文档库 最新最全的文档下载
当前位置:文档库 › 表面粗糙度的基本概念汇总

表面粗糙度的基本概念汇总

表面粗糙度的基本概念汇总
表面粗糙度的基本概念汇总

表面粗糙度的基本概念

表面粗糙度的基本概念

表面粗糙度的定义(本站相关粗糙度仪的产品介绍:粗糙度仪)

表面粗糙度(Surface roughness)是指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性性它是一种微观几何形状误差,也称为微观不平度。表面粗糙度应与形状误差(宏观几何形状误差)和表面波度区别开。通常,波距小于 1mm 的属于表面粗糙度,波距在 1~10mm 的属于表面波度,波距大于 10mm 的属于形状误差。

表面粗糙度对机械零件使用性能的影响

表面粗糙度的大小对零件的使用性能和使用寿命有很大影响。

1. 影响零件的耐磨性

表面越粗糙,摩擦系数就越大,相对运动的表面磨损得越快。然而,表面过于光滑,由于润滑油被挤出或分子间的吸附作用等原因,也会使摩擦阻力增大和加速磨损。

2. 影响配合性质的稳定性

零件表面的粗糙度对各类配合均有较大的影响。对于间隙配合,两个表面粗糙的零件在相对运动时会迅速磨损,造成间隙增大,影响配合性质;对于过盈配合,在装配时表面上微观凸峰极易被挤平,产生塑性变形,使装配后的实际有效过盈减小,降低联接强度;对于过渡配合,因多用压力及锤敲装配,表面粗糙度也会使配合变松。

3. 影响疲劳强度

承受交变载荷作用的零件的失效多数是由于表面产生疲劳裂纹造成的。疲劳裂纹主要是由于表面微观峰谷的波谷所造成的应力集中引起的。零件表面越粗糙,波谷越深,应力集中就越严重。因此,表面粗糙度影响零件的抗疲劳强度。

4. 影响抗腐蚀性

粗糙表面的微观凹谷处易存积腐蚀性物质,久而久之,这些腐蚀性物质就会渗入到金属内层,造成表面锈蚀。此外,表面粗糙度对接触刚度、密封性、产品外观、表面光学性能、导电导热性能以及表面结合的胶合强度等都有很大影响。所以,在设计零件的几何参数精度时,必须对其提出合理的表面粗糙度要求,以保证机械零件的使用性能。

公差等级与粗糙度的关系

表面粗糙度是反映零件表面微观几何形状误差的一个重要技术指标,是验证零件表面质量的主要依据;它选择的合理与否,直接关系到产品的质量,使用寿命和生产成本。

机械零件表面粗糙度的选择有3种方法,即计算法、试验法和类比法。在机械零件设计中应用最普遍的是类比法,此方法简单有效。运用类比法需要有充足的参考资料。现有的各类机械设计手册中都提供了较全面的资料和文献。最常用的是与公差等级相适应得表面粗糙度。通常情况下公差越小,机械零件的表面粗糙度值也越小,但是他们之间不存在固定的函数关系。一些装饰表面除外。

在实践工作中,对于不同类型的机器,其零件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的。这就是配合的稳定性问题。在机械零件的设计和制造过程中,对于不同类型

机器,其零件配合稳定性和互换性的要求是不同的。在现有的机械零件设计手册中,主要有以下三种类型。

第一类主要用于精密机械,对配合的稳定性要求很高,要求零件在使用过程中和多次装配后,其零件的磨损极限不超过公差值的10%;这主要应用在精密仪器、仪表、精密量具的表面、极其重要零件表面的摩擦面,如气缸的内表面精密机床的主轴颈、坐标镗床的主轴颈等。第二类主要用于精密机械,对配合的稳定性要求较高,要求零件的磨损极限不超过公差值得25%,要求有很好密和的接触面,其主要应用在机床、工具、与滚动轴承配合的表面、销锥孔,还有相对运动速度较高的接触面如华东轴承的配合面、齿轮的轮齿工作面等。

第三类主要用于通用机械,要求机械零件的磨损极限不超过尺寸公差的50%,没有相对运动的零件接触面,如箱盖、套筒,要求紧贴的表面、键和键槽的工作面;相对运动速度不高的接触面,如支架孔、衬套、带轮轴孔的工作表面、减速器等。

公差等级与表面粗糙度关系对应表格:详见附件表格

在机械零件设计中按尺寸公差选择表面粗糙度数值时。应根据不同类型的机器,选择相应的表值。仅供设计时参考!

