文档库 最新最全的文档下载
当前位置:文档库 › 聚合物浓度测定方法

聚合物浓度测定方法

聚合物浓度测定方法
聚合物浓度测定方法

聚合物浓度测定方法(碘-淀粉法)

一、仪器和材料

1.721分光光度计;

2.50毫升的具塞容量瓶;

3.移液管;

4.聚丙烯酰胺溶液;

5.碘化镉、可溶性淀粉、溴、水合硫酸铝;

6.乙酸,三水乙酸钠、甲酸钠、蒸馏水。

二、实验原理

碘-淀粉法是精度较高的测定聚合物浓度的方法,其测定浓度的线性范围是0~6mg/l。碘-淀粉法是利用Hofmann重排的第一部反应,在p H=5的条件下,用溴水与酰胺基作用生成N-溴代酰胺,多余的溴用还原剂除去。生成的N-溴代酰胺水解生成次溴酸,次溴酸能定量的将碘离子氧化成碘,在有淀粉存在的条件下形成蓝色三碘-淀粉络合物。因此,即使酰胺基的浓度很低,任然能够用淀粉-碘化物法有效地测定出来。碘-淀粉法是基于酰胺基团,对于聚丙烯酰胺的水解度特别敏感。碘-淀粉法适合测定油田盐水和地表水配制的聚合物溶液浓度。

三、试验方法

1.相关溶液的配制

a.淀粉-碘化镉试剂的配制

将11.0g碘化镉(分析纯)溶于300~400ml纯水中,加热煮沸10分钟并使之溶解,稀释至700ml左右。加入2.5g可溶性淀粉,搅拌、煮沸5分钟,溶解后用三层慢速滤纸在玻砂漏斗中过滤(水压抽滤),最后稀释至1000ml。

b.缓冲溶液的配制

称取25g三水合乙酸钠溶解在800ml蒸馏水中,溶解后加入水合硫酸铝0.5g,用冰醋酸调节至p H=5.0,最后稀释至1000ml备用。

c.饱和溴水的配制

用移液管吸取50ml溴至装有1000蒸馏水的棕色瓶中。在2小时内不断地摇动棕色瓶,并微开瓶塞放出蒸汽。定期振荡并释放溴蒸汽,保持瓶内有未溶解的液溴,经过一段时间(约2周)待溴饱和稳定后方可使用。

2.样品测试

移取定量缓冲溶液于50ml容量瓶中,加入聚合物溶液及25ml纯水,混合均匀后,加入定量饱和溴水,振荡后反应一定时间;加入过量甲酸钠溶液除去多余的溴,摇匀,静置反应5min;加入淀粉-碘化镉溶液,用蒸馏水稀释至刻度,摇匀溶液,静置20min。用分光光度计在590nm处,1cm比色皿,按质量浓度由小到大的顺序测试吸光度,以纯水作参比溶液。

a.聚丙烯酰胺溶液浓度标准曲线的测定

(1)打开721分光光度计的电源开关,预热20分钟。

(2)用波长选择按钮将单色光波长选为580nm。打开比色皿盖,将参比液(可用蒸馏水或5ml缓冲液,5ml甲酸钠溶液,1ml饱和溴水,5ml淀粉-碘化镉,用蒸馏水稀释至50ml)放入比色皿,将仪器比色皿盖合上,使灯管发光,按调零键。

(3)分别吸取纯水25ml至于10个50ml容量瓶内,再分别移取浓度为20,40,60,80,100,120,140,160,180,200ppm的聚丙烯酰胺标准溶液各2ml 于10个容量瓶内。分别加p H=5缓冲溶液5ml,混合均匀后再加饱和溴水1ml,摇匀静置15分钟。再加甲酸钠溶液(1%)5ml,摇匀静置5分钟。最后加淀粉-碘化镉溶液5ml,用纯水稀释至刻度,摇匀静置20分钟。用分光光度计测试在不同浓度下的吸光度值A,绘制吸光度与聚合物浓度关系标准曲线。

b.未知聚丙烯酰胺溶液浓度的测定

由于本方法测试的线性范围小,且要求溶液浓度较低,对于一般的未知浓度溶液须要视其大致浓度稀释到线性范围内。

移取未知溶液或其稀释液2ml按照a的步骤测得吸光度值,和标准曲线对比,要是不在曲线范围之内,稀释一定倍数,继续测吸光度值,直到其值在标准曲线范围内,根据曲线对比查的其浓度值。

(整理)6种方法测定蛋白质含量.

