉砂岩,含薄层炭质页岩、炭质泥岩。 2软弱岩群稳定性 2.1软岩地层工程地质特征 单轴抗压强度小于30MPa的岩层称为软岩。软岩地层具有强度低、孔隙率低、胶结程度高、受构造面切割和风化影响大等特点。在隧道围岩压力的作用下,工程岩体具有明显的变形。软岩隧道围岩具有强度低、结构软弱、易吸水膨胀等特点,隧道围岩变形较大。 2.2软岩地层围岩变形分析 对于围岩是否会发生较大变形及变形量,支护压力和地应力作用下隧道围岩相对变形及掌子面变形预测公式如下:式中:εt一一隧道径向相对变形,指径向挤压变形量和隧道半径或者跨度之比; εf一一隧道掌子面相对变形,指掌子面挤压变形量和隧道半径或者跨度之比; σcm一一岩体单轴抗压强度; σci一一岩石单轴抗压强度; Pi一一支护压力; Po一一隧道中的原岩应力,取3σ1–σ3,即σmax。 3坚硬岩组围岩稳定性分析 根据切向应力准则,将围岩的切向应力(σo)与岩石的抗压强度(σc)之比作为判断有无岩爆及发生岩爆等级划分原则,结果表明: σo/σc<0.30一一一一一一一一一一一无岩爆 σo/σc介于0.30~50一一一一一一一轻微岩爆 σo/σc介于0.50~0.70一一一一一一中等岩爆 σo/σc>0.70一一一一一一一一一一一强烈岩爆 由于地下洞室的开挖,原地应力状态将受到一定程度的扰动,在洞壁及其一定深度范围形成应力的二次分布和应力集中。应力集中的结果,使得洞壁附近的切向应力有可能超过其临界值,从而产生岩爆。为了计算围岩的切向应力(σ0),首先需要作一定假设,将隧道的横截面抽象为受两向正应力作用的平面应变模型。两向正应力其中之一为上覆岩石自重作用引起的垂向应力(Sv);其二维水平向正应力(σn),它是根据实测的原地应力状态(SH、Sh以及SH的方向)利用线弹性理论公式计算得出,其计算公式如下:

(完整版)第八章地下洞室围岩稳定性分析

第八章地下洞室围岩稳定性分析 第一节概述 1.地下洞室(underground cavity): 指人工开挖或天然存在于岩土体中作为各种用途的构筑物。 2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。 目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。 3.分类: 按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等; 按内壁有无水压力:有压洞室和无压洞室; 按断面形状为:圆形、矩形或门洞形和马蹄形洞室等; 按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类; 按介质,土洞和岩洞。 4.地下洞室→引发的岩体力学问题过程: 地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时) (洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系) 第二节围岩重分布应力计算 1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。 2.地下洞室围岩应力计算问题可归纳的三个方面: ①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定; ②开挖后围岩重分布应力(二次应力)的计算; ③支护衬砌后围岩应力状态的改善。 3.围岩的重分布应力状态(二次应力状态): 指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。

一、无压洞室围岩重分布应力计算 1.弹性围岩重分布应力 坚硬致密的块状岩体,当天然应力()c v h σσσ2 1 ≤ 、,地下洞室开挖后围岩将呈弹性变形状态。这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。重点讨论圆形洞室。 (1)圆形洞室 深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。 无限大弹性薄板,沿X 方向的外力为P ,半径为R 0的小圆孔,如图8.1所示。 任取一点M (r ,θ)按平面问题处理,不计体力。则: ……………………① 式中Φ为应力函数,它是x 和y 的函数,也是r 和θ的函数。 边界条件: ()()()()()??? ? ?? ???===>>-=??? ??--=>>+=-++=====003103131R b 0)(2sin 22sin 2)(2cos 222cos 22b r r b r r b r r b r r R b p R b p p θθτσθθσστθθσσσσσ ………………② 设满足方程①的应力函数φ为: () θ2cos ln 222F Dr cr Br r A ++++=Φ- ………………………………③ 由③代入①,并由②可得: 2 R F ,4-D ,4-c ,4B ,2204020p pR p p pR A = ===-= ???? ???????Φ ?-?Φ?=?Φ?= ?Φ ?+?Φ?=θθτσθσθθr r r r r r r r r 22 2 22 221111 图 8.1柯西课题分析示意图