表面粗糙度参数值的选用

设计时应按标准规定的参数值系列(表4-1~表4-4)选取各项参数的参数值。

选用原则是在满足功能要求的前提下,参数的允许值尽量大(Rmr(c)尽量小)。以便于加工,降低成本,获得较好的经济效益。

选用方法目前多采用类比法。根据类比法初步确定参数值,同时还要考虑下列情况:

同一个零件上,工作表面比非工作表面的Ra或Rz值小。

摩擦表面比非摩擦表面、滚动摩擦表面比滑动摩擦表面的Ra或Rz值小。

运动速度高、单位面积压力大、受交变载荷作用的零件表面、以及最易产生应力集中的沟槽、圆角部位应选用较小的粗糙度数值。

要求配合稳定、可靠时,粗糙度参数值应小些。如,小间隙配合表面、受重载作用的过盈配合表面,都应选用较小的粗糙度数值。

协调好表面粗糙度参数值与尺寸及形位公差的关系。通常,尺寸、形位公差值小,表面粗糙度Ra或Rz值也要小;尺寸公差等级相同时,轴比孔的粗糙度数值要小。

防腐蚀性、密封性要求高,或外形要求美观的表面应选用较小的粗糙度数值。

凡有关标准已对表面粗糙度作出规定的标准件或常用典型零件(例如,与滚动轴承配合的轴颈和基座孔、与键配合的轴槽、轮毂槽的工作面等),应按相应的标准确定其表面粗糙度参数值。

表面粗糙度的评定

对于具有表面粗糙度要求的零件表面,加工后需要测量和评定其表面粗糙度的合格性。

术语、定义

1. lc滤波器(lc profile filter)

lc滤波器是指确定粗糙度与波纹度成分之间相交界限的滤波器

2. ls滤波器(ls profile filter)

ls滤波器是指确定存在于表面上的粗糙度与比它更短的波的成分之间相交界限的滤波器。3.原始轮廓(primary profile)

原始轮廓是指在应用短波长滤波器ls之后的总的轮廓。

4.粗糙度轮廓(roughness profile)

粗糙度轮廓是对原始轮廓采用lc滤波器抑制长波成分以后形成的轮廓。这是故意修正的轮

廓。

以下所涉及到的轮廓,若无特殊说明,均指粗糙度轮廓。

评定基准

为了合理、准确地评定被测表面的粗糙度,需要确定间距和幅度两个方向的评定基准,即取样长度、评定长度和轮廓中线。

1. 取样长度( lr )

取样长度是指用于判别被评定轮廓不规则特征的 X 轴向上的长度,即测量和评定表面粗糙度时所规定的X 轴方向上的一段长度,取样长度在数值上与lc 滤波器的标志波长相等。X 轴方向与间距方向一致。规定取样长度的目的是为了限制和减弱被测表面其它几何形状误差,特别是表面波纹度对测量、评定表面粗糙度的影响。表面越粗糙,取样长度就越大。

2. 评定长度ln(evaluation length)

用于判别被评定轮廓的 X 轴方向上的长度。由于零件表面粗糙度不一定均匀,在一个取样长度上往往不能合理地反映整个表面粗糙度特征,因此,在测量和评定时,需规定一段最小长度作为评定长度。评定长度包含一个或几个取样长度,如图 4-2 所示。一般取 ln =5lr ,如被测表面均匀性较好,测量时可选ln <5lr ;均匀性差的表面,可选ln >5lr 。

3. 轮廓中线(mean lines)

用轮廓滤波器lc 抑制了长波轮廓成分相对应的中线。即具有几何轮廓形状并划分轮廓的基准线。也就是用以评定表面粗糙度参数值的给定线。轮廓中线有两种确定方法:轮廓最小二乘中线(least squares mean line of the profile)—— m:它是指在取样长度内,使轮廓线上各点的纵坐标值 Zi( )的平方和为最小的线,即,轮廓算术平均中线(centre arithmetical mean line of the profile):具有几何轮廓形状在取样长度内与轮廓走向一致的基准线。在lr内由该线划分轮廓使上下两边的面积和相等。

评定参数(parameters)

国标GB/T 3505—2000从表面微观几何形状的幅度、间距等方面的特征,规定了相应的评定参数,以满足机械产品对零件表面的各种功能要求。下面介绍其中的几个主要参数:

1. 评定轮廓的算术平均偏差Ra(arithmetical mean deviation of the assessed profile)

评定轮廓的算术平均偏差Ra是指在一个取样长度内纵坐标Z ( )绝对值的算术平均值,记为Ra,见图4-5。Z ( )的含义如图4-6所示。Ra值的大小能客观地反映被测表面微观几何特性,Ra越小,说明被测表面微小峰谷的幅度越小,表面越光滑;反之,说明被测表面越粗糙。Ra值是用触针式电感轮廓仪测得的,受触针半径和仪器测量原理的限制,适用于Ra 值在0.025~6.3μm的表面。