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1) 2NH3+H2SO4――(NH4)2 SO4(2) (NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分

流式细胞仪常用的几种检测方法

流式细胞仪常用的几种检测方法(转载) 一、测定用乙醇固定的DNA的含量 1、培养细胞的DNA含量的测定 制备单细胞悬液于200μl的PBS缓冲液中; 加入2ml预冷的70%乙醇,4℃保存; 附:细胞固定的一般步骤 1) 取单细胞悬液1~2×106个细胞于PBS(PH=7.2)缓冲液中; 2) 300g离心5分钟,弃上清,反复两次; 3) 重悬细胞于0.5ml PBS缓冲液中; 4) 将细胞悬液放置于2~3ml冷70%乙醇中,混匀,保存于4℃,至少30分 钟。在4℃条件下可保存2~3周。 注意: 2根据实验的要求,固定剂也可选用1~3%多聚甲醛; 2将乙醇作为固定剂时,乙醇应预冷至0~4℃; 2细胞在固定时,固定剂应缓慢滴入细胞悬液中,使固定剂的浓度缓慢增加,并不断震摇,以免细胞成团(特别是用乙醇固定时)。 2 300g离心5分钟,去上清,再重悬于400μl PBS中; 2显微镜下观察,若有明显的黏附,须再用筛网过滤; 2加入PI(含Rnase),避光孵育30分钟; 2上机检测。 2、新鲜组织的DNA含量的测定 1) 用200mg湿重组织用机械法制成单细胞悬液; 2) 500g离心5分钟; 3) 弃上清,重悬于10ml染色-去污剂中; 4) 再过滤,用200目的筛网或70~80μm的筛网过滤; 5) 上机检测。 3、石蜡包埋组织切片的DNA含量的测定 1) 从石蜡包埋切取切片50 μm厚,2~3片,制成单细胞悬液; 2) 用PBS缓冲液洗涤,500g离心5分钟,弃上清; 3) 加入PI液1ml室温避光30分钟; 4) 调整细胞浓度为1×106/ml; 5) 上机检测。 二、细胞凋亡检测及相关分子检测 1、细胞DNA含量分布(由细胞DNA降解方式检测细胞凋亡)

工业盐酸杂质测定标准

工业盐酸 1、含量 (1)试剂 ①混合指示剂(溴甲酚绿-甲基红混合指示剂)②氢氧化钠标准溶液1.0mol/L (配制见标准溶液的配制) (2)测定步骤 取盐酸1-2mL(V)于250mL锥形瓶中,用蒸馏水稀释至100mL左右,再加2-3滴混合指示剂,用1.0mol/L(a)氢氧化钠标准滴定溶液滴定到溶液呈亮绿色为止,记下消耗的体积V1。 (3)计算 C=错误!未找到引用源。×100% C————盐酸的含量,% a————氢氧化钠标准溶液的浓度,mol/L V1————消耗氢氧化钠标准溶液的体积,mL V————吸取盐酸的体积,mL M————盐酸的摩尔质量,g/mol 2、盐酸中杂质的测定 2.1盐酸中硫酸盐、亚硫酸盐的测定 方法一:比浊法 硫酸盐取本品25g(21ml),加碳酸钠试液2滴,置水浴上蒸干;残渣加水20ml溶解后,依法检查(附录ⅧB),与标准硫酸钾溶液1.25ml制成的对照液比较,不得更浓(0.0005%)。

亚硫酸盐取新沸过的冷水50m1,加碘化钾1g、碘滴定液(0.01mol/L)0.15ml与淀粉指示液1.5m1,摇匀;另取本品5ml,加新沸过的冷水50ml稀释后,加至上述溶液中,摇匀,溶液的蓝色不得完全消失。 方法二:离子色谱法 用离子色谱仪测定蒸干稀释后测硫酸盐、亚硫酸盐的含量,具体操作方法见离子色谱仪的操作规程。 方法三:分光光度法(只限于硫酸盐) 本方法规定了用比浊法测定工业用合成盐酸中硫酸盐含量,适用于各级工业用合成盐酸。 1) 方法原理 将工业用合成盐酸样品蒸发至干,用盐酸溶解残渣,用甘油—乙醇混合液做稳定剂,加入氯化钡制得硫酸钡悬浮液,用分光光度计测定悬浮液的浊度。 2) 试剂和材料 a二水氯化钡(GB 652) b甘油(GB 687)—乙醇混合液:1+2溶液 c硫酸盐标准溶液:0.1000g/L溶液,按GB 602配制 d盐酸(GB 622):1.000mol/L溶液,按GB 602配制 3)仪器 一般实验室仪器和分光光度计和水浴锅 4) 样品 a 实验室样品 按本标准采样法采样。

几种测蛋白含量方法的比较

蛋白质含量测定方法的比较及肽含量的测定 (一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫 外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。 1 微量凯氏定氮法(GB 5009.5-2010) 1.1原理样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。 1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤 1.3特点准确度较高,适用于0.2~ I.Omg氮,误差为土2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。,测得结果为总氮含量,包括蛋白氮和非蛋白氮含 量;适用范围广,几乎所有样品均可用此方法。 2双缩脲比色法