影响隧道围岩稳定性因素

B RIDGE&TUNNEL 桥梁隧道 毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。 岩石性质及岩体的结构 围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆1性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩2的强度主要取决于岩体的结构,岩性本身的影响不是很显著。从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整。那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏, 即使发生破坏,变形的量值也是较少 的。这种情况下,围岩岩性对围岩的稳 定性的影响是很微弱的,即一般是稳定 的,可以不采取支护,能适应各种断面 形状及尺寸的隧道。如果隧道围岩的整 体性质差、强度低,节理裂隙发育或围 岩破碎(如塑性围岩)即围岩为破碎、较 破碎或极破碎,则围岩的二次应力会产 生较大的塑性变形或破坏区域,同时节 理裂隙间的岩层错动会使滑移变形增 大,势必给围岩的稳定带来重大的影 响,不利于隧道洞室稳定;软硬相间的 岩体,由于其中软岩层强度低,有的因 层间错动成为软弱围岩而对围岩的稳定 性不利。 从岩体的结构角度,可将岩体结 构划分为整体块状结构(整体结构和块 状结构) 、层状结构(薄层状结构和厚层 状结构) 、碎裂结构(构镶嵌结构和层状 碎裂结构) 、散体结构(破碎结构和松散 结构) 。松散结构及破碎结构岩体的稳 定性最差;薄层状结构岩体次之;厚层状 块体最好。对于脆性的厚层状和块状岩 体,其强度主要受软弱结构面的分布特 点和较弱夹层的物质成分所控制,结构 面对围岩的影响,不仅取决于结构面 的本身特征,还与结构面的组合关系 及这种组合与临空面的交切关系密切 相关。一般情况下,当结构面的倾角 ≤30°时,就会出现不利于围岩稳定 的分离体,特别是当分离体的尺寸小 于隧道洞跨径时,就有可能向洞内产 生滑移,造成局部失稳;当倾角> 30° 时,将不会出现不利于围岩稳定性的 分离体。而软弱夹层对围岩稳定性的 影响主要取决于它的性状和分布。一 般认为软弱夹层的矿物成分、粗细颗 粒含量、含水量、易溶盐和有机质等 的含量是决定其性质的主要因素,对 不同类型的软弱夹层,这些因素是不 大相同的。由于软弱夹层的抗强度较 低,故不利于隧道围岩的稳定。 围岩岩体的变形和破坏的形式特 点,不仅与岩体内的初始应力状态和隧 道形状有关,而且还与围岩的岩性及岩 体结构有关,但主要的是和围岩的岩性 及结构有关(见表1) 。 岩体的天然应力状态 岩体的天然应力是岩体的自重应 力、构造应力、变异及残余应力在某一 个具体地区以特定方式作用的结果。已 经有大量的实践资料证明,大多数地区 的岩体的天然应力状态是以水平方向为 主的即水平应力通常大于垂直应力。一 般情况下,隧道轴向与水平主应力垂 直,以改善隧道周边的应力状态。但水 平应力很大时,则隧道方向最好与之平 行以保证边墙的稳定性。然而,岩体的 天然应力对隧道的影响主要取决于垂直 于隧道轴向水平应力的大小与天然应 力的比值(ζ) ,它们是围岩内应力重分 布状态的主要因素。例如,圆形隧道, 当ζ= 1 时,围岩中不会出现拉应力集 中,压应力分布也比较均匀,围岩稳定 性最好;当ζ≤1/ 3 时围岩出现拉应力, 压应力集中也较大,对围岩稳定不利。 最大天然主应力的数量级及隧道轴向的 关系,对隧道围岩的变形特征有明显的 影响,因为最大主应力方向围岩破坏的 概率及严重程度比其它方向大。因此, 估算这种应力的大小并设法消除或利用 非常重要的。 地质构造 褶曲和断裂破坏了岩层的完整性 降低了岩体的力学强度,一般来说,岩 分析影响隧道围岩稳定性因素 文/王冠勇 TRANSPOWORLD 2012No.13(Jul) 234