2. 轮廓的最大高度Rz (maximum height of profile)

在一个取样长度内,最大轮廓峰高和最大轮廓谷深之和的高度。

注意:在GB/T 3505-1983中,Rz符号曾用于指示“不平度的十点高度”。目前,在使用中的一些表面粗糙度测量仪器大多是测量以前的Rz参数。因此,当采用现行的技术文件和图样时必须小心慎重,因为用不同类型的仪器按不同的规定计算所得结果之间的差别并不都是非常微小而可忽略。

3. 轮廓单元的平均宽度RSm (mean width of the profile elements)

轮廓单元的平均宽度RSm是指在一个取样长度内粗糙度轮廓单元宽度Xs的平均值,如图4-8所示,用RSm表示。对RSm需要辨别高度和间距。若未另外规定,省略标注的高度分辨力为Rz的10%,省略标注的间距分辨力为取样长度的1%。上述两个条件都应满足。GB/T3505-2000规定:粗糙度轮廓单元的宽度Xs是指X轴线与粗糙度轮廓单元相交线段的长度(见图4-7和图4-8);粗糙度轮廓单元是指粗糙度轮廓峰和粗糙度轮廓谷的组合(见图4-8);粗糙度轮廓峰是指连接(粗糙度轮廓和X轴)两相邻交点向外(从周围介质到材料)的粗糙度轮廓部分(见图4-8);粗糙度轮廓谷是指连接两相邻交点向内(从周围介质到材料)的粗糙度轮廓部分。

在取样长度始端或末端的评定轮廓的向外部分和向内部分看做是一个粗糙度轮廓峰或轮廓谷。当在若干个连续的取样长度上确定若干个粗糙度轮廓单元时单在每一个取样长度的始端或末端评定的峰和谷仅在每个取样长度的始端计入一次。

4. 轮廓的支承长度率Rmr(c)

轮廓的支承长度率Rmr(c)是指在给定水平位置c上轮廓的实体材料长度Ml(c)与评定长度的比率。在水平位置c上轮廓的实体材料长度Ml(c) 是指在一个给定水平位置c上用一条平行于X轴的线与轮廓单元相截所获得的各段截线长度之和(见图4-10)。即

Ml(c)= Ml1 + Ml2+…+ Mln (4-6)

轮廓的支承长度率Rmr(c)依据评定长度而不是在取样长度上来定义,因为这样可以提供更稳定的参数。轮廓的水平位置c可用微米或轮廓最大高度Rz的百分数表示。支承长度率Rmr(c)是水平位置c的函数,其关系曲线称为支承比率曲线,如图4-9所示。以上四个参数,评定轮廓的算术平均偏差Ra和轮廓的最大高度Rz是幅度参数,是标准中规定必须标注的参数,称为基本参数。轮廓单元的平均宽度RSm和轮廓的支承长度率Rmr(c)称为幅度参数的附加参数。其中,前者是反映间距特性的参数,后者是反映形状特性的参数。附加参数不能单独在图样上注出,只能作为幅度参数的辅助参数注出。