含量测定方法学考察

含量测定方法学验证内容及可接受标准 1.准确度 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限

主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 方法:分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、 可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%。 8、系统适应性 应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%。另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定。 有关物质测定方法学验证内容及可接受标准: 1.准确度 该指标主要是通过回收率来反映。验证时一般要求根据有关物质的定量限与质量标准中该杂质的限度分别配制三个浓度的供试品溶液各三份(例如某杂质的限度为0.2%,则可分别配制该杂质浓度为0.1%、0.2%和0.3%的杂质溶液),分别测定其含量,将实测值与理论值比较,计算回收率,并计算9个回收率数据的相对标准差(RSD)。该项目的可接受的标准为:各浓度下的平均回收率均应在80%-120%之间,如杂质的浓度为定量限,则该浓度下的平均回收率可放宽至70%-130%,相对标准差应不大于10%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为:在定量限至

细胞生长状况有关指标的检测方法

细胞生长状况有关指标的检测方法 一、细胞计数 这是细胞培养中常用的基本技术之一。所用材料为细胞计数板。巴氏吸管和显微镜。步骤如下。 l 取清洁计数板和专用盖玻片,用丝绸布轻轻擦干。 l 取细胞悬液0.3ml,加入0.9结晶紫染液,混匀后滴半滴于细胞计数板内,以充满不外溢为宜。也可直接将细胞悬液在一侧滴加到盖玻片中,不要溢出,也不要过少或出现气泡。 l 在显微镜下用10X物镜观察计数四角大方格中的细胞数。代入下式得出细胞密度。 细胞数(ml)=(4大格细胞数之和/4)×104×稀释倍数 台盼蓝染色法可计算出活细胞和死细胞数以测定细胞存活百分率。一般0.5%-1.0%的台盼蓝染液可使死细胞染成蓝色,活细胞不着色。此外还可用0.02%的藻红b染液将死细胞或受损细胞染成红色,或用0.05%的苯胺黑染液将死细胞染成黑丝。 细胞存活率=[4大格活细胞数/(4大格活细胞数+4大格死细胞数)]×100% 在进行细胞计数操作时,必须把细胞悬液准备好,细胞应分散良好,并充分混匀,若出现较多细胞团或细胞数少于200个/10mm2或多于500个/100mm2时,需重制细胞悬液,重新计数。 二、细胞生长曲线和生长倍数 细胞生长曲线是细胞培养实验中最基本的指标,是测定细胞绝对增值数值和生长繁殖基本规律常用的简便方法。常用的方法为:在同一规格的培养瓶中,接种等量的同一代细胞,经培养后每隔24h取出几瓶细胞进行计数,以培养时间为横坐标,不同时刻的细胞数的对数为纵坐标,标出各点并连成线,即为该细胞的生长曲线,可反映出细胞生长的动态。 测定生长曲线的另一种方法是用96孔/24孔细胞培养板,分7组,每组3孔,培养1周(7天),期间逐日检测一组,计数,最后把7天中的细胞数值绘成图,即为细胞生长曲线。 也可采用MTT法来进行生长曲线测定。 标准的细胞生长曲线近似“S”形,一般在传代后第一天细胞数有所减少,经过一段时间的潜伏期,再进入对数生长期,达到平台期后生长稳定,最后衰老。

工业盐酸中硫酸盐含量的测定-铬酸钡分光光度法(精)

中华人民共和国电力行业标准 DL 422.4—91 工业盐酸中硫酸盐含量的测定 ——铬酸钡分光光度法 中华人民共和国能源部1991-10- 04 批准1992-04- 01实施 1 方法概要 硫酸根与过量的铬酸钡-酸悬浊液作用,把部分铬酸钡转化为硫酸钡沉淀,并定量置换出黄色铬酸根离子,可间接求出硫酸根含量。本方法的硫酸根测定范围为0.1~0.5mg。 2 试剂 2.1 氢氧化氨分析纯溶液(3+4。 2.2 醋酸分析纯溶液(1+15。 2.3 盐酸优级纯溶液(1+500。 2.4 95%乙醇。 2.5 铬酸钡-酸悬浊液。将2.5g铬酸钡加到由100mL醋酸(2.2和100mL盐酸(2.3 组成的混合溶液中,激烈振摇混匀后,保存在聚乙烯瓶中。 2.6 含钙离子的氨水。称取1.85g无水氧化钙溶解于500mL氨水(3+4中,贮存于聚乙烯瓶中。 2.7 硫酸钾分析纯标准溶液。 2.7.1 准确称取1.8150g已在700℃灼烧30min的硫酸钾于250mL烧杯中,用二级试剂水溶解后移至1L容量瓶中并稀释至刻度,摇匀。此溶液为A液(1mL中含1 mg。 2.7.2 准确吸取25mLA液(2.7.1于250mL容量瓶中,用二级试剂水稀释至满刻度,摇匀。此溶液为B液(1mL中含0.1mg。 2.8 1mol/L盐酸(优级纯。