海底隧道围岩稳定性分析与控制研究

海底隧道围岩稳定性分析与控制研究 随着我国交通事业的大发展,将有大批量的越江跨海通道投入建设,水下隧道已受到越来越多的关注。与山岭隧道相比,跨海隧道通常具有地质勘探困难、单口连续掘进距离较长、衬砌结构受长期的动静水压力作用、防排水难度大、围岩成拱作用较低、不良地质体段易发生涌水事故等特点,因此在海底隧道衬砌结构的设计和分析计算方面,将具有与一般隧道不尽相同的关键技术问题,亟待在设计中着重反映。论文研究以我国目前蓬勃发展的海底隧道为背景,以富水条件下隧道围岩稳定性及其控制技术为研究重点,综合采用理论解析、数值模拟、室内模型试验和现场监测等多种研究手段,主要开展了以下方面的研究工作:(1)基于弹性力学中厚壁圆筒承受均布压力的拉梅解答和Mohr-Coulomb屈服条件,推导了考虑渗流场和围岩超前位移释放的含衬砌海底圆形隧洞的弹塑性解析公式。根据本文推导过程,可推演满足其它屈服条件和流动法则的隧道围岩应力与位移的弹塑性解答。 同时结合一座海底隧道的工程实例,本文采用解析公式对围岩塑性区范围、应力场、位移场和渗流场的分布进行了理论分析,得到了各场的分布规律和演化特点,并讨论了海底隧道顶板厚度、海水深度、内水水头、衬砌围岩物理力学参数及其渗透性关系等因素的影响规律。(2)基于前人研究成果,针对暗挖海底隧道开挖面围岩稳定性问题,总结了极限分析上限法、楔形体模型、二维对数螺旋线模型,以及条分法模型等4种理论分析模型,并考虑了开挖面滑移体上部地层压力等因素,对理论解析公式进行了修正。结合海底隧道工程实例,采用数值模拟方法,与理论解析方法进行了对比分析,并讨论了围岩粘聚力、摩擦角、海水水位、超前注浆等因素的影响。(3)依托厦门翔安海底隧道,对穿越陆域全、强风化花岗岩段的地层变形进行了现场监测,指出了产生地层大变形的力学机制,总结了拱顶沉降、海床沉降、地层水平变形、海床开裂随隧道施工过程的发生、发展规律,并建立了它们之间的关系,提出通过易于监测的隧道拱顶下沉量及收敛值判断海床地层的完整性,实现对海床状态的信息化控制。 (4)采用FLAC3D有限差分软件模拟分析翔安隧道穿越海域F1风化深槽段的围岩稳定性,指出地下水的渗流作用对海底隧道的围岩变形影响较大,由渗流引起的隧道围岩变形在向上传递过程中折减较小,且超前导洞开挖对围岩渗流场的