各国表面粗糙度对照表

时代涂层测厚仪使用介绍 一、原理 磁性测厚原理:当测头与覆层接触时,测头和磁性金属基体构成一闭合磁路,由于非磁性覆盖层的存在,使磁路磁阻变化,通过测量其变化可计算覆盖层的厚度。 涡流测厚原理:利用高频交电流在线圈中产生一个电磁场,当测头与覆盖层接触时,金属基体上产生电涡流,并对测头中的线圈产生反馈作用,通过测量反馈作用的大小可导出覆盖层的厚度。 二、适用行业 1、电镀、喷涂:这个行业是使用我们仪器最多的,占每年销量相当大的比例,是我们主要用户群体,需要花大的精力去不断挖掘。 2、管道防腐:主要以石化方面的用户比较多,一般防腐层比较厚,TT260配F10探头的用户比较多。 3、铝型材:今年以来受国家实施强制标准,型材企业换发许可证的影响,该行业出现前所未有的好势头,主要测型材上面的氧化膜,据了解生产企业每少镀一微米,一吨型材“节约”150元,非常可观,因此国家强制要求配备包括涂层测厚仪在内的相关检测设备。此举也给我们带来了非常好的机会。这个机会也同样受到竞争对手的关注,他们最大限度的调低了价格,而且采取铺货等多种方式迅速在此行业展开攻势,针对于此唐总、石总也多次指示密切关注对手动向时世采取相应策略,宗旨是让利不让市场。希望分公司同仁也能切实利用好这次机会,充分发挥区域优势,使我们的产品更多进入该行业,也为今后在此行业的销售打下基础。另外,也可以扩大我们的产品在整个市场的影响。 4、钢结构:对于我们的产品这类企业也可以单独划为一个行业。涂层测厚仪在此行业也确实有很大的应用,包括铁塔等厂家最近购买信息也比较多。 5、印刷线路版、及丝网印刷等行业,这类企业相对来讲数特殊行业,购买量目前来看只是来自零星一些厂家, 8月份我们就有两家印刷企业购买。可以看出还是有需求的,需要我们不断做工作,挖掘信息资源,多发现一些新的销售机会。 三、各型号产品介绍: TT220:测量磁性金属上非磁性覆盖层的厚度。如钢、铁、非奥氏不锈钢上基体上的铝、铬、铜、珐琅、橡胶、油漆层的厚度。 TT230:测量非磁性基体上非导电层的厚度。如铜、铝、锌、锡基体上的珐琅、橡胶、油漆、铬、搪瓷、铝阳极氧化层的厚度。 TT240:测量非磁性基体上非导电层的厚度。如铜、铝、锌、锡基体上的珐琅、橡胶、油漆、铬、搪瓷、铝阳极氧化层的厚度。蹶 主要特点: 1、外型美观,且带有橡胶护套便于携带与现场操作; 2、存储数据多达300个测量值; 3、探头与主机的分离使操作稳定性增强,适用范围更广,特别是对于管道内壁,空间狭窄 的工件; 4、可以设定上下限,对界外测量值能自动报警,更大限度满足了用户需求; 5、可以配备通讯软件与PC机接口,便于用户对数据进行进一步的处理,仪器本身档次也 得到提高;

表面粗糙度的概念和表面粗糙度符号

表面粗糙度的概念和表面粗糙度符号 已有 2082 次阅读2008-10-24 10:43 1.表面粗糙度的基本概念 经过机械加工的零件表面,总会出现一些宏观和微观上几何形状误差,零件表面上的微观几何形状误差,是由零件表面上一系列微小间距的峰谷所形成的,这些微小峰谷高低起伏的程度就叫零件的表面粗糙度。 表面粗糙度是衡量零件表面加工精度的一项重要指标,零件表面粗糙度的高低将影响到两配合零件有接触表面的摩擦、运动面的磨损、贴合面的密封、配面的工作精度、旋转件的疲劳强度、零件的美观等等,甚至对零件表面的抗腐蚀性都有影响。 在工程中,评定表面粗糙度的高度参数,有轮廓算术平均偏差(R),微观不平度十轮廓算术平均偏差的 图1轮廓算术平均偏差 定义是:在取样长度L(用上判别具有表面粗糙度特征的一段基准线长度)内,轮廓偏距绝对值的算术平均值即为Ra,如图1所示。在图中,x轴为基准线,轮廓线上的各点到基准线之间的偏距为Y1,Y2,…Yp…Yn,Rs只为轮廓算术平均偏差值,则其数学表达式为 式中 n 测点数;Yi 峰谷任一测点到基准的偏距。 Rs的值越大,表面就越粗糙。 轮廓算术平均偏差Rs的数值见表1设计时应优先选用表中的第一系列值。

在图纸上规定表面粗糙度要求时,还必须给出测定粗糙度的取样长度,必要时还可以叙定其它附加条件和要求。但是,若测量R时的取样长度按表2的对应值选取时。在图样上L值可省略不标。 2.表面粗糙度的符号、代号 在图件上对零件表问质量的要求,用表面粗糙度符号、代号表示。国家标准(GB131-93)规定了表面粗糙度的符号、代号及其注法。同时指出,图样上所标注的粗糙度符号、代号是指该表面加工后的要求。 (l)表面粗糙度的符号。 图样上表示表面粗糙度的符号,如表3所示。