3 仪器 3.1 分光光度计。 4 测定方法 4.1 绘制0.1~0.5 mg 准曲线。 4.1.1 按表1规定取硫酸钾工作溶液注入一组25mL比色管中。用二级试剂水稀释至10mL刻度。再加入4mL铬酸钡-酸悬浊液充分摇匀,在20~30℃水浴中恒温5 min。 4.1.2 取1 mL含钙的氨水澄清液(用后应立即将瓶盖盖严,防止吸收空气中二氧化碳分别加入比色管中,充分摇匀后,再分别加入95%乙醇10mL充分摇匀,放置 10min。将比色管内澄清液用干的中速定量滤纸过滤(弃去初始滤液。在波长370nm 处,用10mm的比色皿,以试液空白为参比,测定各显色液的吸光度值。以所测吸光度值和相应的硫酸根(含量绘制工作曲线。 表1 硫酸盐标准曲线的制作 4.2用带线性回归的计算器对吸光度值与硫酸根含量的数据作回归处理,以硫酸根 (含量作自变量,相应的吸光度值作因变量输入计算器,就可得到吸光度值- 硫酸根(含量的线性回归方程。 5试样的测定 5.1吸取20mL试样,用相对密度换算成质量或称重,移入内装少量二级试剂水或称重(称准至0.001g的小烧杯中,小心充分摇匀,在沸水浴上蒸发至干。残留物加1mol/L盐酸3mL,用二级试剂水移入25mL,容量瓶中稀释至刻度,摇匀,为待测液。 5.2吸取待测液10mL注入25mL比色管中。以下测定按4.1.1、4.1.2条所述操作步骤进行发色测定吸光度值。从标准曲线查出相应的硫酸含量(mg,或者根据试样吸光度值,从回归方程求出相应硫酸根含量(mg。

表面活性剂含量测定方法

表面活性剂含量测定方法 1.阴离子表面活性剂含量测定(两相滴定) 1.1主要试剂 (1)十六烷基三甲基溴化铵(CTAB),分析纯; (2)十二烷基磺酸钠,分析纯; (3)二氯甲烷(CH2Cl2)、硫酸钠、浓硫酸,百里酚蓝(T.B.)、次甲基蓝(M.B.)分析纯; (4)百里酚蓝(T.B.)贮藏液:称取0.05g百里酚蓝,溶于50ml20%乙醇中,待溶解后过滤,滤液用水稀释至500ml; (5)次甲基蓝(M.B.)贮藏液:称取0.036g次甲基蓝,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (6)混合指示剂:混合225ml百里酚蓝(T.B.)贮藏液和30ml次甲基蓝(M.B.)贮藏液,用水稀释至500ml; (7)酸性硫酸钠溶液:称取100g硫酸钠和12.6ml浓硫酸,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (8)十二烷基磺酸钠标准溶液:称取1.06~1.12g十二烷基磺酸钠(准确至0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度, 其浓度为C1=取样质量*样品纯度/272.38,单位mol/L; (9)C TAB阳离子表面活性剂标准溶液:称取CTAB0.36~0.37g(准确至 0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度,其 准确浓度C2可用十二烷基磺酸钠标准溶液标定; 1.2实验原理 阴离子型表面活性剂的测量,其原理是亚甲基蓝无机酸盐属于阳离子染料,溶于水而不溶于氯仿,但阴离子活性物与亚甲基蓝反应生成的络合物溶于氯仿。用CTAB阳离子表面活性剂标准溶液滴定溶液中的阴离子活性物,当接近终点时,

阳离子表面活性剂与络合物发生复分解反应,释放出亚甲基蓝,蓝色逐渐从氯仿层转移到水层,当氯仿层与水层为同一蓝色时为滴定终点。 1.3 实验步骤 取10ml阴离子表面活性剂溶液于100ml具塞量筒中(或碘量瓶、分液漏斗),加入混合指示剂及酸性硫酸钠各5ml,加水使水相保持在30ml,加入15ml二氯甲烷,摇匀后静置,用浓度为C2的CTAB标准溶液滴定,下相由浅紫灰色变为明亮的黄绿色即为终点,临近终点时上相逐渐变为无色,有助于避免滴定过量。 测定样品的浓度C=CTAB标准溶液体积* C2/10 注意:二氯甲烷具有弱毒性,且易于挥发,滴定过程应在通风橱中进行,操作人员需戴手套。 2.两性离子表面活性剂含量测定 2.1 所需试剂 (1)磷钨酸、盐酸、硝酸、硫酸、硝基苯均为分析纯; (2)乙醇95%; (3)海明1622、二硫化蓝VN-150; (4)十二烷基硫酸钠,分析纯; (5)溴化底米迪鎓; (6)刚果红指示剂; (7)苯并红紫4B指示剂(溶解0.1g苯并红紫4B(特级试剂)于纯水中,稀释至100mL)。 2.2.方法原理 在酸性条件下甜菜碱类两性活性剂和苯并红紫4B络合成盐。这种络盐溶在过量的两性表面活性剂中,即使酸性,在苯并红紫4B的变色范围也不呈酸性色。两性表面活性剂在等电点以下的pH溶液中呈阳离子性,所以同样能与磷钨酸定量反应,并生成络盐沉淀,而使色素不显酸性色。