隧道围岩及支护结构稳定性分析方法综述

隧道围岩及支护结构稳定性分析方法综述 伍华刚 (贵州省交通规划勘察设计研究院,贵州贵阳,550001) 摘 要:以隧道围岩与支护结构的相互关系为主要研究对象,以特长公路隧道围岩及支护结构稳定性分析方法为依托,对隧道掌子面所揭露围岩岩体、结构特征进行调查、记录,分析掌子面围岩等级,并与设计资料进行对比,对不同级别不同地质条件下的围岩与支护结构稳定性进行比较分析,总结围岩及支护结构稳定性分析的方法。 关键词:特长隧道;围岩;支护结构;稳定性分析中图分类号:U 452.1+2 文献标识码:A 文章编号:1004-6429(2010)04-0072-03 ●应用技术 收稿日期:2010-05-14 作者简介:伍华刚,男,1959年出生,1983年毕业于云南广播电视大学,工程师,550001,贵州省贵阳市云岩区中山东路69号山西科技SHANXI SCIENCE AND TECHNOLOGY 2010年第25卷第4期 随着深埋特长隧道的不断涌现,所遇到的问题也越来越多,现行的设计与施工规范已不能满足设计与施工要求,虽然国内外有关深埋特长隧道的研究成果不少,但由于深埋特长隧道地形、 地质条件复杂,设计制约因素多,并且常伴有断裂带、破碎带、 岩爆、突泥、涌水等地质灾害,给设计和施工带来了很大的盲目性。加上深埋特长隧道埋深大、隧道长、地质条件复杂,使地质勘察也不可能全面精确地探清每一段的具体情况,很多时候勘察结果与隧道施工中实际遇到的地质条件相差很远,漏掉的一些不良地质体给施工带来许多预想不到的困难。1 公路隧道围岩稳定性分析方法 隧道围岩的稳定性分析主要包括隧道的整体稳定性分析和局部块体的稳定性分析,分析方法大致可归纳为工程地质类比法、岩体结构分析法、岩体稳定性力学分析法和模拟试验法等,其中,模拟试验法包括物理模拟和数值模拟。1.1 工程地质类比法 根据拟建地下洞室的工程地质条件、岩体特性和监测资料,结合具有类似条件的已建工程,开展资料的综合分析和对比,从而判断工程区岩体的稳定性。由大量工程实例总结出来的各级围岩分类标准,如RQD 分类(Deer ,1969)、RMR 分类(Bieniawiski ,1973)、Q 系统分类(Barton ,1974)、Z 系统分类(谷德振,1979),以及我国的《工程岩体分级标准》(GB 50218—94)等,都是工程地质类比法在稳定性评价中的具体应用。这些围岩分类系统可以对不同类型围岩按定量地给出其围岩压力值及支护衬砌的形式和厚度,对于一般性工程隧道实现地下工程(结构)设计标准起到了重要的作用,也是地质工程工作者的基本方法之一。1.2 岩体结构分析法 在岩体结构及其特性研究的基础上,考虑工程力作用方向 以及结构面与开挖临空面之间的空间组合关系,借助于赤平极射投影分析法、实体比例投影分析法和块体坐标投影法进行图解分析,从而判断岩体的稳定性。1.3 力学分析法 从19世纪人类对松散地层(主要是土层)围岩稳定和围岩压力理论进行研究开始到现在,围岩压力理论主要经历了古典压力理论、散体压力理论及现在广泛应用的弹性力学理论、塑性力学理论。 实际工程中,隧道开挖后,由于卸荷作用使围岩应力进行重分布,并出现应力集中,如果围岩应力处处小于岩体弹性极限强度,这时围岩处于弹性状态。反之,围岩将部分进入塑性状态,但局部区域进入塑性状态并不意味着围岩将发生坍落或失稳。因而,研究围岩稳定就不能不考虑塑性问题,芬纳(Fenner )—塔罗勃(Talo-bre .J )和卡斯特奈(Kaster.H )等给出了围岩的弹塑性应力图形。1.4 数值计算方法 岩体不仅为一般材料,更重要的是本身就是一种复杂的地质结构体,它具有非均质、非连续、非线性以及复杂的加卸载条件和边界条件,这使得岩体力学的问题通常无法用解析法简单地求解,数值方法不仅能模拟岩体的复杂力学和结构特征,也可以方便地分析各种边值问题和施工过程,并对工程进行预测和预报,因此,数值分析方法是解决岩土体工程问题的有效工具之一。常用的数值方法有:有限元法(FEM )、有限差分法(FLAC ,FDM )、离散元法(DEM )反分析法、边界元法(BEM )、不连续变形分析法(DDA )、流形方法等,这些方法在地下洞室和边坡稳定等均有较多的应用,取得了较好的效果。1.5 模型试验 模型试验是隧道及地下工程研究中使用较多的一种方法,其理论基础是相似理论。模型试验具有直观、全面的优点,20世 纪80年代,国内许多学者作了大量的实验研究,谷兆琪教授等(1981)进行了层状砂岩地下洞室稳定性的研究,朱维中、冯光北等(1983,1984)研究了单排裂隙岩体模型的抗剪强度研究,杨淑 72··