光洁度对照表

光洁度▽,▽▽,▽▽▽,▽▽▽▽是现在日本和台湾用的。 ▽▽▽▽对应Ra<0.2; ▽▽▽对应Ra=0.2~0.8; ▽▽对应Ra=1.6~6.3; ▽对应Ra=12.5~50。 要求达到▽▽▽▽的表面有:工作时承受较大交变应力作用的重要零件的表面;保证精确定心的锥体表面;液压传动用的孔表面;汽缸套的内表面;活塞销的外表面;仪器导轨面;阀的工作面。 什么加工机械能达到▽▽▽▽,要到达▽▽▽▽至少要研磨,精度更高的话要超级加工。研磨加工是应用较广的一种光整加工。加工后精度可达IT5级,表面粗糙度可达Ra0.1~0.00 6μm。既可加工金属材料,也可以加工非金属材料。研磨加工时,在研具和工件表面间存在分散的细粒度砂粒(磨料和研磨剂)在两者之间施加一定的压力,并使其产生复杂的相对运动,这样经过砂粒的磨削和研磨剂的化学、物理作用,在工件表面上去掉极薄的一层,获得很高的精度和较小的表面粗糙度。 研磨的方法按研磨剂的使用条件分以下三类: 1.干研磨研磨时只需在研具表面涂以少量的润滑附加剂。砂粒在研磨过程中基本固定在研具上,它的磨削作用以滑动磨削为主。这种方法生产率不高,但可达到很高的加工精度和较小的表面粗糙度值(Ra0.02~0.01μm)。 2.湿研磨在研磨过程中将研磨剂涂在研具上,用分散的砂粒进行研磨。研磨剂中除砂粒外还有煤油、机油、油酸、硬脂酸等物质。在研磨过程中,部分砂粒存在于研具与工件之间。此时砂粒以滚动磨削为主,生产率高,表面粗糙度Ra0.04~0.02μm,一般作粗加工用,但加工表面一般无光泽。 3.软磨粒研磨在研磨过程中,用氧化铬作磨料的研磨剂涂在研具的工作表面,由于磨料比研具和工件软,因此研磨过程中磨料悬浮于工件与研具之间,主要利用研磨剂与工件表面的化学作用,产生很软的一层氧化膜,凸点处的薄膜很容易被磨料磨去。此种方法能得到极细的表面粗糙度(Ra0.02~0.01μm)。 我们国家以前也用▽后面加数字表示光洁度(GB1031-1968)有14个等级▽14,▽13,▽12,▽11,▽10,▽9,▽8,▽7,▽6,▽5,▽4,▽3,▽2,▽1,与现在大家用的粗糙度对应(GB1031-1983),*.*,0.012,0.025,0.05,0.10,0.2,0.4,0.8,1.6,3. 2,6.3,12.5,25,50,最后一个没有,请不要将此与日本标准混淆。

表面粗糙度符号

表面粗糙度符号、代号 1. 图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。 2. 表面粗糙度的画法。 3. 有关表面粗糙度的各项规定应按功能要求给定。若仅需要加工(采用去除材 料的方法或不去除材料的方法)但对表面粗糙度的其他规定没有要求时,允许只注表面粗糙度符号。 4. 表面粗糙度参数和各项规定注写的位置。 a1、a2 —— 粗糙度高度参数的允许值(μm ); b —— 加工方法、镀涂或其他表面处理; c —— 取样长度(mm ); d —— 加工纹理方向符号; e —— 加工余量(mm ); f —— 粗糙度间距参数值(mm )或轮廓支撑长度率 5. 图样上表示零件表面粗糙度的符号。 b

6.当允许在表面粗糙度参数的所有实测值中超过规定值的个数少于总数的 16%时,应在图样上标注表面粗糙度参数的上限值或下限值。 7.当要求在表面粗糙度参数的所有实测值中不得超过规定值时,应在图样上 标注表面粗糙度参数的最大值或最小值。 8.表面粗糙度高度参数轮廓算术平均偏差R a值的标注见下表,R a在代号中用 数值表示(单位为微米μm),参数值前可不标注参数代号。

9.表面粗糙度高度参数轮廓微观不平度十点高度R z、轮廓最大高度R y值(单位 为微米μm)的标注见下表,前需标注出相应的参数代号。 10.取样长度应标注在符号长边的横线下面,见图1。 图1 若按GB 10610—1989第6.1条中表1、表2的有关规定选用对应的取样长度时,在图样上可省略标注。 11.若需要标注表面粗糙度间距参数轮廓的单峰平均间距S值、轮廓微观不平 度的平均间距S m值或轮廓支承长度率tp时,应注在符号长边的横线下面,

粗糙集基本概念

一种对集合A的划分就对应着关于A中元素的一个知识 面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识?我们如何将所学到的知识去粗取精?什么是对事物的粗线条描述什么是细线条描述? 粗糙集合论回答了上面的这些问题。要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?假设有8个积木构成了一个集合A,我们记: A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,按照颜色的不同,我们能够把这堆积木分成 R1={红,黄,兰}三个大类,那么所有 红颜色的积木构成集合X1={x1,x2,x6}, 黄颜色的积木构成集合X2={x3,x4}, 兰颜色的积木构成集合X3={x5,x7,x8}。 按照颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必然属于且仅属于一个分类),那么我们就说颜色属性就是一种知识。在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个知识,假如还有其他的属性,比如还有形状R2={三角,方块,圆形},大小R3={大,中,小},这样加上R1属性对A构成的划分分别为:

A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7,x8}}(颜色分类) A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6,x7}}(形状分类) A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4,x7}}(大小分类) 上面这些所有的分类合在一起就形成了一个基本的知识库。那么这个基本知识库能表示什么概念呢?除了红的{x1,x2,x6}、大的{x1,x2,x5}、三角形的{x1,x2}这样的概念以外还可以表达例如 大的且是三角形的{x1,x2,x5}∩{x1,x2}={x1,x2}, 大三角{x1,x2,x5}∩{x1,x2}={x1,x2}, 兰色的小的圆形({x5,x7,x8}∩{x3,x4,x7}∩ {x3,x4,x6,x7}={x7}, 兰色的或者中的积木{x5,x7,x8}∪ {x6,x8}={x5,x6,x7,x8}。 而类似这样的概念可以通过求交运算得到,比如X1与Y1的交就表示红色的三角形。所有的这些能够用交、并表示的概念以及加上上面的三个基本知识(A/R1,A/R2.A/R3)一

质量管理的定义质量管理的基本概念

质量管理的定义质量管理的基本概念 每当有人问我质量管理者到底是做什么的时候,我都会产生一种困惑:“什么叫做质量管理?”就是在这样的思考中,我发现很多人连质量的基本概念都没有搞清楚,这就导致我们在工作中走入了这样或那样的误区。在实际工作中,由于对概念理解得不清晰使得质量工作在执行中产生了这样和那样的问题。还有一些人认为质量工作太难搞,我觉得质量管理不是想象中的那么神秘和高深,只不过我们还没有真正地认识它。 本文试图从质量管理的基本概念入手,结合ISO9000系列国际标准和美国国家质量奖,对如何开展质量管理工作进行阐述。 1质量的定义 大多数人在谈到质量的时候通常会从以下三个方面对质量进行理解:

(1)产品质量以及服务,产品质量的优劣,包括市场上发现的假冒伪劣产品。 (2)质量管理体系工作。部分人认为质量体系工作就是指 ISO9000质量体系的认证工作,甚至在某些人的头脑里面做质量工作就是做质量认证工作。 (3)将质量工作同制造联系起来,将质量管理的工作同生产过程中的产品检验工作等同。 在工作中,质量常常给人的感觉是即具体又抽象,谈到检验很具体,谈到过程质量和工作质量就比较抽象了。提到质量问题,在我们头脑中通常闪现的是“某产品市场检验出问题了”。在对质量问题进行分析的时候,往往不能十分清楚地说明原因和责任。在分析问题发生原因的时候会发现技术问题的发生是由于管理失误导致的,而管理的失误又同技术能力有关。为了更好地讨论,我们先从ISO9000系列国际标准中质量的定义入手。 质量:产品、体系或过程的一组固有特性满足顾客和其他相关方要求的能力。

从这个定义中,我们可以看到产品、体系和过程是一组相互关联的概念。 什么是固有特性呢? 固有特性是指内在特性,而不是人为赋予的特性。 说明如下: 产品的一组固有特性,比如外观、性能、安全性等产品指标; 体系的一组固有特性包括实现质量方针、质量目标的设定,管理的协调性等。 过程的一组固有特性,例如制造过程的固有特性包括过程的能力、过程的稳定性、可靠性、先进性和工艺水平等属于制造过程的固有特性。 具体举例来说,如某品牌电脑的质量要求: 产品的固有特性:外观优美、安全性符合国际标准、实现一指通的上网功能、最新的配置和WINDOWS ME 的操作系统、一年的上网等;

表面粗糙度符号及意义 (1)

表面粗糙度符号及意义表面粗糙度高度参数的标注 符号意义及说明 R a R z、R y 代号意义 代号 意义 基本符号,表示表面可用任何方法获得。当不加注粗糙度参数值或有关说明(例如:表面处理、局部热处理状况等)时,仅适用于简化代号标注 用任何方法 获得的表面粗 糙度,R a的上限 值为3.2μm 用任何方法获 得的表面粗糙 度,R y的上限值 为3.2μm 用去除材料 方法获得的表 面粗糙度,R a 的上限值为3.2 μm 用不去除材料 方法获得的表面 粗糙度,R z的上 限值为200μm 基本符号加一 短划,表示表面是用去除材料的方法获得。例如:车、铣、钻、磨、剪、切、抛光、腐蚀、电火花加工、气剖等 用不去除材 料方法获得的 表面粗糙度,R a 的上限值为3.2 μm 用去除材料方 法获得的表面粗 糙度,R z的上限 值为3.2μm,下 限值为1.6μm 基本符号加一 小圆,表示表面是用不去除材料的方法获得。例如:铸、锻、冲压变形、热轧、冷轧、粉末冶金等。或者是用于保持原供应状况的表面(包括保持上道工序的状况) 用去除材料 方法获得的表 面粗糖度,R a 的上限值为3.2 μm,R a的下限 值为1.6μm 用去除材料方 法获得的表面粗 糙度,R a的上限 值为3.2μm,R y 的上限值为12.5 μm 用任何方法 获得的表面粗 糙度,R a的最大 值为3.2μm 用任何方法获 得的表面粗糙 度,R y的最大值 为3.2μm 在上述三个符 号的长边上均可加一横线,用于标注有关参数和说明 用去除材料 方法获得的表 面粗糙度,R a 的最大值为3.2 μm 用不去除材料 方法获得的表面 粗糙度,R y的最 大值为200μm