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

含量测定采用方法

含量测定采用方法: ●HPLC: ☆原料——醋酸地塞米松、丙酸睾酮、黄体酮、雌炔醇、氨苄西林、头孢羟氨苄、盐酸美他环素; ☆制剂——阿司匹林栓、盐酸肾上腺素注射液(反相HPLC)、地西泮注射液、丙酸睾酮注射液 ●气相色谱法:V E ●紫外分光光度法:对乙酰氨基酚及制剂、注射用硫喷妥钠、尼可刹米注射液、复方磺胺 制剂(双波长分光光度法)、醋酸地塞米松片、V A、V B1片、盐酸氯丙嗪片及注射液、奋乃静片、地西泮片、盐酸吗啡片、硝酸士的宁注射液、青霉素V钾片(硫醇汞盐法)●比色法: ☆原料——洋地黄原料(先用柱色谱分离,再比色)、地高辛原料(三硝基苯酚试液) ☆制剂——硫酸阿托品片(酸性染料比色法,溴甲酚绿)、醋酸地塞米松注射液(四氮唑比色法) ●荧光法:洋地黄及地高辛片 ●酸碱滴定法:阿司匹林原料(直接中和)、阿司匹林片(两步滴定),苯甲酸钠(双相滴 定,盐酸滴定,甲基橙指示剂) ●亚硝酸钠滴定法:对氨基水杨酸钠及制剂(永停法)、盐酸普鲁卡因及注射液(永停法)、 SMZ及SD(溴化钾催化,永停法) ●非水溶液滴定法:盐酸丁卡因、尼可刹米、V B1、盐酸氯丙嗪、奋乃静及注射液、地西 泮,盐酸麻黄素 ☆高氯酸滴定,结晶紫指示剂——盐酸利多卡因、肾上腺素、硫酸阿托品、硫酸奎宁及片、盐酸吗啡 ☆高氯酸滴定,电位法指示——硝酸士的宁 ●溴量法:盐酸去氧肾上腺素及注射液、司可巴比妥及胶囊 ●溴酸钾法:异烟肼及制剂(甲基橙) ●碘量法:V C及注射液 ●伂量法:硫酸亚铁片 ●银量法:苯巴比妥及制剂(电位法指示终点) ●汞量法:青霉素钠、青霉素V钾、青霉素V钾片(硫醇汞盐法) ●抗生素微生物检定法:硫酸链霉素、硫酸庆大霉素、罗红霉素 注: 1.阿司匹林原料直接滴定,片及肠溶片两步滴定,栓HPLC 2.尼可刹米原料非水溶液滴定,注射剂UV 3.盐酸氯丙嗪原料非水溶液滴定,片、注射剂UV 4.奋乃静盐酸氯丙嗪原料非水溶液滴定,片UV,注射液非水溶液滴定 5.地西泮、氯氮著原料非水溶液滴定,片UV,地西泮注射剂反相HPLC 6.硫酸阿托品原料非水溶液滴定,片酸性染料比色 7.盐酸吗啡原料非水溶液滴定,片UV 8.硝酸士的宁原料非水溶液滴定,片UV 9.地高辛原料比色,片荧光 10.醋酸地塞米松原料HPLC,片UV,注射液比色

GB320-2006工业用合成盐酸

工业用合成盐酸 1 范围 本标准规定了工业用合成盐酸的要求、采样、试验方法、检验规则及标志、包装、运输和贮存、安全。 本标准适用于有氯气和氢气合成的氯化氢气体,用水吸收制得的工业用合成盐酸。 3 要求 3.1 外观:工业用合成盐酸为无色或浅黄色透明液体。 3.2 工业用合成盐酸应付表1给出的指标要求。 表1 指标 4 采样 4.1 产品按批检验。生产企业以每一成品槽或每一生产周期生产的工业用合成盐酸为一批。用户以每次收到的同一批次的工业用合成盐酸为一批。 4.2 工业用合成盐酸从槽车或贮槽中采样时,宜用GB/T6680中规定的适宜的耐酸采样器自上、中、下三处采取等量的有代表性样品。生产企业可将槽车或贮槽内的工业用合成盐酸混匀后于采样口采取有代表性样品,进行检测。 4.3 工业用合成盐酸从塑料桶或陶瓷坛中采样时,按GB/T6678中规定的采样单元数随机抽样,拆开包装,宜采用GB/T6680中规定的适宜耐酸采样器自上、中、下三处采取等量的有代表性样品。 4.4 将采取的样品混匀,装于清洁、干燥的塑料瓶或具磨口塞的玻璃瓶中,密封。样品量不少于500mL。样品瓶上应贴上标签并注明:生产企业名称、产品名称、批号或生产日期、采样日期及采样人。 5 试验方法