分析影响隧道围岩稳定性因素

分析影响隧道围岩稳定性因素 习小华 摘要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。 关键词:围岩稳定性;天然应力状态;地质构造 毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。 1 岩石性质及岩体的结构 围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。这种情况下,围岩岩性对围岩的稳定性的影响是很微弱的,即一般是稳定的,可以不采取支护,能适应各种断面形状及尺寸的隧道。如果隧道围岩的整体性质差、强度低,节理裂隙发育或围岩破碎(如塑性围岩)即围岩为破碎、较破碎或极破碎,则围岩的二次应力会产生较大的塑性变形或破坏区域,同时节理裂隙间的岩层错动会使滑移变形增大,势必给围岩的稳定带来重大的影响,不利于隧道洞室稳定;软硬相间的岩体,由于其中软岩层强度低,有的因层间错动成为软弱围岩而对围岩的稳定性不利。 从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响,不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。一般情况下,当结构面的倾角≤30°时,就会出现不利于围岩稳定的分离体,特别是当分离体的尺寸小于隧道洞跨径时,就有可能向洞内产生滑移,造成局部失稳;当倾角> 30°时,将不会出现不利于围岩稳定性的分离体。而软弱夹层对围岩稳定性的影响主要取决于它的性状和分布。一般认为软弱夹层的矿物成分、粗细颗粒含量、含水量、易溶盐和有机质等的含量是决定其性质的主要因素,对不同类型的软弱夹层,这些因素是不大相同的。由于软弱夹层的抗强度较低,故它不利与隧道围岩的稳定。 围岩岩体的变形和破坏的形式特点,不仅与岩体内的初始应力状态和隧道形状有关,而且还与围岩的岩性及岩体结构有关,但主要的是和围岩的岩性及结构有关(见表1) 。

洞室围岩稳定性

第七章地下洞室围岩稳定性的工程地质分析 第一节围岩应力的重分布 一、岩体初始应力状态——地应力 地下洞室开挖前,岩体内的应力状态称为初始应力状态。 地应力的类型:自重应力 构造应力 变异及其他应力 二、围岩应力的重分布特征 (一)围岩应力:洞室周围发生应力重分布的这部 分岩体叫围岩 围岩中重分布的应力状态叫围岩应力 (二)地下洞室围岩应力重分布特征 1、圆形洞侧压力系数λ=1 径向应力向洞壁内方向逐渐增大 切向应力在洞壁处为2倍的自重应力,但向洞壁内逐渐减小,到5-6倍洞半径时径向应力=切向应力=自重应力 即围岩应力重分布影响范围是6倍的洞半径 2、圆形洞λ不等于1 洞壁受剪应力最大 3、其他形状洞室 洞顶、洞底容易出现拉应力,转角处剪应力最大 洞室高、宽对围岩应力影响最大 三、开挖后围岩中出现塑性圈时的重分布应力 围岩一旦松动,如不加支护,则会向深部发展,形成具有一定范围的应力松弛区,称为塑性松动圈。在松动圈形成过程中,原来周边集中的高应力逐渐向深处转移,形成新的应力增高区,该区岩体被挤压紧密,称为承载圈。此圈之外为初始应力区。 第二节围岩的变形破坏的特征 1、坚硬完整结构:岩爆、开裂 2.块断结构:块体滑移、掉块 3、层状结构岩体:层面张裂、岩层弯曲折断 4、碎裂结构、散体结构岩体 以塌方、塑性挤入为主 第三节地下工程位置选择的工程地质评价 一、地形条件 1、在地形上要求山体完整,洞室周围包括洞顶及傍山侧应有足够的山体厚度。 2、隧洞进出口地段的边坡应下陡上缓,无滑坡、崩塌等现象存在。 3、洞口岩石应直接出露或坡积层薄,岩层最好倾向山里以保证洞口坡的安全。 4、隧洞进出口不应选在排水困难的低洼处,也不应选在冲沟、傍河山嘴及谷口等易受水流冲刷的地段 5、水工隧洞避免曲线或弯道,转弯角度大于60°,曲率半径大于5倍洞径。 二、岩性条件 坚硬完整的岩体,围岩一般是稳定的,能适应各种断面形状的地下洞室。而软弱岩体如粘土岩类、破碎及风化岩体,吸水易膨胀的岩体等,通常力学强度低,遇水易软化、崩解及膨胀等,不利于围岩的稳定。一般软硬互层或含软弱夹层的岩体,稳定性差。层状岩体