表面粗糙度符号及数值说明[1]

表面粗糙度符号及其标注说明 粗糙度是衡量零件表面粗糙程度的参数,它反映的是零件表面微观的几何形状误差,必须借助放大镜等进行测量。它是由于零件加工过程中刀具与加工表面之间的摩擦、挤压以及加工时的高频振动等方面的原因造成的。表面粗糙度对零件的工作精度、耐磨性、密封性、耐蚀性以及零件之间的配合都有着直接的影响。 粗糙度的评定常用轮廓算术平均偏差Ra、轮廓最大高度Ry、微观不平度十点高度Rz三个参数表示。数值越小,零件的表面越光滑,数值越大零件的表面越粗糙。 1、轮廓算术平均偏差Ra 取样长度:取样长度是指具有粗糙度几何特征的一段长度,在取样长度内应该具有几个波峰和波谷。测量时可选5倍的取样长度作为测量长度进行测量。 Ra是指在取样长度内,轮廓偏距绝对值的算术平均值,可以表示为:

关于表面粗糙度的数值和表面特征、获得方法、应用举例请参见下表。 从上图中也可以看出,粗糙度参数的数值.基本上成倍数的关系。标注时应当选用这些数值,不能选用其他的数值。 2、轮廓最大高度Ry 3、轮廓不平度十点高度Rz

标注 2.1代号及意义 粗糙度代号可以分为:符号,粗糙度项目及数值。 常用标注参数是Ra, 标注Ra时Ra可以省略,标注Rz和Ry时,在粗糙度数值前加对应的符号Rz和Ry。 2.2 标注原则 1)、在同一图样上每一表面只注一次粗糙度代号,且应注在可见轮廓线、尺寸界线、引出线或它们的延长线上,并尽可能靠近有关尺寸线。 2)、当零件的大部分表面具有相同的粗糙度要求时,对其中使用最多的一种,代(符)号,可统一注在图纸的右上角。并加注“其余”二字。 3)、在不同方向的表面上标注时,代号中的数字及符号的方向必须下图的规

表面粗糙度等级对照表

表面粗糙度级别对照及应用国际标注Rz N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1200 100 25Ra 50 25 6.3粗糙面表面形状特征 明显可见刀痕 可见刀痕

微见刀痕 可见加工痕迹 微见加工痕迹 看不见加工痕迹 可辨加工痕迹的方向 光面微辨加工痕迹的方向 不可辨加工痕迹的方向 暗光泽面 亮光泽面 镜状光泽面 雾状镜面 镜面精磨、研磨、抛光、超精磨、 镜面磨削等研磨、金刚石车刀的精车、精绞、冷拉、拉刀加工、抛光等加工方法举例锯断、粗车、粗铣、粗刨、钻孔以及用粗纹锉刀、粗砂 轮等加工冷拉、精车、精绞、粗绞、粗磨、刮削、粗拉刀加 工等5012.5 12.53.2半光面 6.31.6 6.30.8 3.20.4 1.60.2

0.80.1 0.40.05 0.20.025最光面 0.10.012 0.05 表面特征 明显可见刀痕 微见刀痕 看不见加工痕迹,微辩加工方向暗光泽面 雾状镜面0.012 镜状光泽面0.025 亮光泽面0.05 暗光泽面0.1 不可见加工痕迹的方向0.2 可见加工痕迹方向0.8 微见加工痕迹方向0.4 看不清加工痕迹方向1.6 微见加工痕迹方向3.2 可见加工痕迹方向6.3 微见刀痕12.5

可见刀痕25 明显可见刀痕50表面粗糙度(Ra)数值 Ra100、Ra50、Ra25、 Ra12.5、Ra6.3、Ra3.2、 Ra1.6、Ra0.8、Ra0.4、 Ra0.2、Ra0.1、Ra0.05、加工方法举例 粗车、粗刨、粗铣、钻孔精车、精刨、精铣、粗铰、粗磨精车、精磨、精铰、研磨研磨、珩磨、超精磨、抛光镜面0.006微米