除非另有说明,在分析中仅使用确认为分析纯试剂和GB/T6682中规定的三级水或相当纯度的水。 试验中所需标准溶液、制剂及制品,在没有其他规定时,均按GB/T601、GB/T602、GB/T603规定制备。 5.1 外观 目视观察 5.2 总酸度的测定 滴定法 5.2.1 原理 试料溶液以溴甲酚绿为指示液,用氢氧化钠标准滴定溶液滴定至溶液由黄色变为蓝色为终点。反应式如下: H + +OH - →H 2O 5.2.2 试剂 5.2.2.1 氢氧化钠标准滴定溶液:c (NaOH )=1mol/L 5.2.2.2 溴甲酚绿指示液:1g/L 。 5.2.3 仪器 一般的实验室仪器和以下仪器。 5.2.3.1 锥形瓶,100mL (具磨口塞)。 5.2.3.2 滴定管,50mL ,有0.1mL 分度值。 5.2.4 分析步骤 5.2.4.1 试料 量取约3ml 实验室样品,置于内装约15ml 水并已称量(精确到0.0001g )的锥形瓶(5.2.3.1)中,混匀并称量(精确到0.0001g )。 5.2.4.2 测定 向试料(5.2.4.1)中加入(2~3)滴溴甲酚绿指示液(5.2.2.2),用氢氧化钠标准滴定溶液(5.2.2.1)滴定至溶液由黄色变为蓝色为终点。 5.2.5 结果计算 总酸度以氯化氢(HCl )的质量分数ω1计,数值以%表示,按式(1)计算: 01m 10100c )1000/(M V m M V C =?= ω (1) 式中: V ——氢氧化钠标准滴定溶液的体积的数值,单位为毫升(mL ); C ——氢氧化钠标准滴定溶液浓度的准确数值,单位为摩尔每升(mol/L ); M 0——试料的质量的数值,单位为克(g );

蛋白质含量测定方法及其比较资料2

蛋白质含量测定法(一) 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 五种蛋白质测定方法比较

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4——2CO2+3SO2+4H2O+NH3 (1) 2NH3+H2SO4——(NH4)2SO4 (2) (NH4)2SO4+2NaOH——2H2O+Na2SO4+2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(Biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

白细胞的检测方法

第四章白细胞检验的基本方法 第一节白细胞功能的检验 一、墨汁吞噬试验 【目的】掌握墨汁吞噬试验的原理、方法、注意事项和临床意义。 【实验原理】墨汁吞噬试验(ink phagocytosis test)是依据血液中的中性粒细胞及单核细胞对细菌、异物等具有吞噬作用,在一定量的肝素抗凝血中,加入一定量的墨汁,经37℃温育4h,涂片染色后,在显微镜下观察吞噬细胞对墨汁的吞噬情况,并计算吞噬率及吞噬指数,从而协助急性白血病的诊断与鉴别。 【材料】 1.器材试管、移液管、微量移液器、载玻片、37℃水浴箱、显微镜等。 2.试剂 (1)肝素:配成6U/ml水溶液。 (2)制备墨汁:于普通砚台上加生理盐水5ml,以优质中国块墨或印度墨,以100r/min 研磨3min。所得墨汁经普通滤纸过滤3次备用。 (3)瑞氏染液等。 【方法步骤】 1.取小试管1支,加肝素20μl,加外周血100μl,混匀。 2.加入过滤墨汁10μl,混匀,加塞。 3.置37℃温育4h。 4.取温育后样本,推制成血涂片,干燥后,瑞氏染色。 5.油镜下观察计数幼稚细胞或中性成熟粒细胞100个;计数单核细胞20个。 6.判断结果根据细胞吞噬墨粒多少及大小,可定为下列程度: 阴性:细胞内未见吞噬墨粒。 阳性:(+) 细胞内吞噬有小墨粒1~5个。 (++) 细胞内吞噬有大小不等墨粒10个左右。 (+++) 细胞内吞噬有大墨粒10个左右,小墨粒较多。 (++++) 细胞内吞噬有多数大颗墨粒,并有块状、球状,小墨粒很多,但细胞核清楚。 7.计算吞噬率及吞噬指数 吞噬率(%)= ×100% 吞噬指数= 【注意事项】肝素剂量对白细胞的吞噬功能有影响,肝素用量过大,细胞形态异常,吞噬率和吞噬指数降低;肝素用量过小,影响抗凝。以每100μl血用0.3U肝素为最适宜。【参考范围】 成熟中性粒细胞吞噬率59~89%,吞噬指数66~186; 成熟单核细胞吞噬率90~100%,吞噬指数227~399。 【临床意义】临床上可利用该试验了解吞噬细胞的吞噬功能,对白血病的诊断和分型有一定参考价值。粒细胞仅成熟阶段才具有吞噬功能,单核细胞幼稚阶段和成熟阶段均具有吞噬能力。AML-M5a为弱阳性,M5b吞噬指数明显增高。AML-M2、ALL和AML-M3吞噬试验均为阴性,AML-M4呈阳性反应。CML的成熟粒细胞吞噬能力明显降低。 二、白细胞吞噬功能试验 【目的】掌握白细胞吞噬功能试验的原理、方法、注意事项和临床意义。 【实验原理】白细胞吞噬功能试验(leukophagocytic function test),是将待测的白细胞与葡萄球菌混合,37℃温育一定时间后,细菌可被中性粒细胞吞噬,涂片染色后,在显微镜下观