隧道工程习题与答案

第1章隧道工程勘测设计 1.隧道选址与线路选线有什么关系? 2.确定洞口位置的原则是什么?请解释其工程含义。 3.在按地质条件选择隧道位置时,所需要的地质资料有哪些?如何考虑地形条件对隧道位置的影响? 第2章隧道主体建筑结构 1.某新建铁路非电化曲线隧道,已知圆曲线半径R=1200m,缓和曲线长l=50m,远期行车速度 V=160km/h,隧道里程为:进口DK150+310;出口DK150+810;ZH点DK150+320;YH点DK151+000。 试求:各段加宽值与隧道中线偏移值。要求按教材P32图2-7所示,表示清楚,并注明不同加宽的分段里程。 ( 注:超高值以0.5cm取整,最大采用15cm;加宽值取为10cm的整数倍;偏移值取至小数点后2位) 2. 为什么说台阶式洞门能降低边仰坡开挖高度? 第3章隧道附属建筑 1.什么是避车洞?避车洞的设置间距是多少?在布置避车洞时应该避开哪些地方? 2.营运隧道的通风方式有哪些?什么是风流中性点?它与通风方式的关系怎样? 3.为什么公路隧道要设置不同的照明亮度段?它们各自的作用是什么? 第4章隧道围岩分类与围岩压力 1.影响围岩稳定性的主要因素有哪些?围岩分级主要考虑什么因素?围岩分级的基本要素是哪几种?我国铁路隧道围岩分级主要考虑哪些因素?已知某隧道所处围岩节理发育,Rb=26MPa,试问这是属于哪一级围岩? 2. 某隧道内空净宽6.4m,净高8m,Ⅳ级围岩。已知:围岩容重γ=20KN/m3,围岩似摩擦角φ=530,摩擦角θ=300,试求埋深为3m、7m,15m处的围岩压力。 第5章隧道衬砌结构计算 1.已知作用在衬砌基底面上的轴力N=870KN,弯矩M=43.5KN.m,墙底厚度h=0.6m,围岩抗力系数为150MPa/m。试求墙底中心的下沉量及墙底发生的转角。 2. 什么情况下将围岩抗力弹簧径向设置?试推导径向设置的围岩抗力单元刚度矩阵。(注:抗力方向以挤压围岩为正)

地下洞室围岩稳定性综述

地下洞室围岩稳定性综述 摘要:地下洞室围岩的稳定性在地下洞室施工时有着至关重要的作用,简要介绍了近几年研究成果,并对这一研究的现状与发展趋势做了简要评述。 关键词:地下洞室围岩稳定性综述 引言 地下洞室等地下工程开挖之前,岩体处于一定的应力平衡状态。用于各种目的的地下开挖改变了原有的平衡状态,从而造成开挖空间周围的应力重新分布。如果围岩中的应力超过了岩体强度,则围岩会破坏,产生坍塌、片帮甚至底板隆起等现象,软岩或高地应力中的地下洞室则可能产生很大的塑性变形。如果不及时对围岩进行支护或加固开挖出来的地下空间就会因为围岩的变形与破坏而无法使用。当二次应力较低,达不到围岩的弹性极限时,围岩处于弹性状态,无需支护就可以保持稳定;反之当围岩应力较高、强较低时,就会产生塑性变形和断裂破坏;在有断层、节理等不连续面切割时,还有可能在地下洞室的顶板或边墙产生不稳定的楔形块体,也可以对地下空间构成威胁。在进行地下空间设计和施工之前,需要对开挖后的围岩应力进行分析,进而对围岩稳定性进行评价,以便采取合理的开挖方式和支护形式。地下洞室等地下工程不可能一次开挖完成,不同的开挖顺序及施工方案对地下洞室群的稳定性的影响不同,即开挖顺序或施工方案将直接影响围岩应力、变形及破坏区的发展变化过程。因此,选择合理的开挖顺序或施工过程是地下洞室群设计与施工的重要内容,具有重要的理论意义和过程使用价值。 主要研究成果 2004年周敏等[1]在针对影响因素与围岩稳定的非线性关系,利用神经网络理论与BP神经网络的建模能力,进行非线性运算,提出改进的BP神经网络评判围岩稳定性模型,得出神经网络方法可以很好的运用于洞室稳定性影响因素中,且输入的参数不受限制,分类,设计及预测精度高,还可以进行数据联想以及校正补错。提出神经网络方法在地下洞室稳定性分类中具有非常重要的意义。 2005年胡夏嵩等[2~4]以西北某市大型水利地下洞室工程为例,采用弹塑性二维有限元法通过低地应力区地下洞室开挖后围岩拉应力、剪切应力分布与围岩变形破坏进行了数值模拟研究,模拟结果表明:在低地应力地区对于椭圆形洞室,地下洞室开挖后在洞侧壁位置产生应力集中,在洞顶位置出现拉应力现象,基本产生在拱顶正中位置;低地应力区地下洞室开挖后,围岩中的剪应力集中带主要形成于洞顶垂直位置,即地下洞室围岩破坏主要发生在洞顶位置,略偏于拱顶的位置,最大剪切应力等值线分布具有对称性,形成于地下洞室底边墙拐角位置处的最大剪应力集中现象,这种现象与地下洞室开挖所引起的围岩块体结构面切向挤压滑落时的剪切变形、应力释放有一定的关系,洞顶位置处的最大剪应力值明显小于底部边墙拐角处的最大剪应力值,边墙拐角处的最大剪应力值一般是洞顶位置最大剪应力值得1.7倍以上,这与地下洞室底边与侧壁边墙之间开挖成直角形有关,直角形的拐角容易形成剪应力集中,产生围岩的不稳定区;低地应力区地下洞室围岩变形破坏主要是发生在垂直方向,水平方向的规模和程度均不及前者,同时总结分析了低地应力区地下洞室开挖后围岩变形破坏规律及其特征。 2010年叶洲元[5]基于等效数值原理并结合地下洞室围岩本身特性,对大冶铁矿地下洞室工程进行分析,选取围岩质量指标D、单轴抗压强度R c、岩体完整性指标K v、地下水渗水流量W和节理状况对地下洞室围岩稳定性进行评价,结果表明等效数值法应用于围岩稳定性的评价,具有计算简单高效,使用方便等特点。 2013年朱义欢[6]针对地下洞室短长期稳定性的评判准则进行分类总结与归纳,得出岩体流变特性试验的开展以及长期强度的确定,如何给出围岩稳定性的综合评判以及相应的临界