工业用合成盐酸

工业用合成盐酸 令狐采学 1范围 本标准规定了工业用合成盐酸的要求、采样、试验方法、检验规则及标志、包装、运输和贮存、安全。 本标准适用于有氯气和氢气合成的氯化氢气体,用水吸收制得的工业用合成盐酸。 3要求 3.1外观:工业用合成盐酸为无色或浅黄色透明液体。 3.2工业用合成盐酸应付表1给出的指标要求。 表1 指标 4采样 4.1 产品按批检验。生产企业以每一成品槽或每一生产周期生产的工业用合成盐酸为一批。用户以每次收到的同一批次的工业用合成盐酸为一批。 4.2 工业用合成盐酸从槽车或贮槽中采样时,宜用GB/T6680中规定的适宜的耐酸采样器自上、中、下三处采取等量的有代

表性样品。生产企业可将槽车或贮槽内的工业用合成盐酸混匀后于采样口采取有代表性样品,进行检测。 4.3 工业用合成盐酸从塑料桶或陶瓷坛中采样时,按GB/T6678中规定的采样单元数随机抽样,拆开包装,宜采用GB/T6680中规定的适宜耐酸采样器自上、中、下三处采取等量的有代表性样品。 4.4将采取的样品混匀,装于清洁、干燥的塑料瓶或具磨口塞的玻璃瓶中,密封。样品量不少于500mL。样品瓶上应贴上标签并注明:生产企业名称、产品名称、批号或生产日期、采样日期及采样人。 5 试验方法 除非另有说明,在分析中仅使用确认为分析纯试剂和 GB/T6682中规定的三级水或相当纯度的水。 试验中所需标准溶液、制剂及制品,在没有其他规定时,均按GB/T601、GB/T602、GB/T603规定制备。 5.1外观 目视观察 5.2总酸度的测定滴定法 5.2.1原理 试料溶液以溴甲酚绿为指示液,用氢氧化钠标准滴定溶液滴定至溶液由黄色变为蓝色为终点。反应式如下: H++OH-→H2O 5.2.2 试剂

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。

[操作步骤] 1.标准曲线的绘制: 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定: 取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量

渗透压摩尔浓度测定方法

渗透压摩尔浓度测定方法 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度溶液向高浓度溶液扩散的现象称为渗透,阻止渗透所需施加的压力,即为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着极其重要的作用。因此,在制备注射剂、眼用液体制剂等药物制剂时,必须关注其渗透压。处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上标明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置(如稀释)。正常人体血液的渗透压摩尔浓度范围为285~310mOsmol/kg ,0.9%氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。 溶液的渗透压,依赖于溶液中溶质粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality )来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总和。 渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg ): 1000n m Osm ol/kg ??=分子量的克数每千克溶剂中溶解溶质)毫渗透压摩尔浓度( 式中,n 为一个溶质分子溶解或解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸钠n=4。 在生理范围及稀溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着溶液浓度的增加,与计算值比较,实际渗透压摩尔浓度下降。例如0.9%氯化钠注射液,按上式计算,毫渗透压摩尔浓度是2×1000×9/58.4=308mOsmol/kg ,而实际上在此浓度时氯化钠溶液的n 稍小于2,其实际测得值是286mOsmol/kg ;复杂混合物,如水解蛋白注射液的理论渗透压摩尔浓度不容易计算,因此通常采用实际测定值表示。 1.渗透压靡尔浓度的测定

高聚物相对分子量测定方法

高聚物相对分子量测定方法 高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。科标分析实验室科研团队集成多名资深行业专家,拥有博士、硕士等高学历人才数名,提供专业分子量测定服务,为客户提供检测数据,检测方法,检测图谱等论文需要的资料。 (1)端基分析法(end-group analysis,简称EA) 如果线形高分子的化学结构明确而且链端带有可以用化学方法(如滴定)或物理方法(如放射性同位素测定)分析的基团,那么测定一定重量高聚物中端基的数目,即可用下式求得试样的数均相对分子质量。 式中:m-试样质量;Z-每条链上待测端基的数目;n-被测端基的摩尔数。 如果用其他方法测得,反过来可求出Z,对于支化高分子,支链数目应为Z-1。 (2)沸点升高和冰点降低法(boiling-point elevation,freezing-point depression) 利用稀溶液的依数性测定溶质相对分子质量的方法是经典的物理化学方法。对于高分子稀溶液,只有在无限稀的情况下才符合理想溶液的规律,因而必须在多个浓度下测ΔT b(沸点升高值)或ΔT f(冰点下降值),然后以ΔT/C对C作图,外推到c->0时的值来计算相对分子质量。 式中:A2称第二维里系数。 (3)膜渗透压法(osmometry,简称OS)

当高分子溶液与纯溶剂倍半透膜隔开时,由于膜两边的化学位不等,发生了纯溶剂向高分子溶液的渗透。当渗透达到平衡时,纯溶剂的化学位应与溶液中溶剂的化学位相等,即 或 由Floy-Huggins理论,从Δμ1的表达式可以得到 由于C2项很小,可忽略, 式中:χ) A2表征了高分子与溶剂相互作用程度的大小。 对于良溶剂,χ1; 对于θ溶剂,χ1; 对于非溶剂,χ1

工业盐酸中铁含量的测定讲课稿

工业盐酸中铁含量的 测定

工业盐酸中铁含量的测定 1、实验目的 (1)了解并掌握1,10-菲啰啉分光光度法测盐酸中铁含量的方法及操作(2)进一步掌握分光光度计的使用方法 (3)熟练比色皿的清洗,装样等操作 (4)加强对一般溶液的配制操作练习 2、实验原理 (1)分光光度计的工作原理是基于物质对光的吸收具有选择性,不同的物质都有各自的吸收光谱,即有不同的吸光度。 (2)盐酸羟胺能将三价铁还原为二价铁。 (3)在pH为4.5的缓冲溶液体系下,二价铁能与1,10-菲啰啉发生反应,生成橙红色的配合物。 3、实验仪器 分析天平、紫外-可见分光光度计、洗瓶、胶头滴管、烧杯、比色皿、玻璃棒、移液管、洗耳球、pH试纸、滤纸、容量瓶、量筒。 4、实验药品 工业盐酸、浓氨水、浓盐酸、氢氧化钠、盐酸羟胺、乙酸——乙酸钠缓冲溶液、铁标夜(硫酸亚铁按)、1,10-菲啰啉试剂。 5、药品配置表

6、实验步骤 (1)所需溶液的配置 ①配制50mL的0.01g/L的铁标准溶液:量取5.0mL的0.1g/L的铁标液于烧杯中,用去离子水将其稀释,用50mL的容量瓶定容,备用(邱文静) ②配制250mL的(1+10)盐酸溶液:用量筒量取浓度为12mol/L的浓盐酸 22.7mL于烧杯中,再用量筒量取227.3mL的去离子水将其稀释,用250mL的容量瓶将其定容,搅拌均匀,贴上标签,以待备用(严翠平) ③配制100mL的(1+1)氨水溶液(第二次用的是氢氧化钠):用量筒量取浓氨水50mL于烧杯中再用量筒量取50mL去离子水将其稀释,搅拌均匀,贴上标签,备用(任云杰) ④配制100mL的盐酸羟胺溶液:准确称取10.0g的盐酸羟胺试剂于烧杯中,再用适宜量的去离子水将其溶解,搅拌均匀,用100mL的容量瓶将其定容,贴上标签,备用(蒋滟耀)

几种蛋白质含量测定方法的比较

几种蛋白质含量测定方法的比较 【摘要】:蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。目前常 用的方法有凯氏定氮法、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford),Folin —酚试剂法(Lowry)杜马斯燃烧法。其中Bradford 法灵敏度颇高,比紫外吸收法灵敏10~20 倍,比Biuret法灵敏100 倍以上。凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。过去Folin—酚试剂法法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以在本公司订购),近年来逐渐被考马斯亮兰法所取代。测定农产品中全氮的凯氏定氮法在许多国家已被杜马斯然烧定氮法所代替,杜马斯燃烧法是基于在高温下(大约 900 ℃),通过控制进氧量、氧化消解样品的原理而进行氮测定的。这6种方法并不能在任何条件下适用于任何形式的蛋白质,每种方法都有其优缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间 【关键词】:凯氏定氮法双缩脲法紫外吸收法考马斯亮蓝法 Folin—酚试剂法杜马斯燃烧法 一、凯氏定氮法 1.1原理 凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4 个过程。其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用,变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 1.2特点 凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。凯氏定氮法样品的最佳消化条件为硫酸铜2.50 g, 硫酸钾0.10 g,浓硫酸4.00 mL;硫酸铜的用量为影响消化时间的主要因素,硫酸钾和浓硫酸用量为第二和第三主要因素;用此最佳条件做实验, 消化时间仅为12 min;与其他硫酸铜、硫酸钾、浓硫酸用量方法对比,该法所需消化时间最短,试剂用量减少,可降低实验成本,也降低了对环境的污染。 凯氏定氮法适用范围广泛,测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。若采用模块式消化炉代替传统的消化装置, 可同时测定几份样品,节省时间,提高了工作效率,适用于批量蛋白质的测定,具有准确、快速、简便、低耗、稳定的优点。 二、双缩脲法(Biuret ) 2.1原理 双缩脲(NH3CONHCONH3)是两个分子脲经180 ℃左右加热,放出1 个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4 形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能够以1 个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

相关文档
相关文档 最新文档