地下工程围岩稳定性分析与控制

第6章 地下工程围岩稳定性分析与控制 6.1 概述 地下洞室是指在地下岩土体中人工开挖或天然存在的作为各种用途的构筑物,按用途分为:矿山井巷(竖井、斜井、巷道)交通隧道、地下厂房(仓库)、地下军事工程等。修建地下洞室,必然要进行岩土体开挖。开挖将使工程周围岩土体失去原有的平衡状态,使其在一个有限的范围内产生应力重新分布,这种新出现的不平衡应力没有超过围岩的承载能力,岩体就会自行平衡;否则,将引起岩体产生变形、位移甚至破坏。在这种情况下,就要求构筑物承力结构或支护结构,如支架、锚喷、衬砌等,进行人工稳定。在岩石力学中,将受开挖影响而发生应力状态改变的周围岩体,称作围岩。从原始地应力场变化至新的平衡应力场的过程,称为应力重新分布。经应力重新分布形成的行的平衡应力,称为次生应力或诱发应力,也叫围岩应力、二次应力、地压、岩亚、矿压或矿山压力。由于次生应力是岩体变形、破坏的主要根源,故次生应力是岩石力学研究的重要内容之一。因此,实现地下岩体工程稳定的条件是 max max u U σ??? <S < (6.1) 式中, max σ和max u 分别为围岩内或支护体内的最大或最危险的应力和位移;S 和U 为围岩或支护体所允许的最大应力(极限强度)和最大位移(极限位移)。 有关这方面问题的研究,无论是否支护,都统称为稳定性问题。稳定性问题是岩体地下工程的一个重要研究内容,关系到工程施工的安全性及其运行期间的是否满足工程截面大小的安全可靠性。有的地下工程不稳定,还将造成对周围环境的影响,如地面建筑的损坏、边坡塌方以及工程地质条件的恶化等。 此处所讨论的稳定性问题,与压杆、薄壁、壳体等结构稳定性问题的概念有所不同,采用的理论分析方法也是不一样的。 岩体地下工程埋在地下的一定深度,如目前的交通隧道、矿山巷道,有的深到数百米甚至数千米。根据岩体地下工程埋入的深浅可以把它分为深埋和浅埋两种类型。浅埋地下工程的工程影响范围可达到地表,因而在力学处理上要考虑地表界面的影响。深埋地下工程可视为无线体问题,即在远离岩体地下工程的无穷远处的原岩体。

地下工程围岩稳定性分析

地下工程围堰稳定性分析 班级:08勘查1班 姓名:水如云 学号:08201030142 时间:2011.11.21 摘要通过对地下工程围岩稳定性分析的相关方法及在工程实践中存在问题的分析, 阐述在地下工程围岩稳定性分析中应避免追求精确的计算,提倡探索新的研究思想与研究方法。 关键字:围岩、稳定性分析、地下工程 一、前言 地下工程的稳定问题亦即围岩的变形与破坏问题。顶板塌落、边墙挤入、底板隆起、围岩开裂、突发岩爆、支护折断等都是围岩不稳定的显现。但从永久性地下建筑物及地下空间利用的类型看,由于使用要求或标准不同,稳定性的定义就会有差异。围岩稳定性分析方法主要有:块体理论支持的分析方法,主要用于裂隙岩体的稳定分析中;模型试验方法,多用于重要的难以用现场试验方法解决的复杂工程;数值分析法,基于某种力学模型和分析理论对围岩进行稳定性分析的方法,是目前应用较广泛的一种分析方法,它根据力学模型和分析思想的不同又分为有限元分析、边界元分析、位移反分析等。 目前,在地下工程施工领域中,存在着一种倾向,即追求高精度的数值计算及数学方法的深奥,花了大量的精力、财力和时间去从事复杂而繁琐的数值计算,而放松了对地下工程特殊性的思考,忽略了对问题整体性的理解。 二、地下工程的特点 地下工程涉及到地理与地质环境因素、工程因素、社会经济水平、材料科学发展水平、施工过程控制水平以及地下工程在国民经济中的地位等因素。地理与地质环境本身就是复杂的,它是天然的介质(涉及地应力、地下水、岩性、地质结构、地质构造),很少有地质条件完全相同的两个工程;工程因素则是指工程规模、断面形状与尺寸、施工技术、过程控制、环境控制、工程材料、人、机、料的协调水平等。 地下工程的地理与地质环境、投资水平、设计水平、承建者的技术与管理水平等诸多因素都与工程的成败有联系,它们相互作用、相互渗透、相互影响、相互制约。因此,必须用

相关文档
相关文档 最新文档