表面粗糙度及表面粗糙度的标注方法

一.表面粗糙度的符号 注意:极限值表示参数的实测值中允许少于总数的16%的实测值超过规定值,高度参数常用Ra,在图中标注时常省略。无max min则表示是上极限或下极限,如果有则表示最大值和最小值,单位为微米 基本符号,表示可使用任何方法获得 基本符号加一短划,表示表面用去除材料的方法获得 表示用不去除材料方法获得(铸锻冲压等) 表示所有表面具有相同的表面粗糙度要求 二.表面粗糙度的代号 1. d' =h/10;H=1.4h;h为字体高度 a1、a2--粗糙度高度参数的允许值(mm); b加工方法、镀涂或其他表面处理; c取样长度(mm); d加工纹理方向符号; e加工余量(mm); f粗糙度间距参数值(mm)或轮廊支承长度率。 2.零件的加工表面的粗糙度要求由指定的加工方法获得,用文字标注在符号上边的横线,加工方法也可在图样的技术要求中说明 3.加工纹理方向: = 纹理平行于标注符号的视图的投影面 ⊥纹理垂直于标注符号的视图的投影面 x 纹理呈两相交的方向 M 纹理呈多方向 c 纹理呈近似同心圆 R 纹理呈近似的放射状 p 纹理无方向或凸起的细粒状 4.加工余量:注在符号的左侧,标注时数值要加上括号,单位为毫米 5.参数S Sm Tp l的标注,应标注在符号长边的横线下面,并且必须在参数值前注写参数的符号 三。表面粗糙度符号、代号在图样上的标注 一般标注在可见轮廓线、尺寸界线、引出线或它们的延长线上,符号的尖端必须从材料外指向表面,代号中数字及符号的注写方向必须与尺寸数字方向一致

标准规定在同一图样上,每一表面一般只标注一次。当零件的大部分表面具有相同的表面粗糙度要求时,对其中使用最多的一种代号可以统一注在图样的右上角,并加注“其余”两字当零件所有表面具有相同的表面粗糙度要求时,其代号可在图样的右上角统一标注序号标注规定及说明图例 1当零件的大部分表面具有相同的表由粗糙度要求时,对其中使用最多的一种代(符)号可统一注在图样的右上角,并加注‘其余”两字,且应是图样上其它代(符)号高度的1.4倍 2 代号中数字注写方向应与尺寸数字方向一致;倾斜表面的代号及数字标控方向应符合图右规定 3 带有横线的表面粗糙度应按右图方式标注

表面粗糙度符号及意义

1、表面粗糙度符号及意义 符号 意义 表面粗糙度参数和各项规定注写的位置 基本符号,单独使用这符 号是没有意义的 α1、α2——粗糙度高度参数的允许值(μm ); b ——加工方法、镀涂或其他表面处理; c ——取样长度(mm ); d ——加工纹理方向符号; e ——加工余量(mm ); f ——粗糙度间距参数值(mm )或轮廊支承长度率 基本符号上加一短划,表示表面粗糙度是用去除材料方法获得。例如:车、铣、钻、磨、剪切、抛光、腐蚀、电火花加工等 基本符号加一小圆,表示表面粗糙度是用不去除材 料的方法获得。例如:铸、锻、冲压变形、热轧、冷 轧、粉末冶金等 或者是用于保持原供应状况的表面(包括保持上道工序的状况) 以上三个符号的长边可加一横线,用于标注参数;在长边与横线间可加一小 圆,表示所有表面具有相同的表面粗糙度要求。 2、表面粗糙度高度参数的标注 R a 值 R z ,R y 值 代号 意义 代号 意义 用任何方法获得的表面,R a 的最大允许值为3.2μm 用任何方法获得的表面,R Y 的最大允许值为3.2μm 用去除材料获得的表面, R a 的最大允许值为3.2μm 用不去除材料方法获得的表面,R z 的最大允许值为 200μm 用不去除材料获得的表面,R a 的最大允许值为 3.2μm 用去除材料方法获得的表面,R z 的最大允许值(R zmax )为3.2μm ,最小允许值(R zmin )为1.6μm 用去除材料方法获得的表面,R a 的最大允许值(R amax )为3.2μm ,最小的允许值 (R amin )为1.6μm 用去除材料方法获得的表面,R a 的最大允许值为3.2μm ,R Y 的最大允许值为 12.5μm 3、表面粗糙度符号的画法

表面粗糙度对照表

国内表面光洁度与表面粗糙度Ra、Rz数值换算表(单位:μm)

另附:粗糙度仪新旧标准参数变化对照表现将TR200粗糙度仪依据新标准更改参数的情况列表如下,如有问题,由时代公司负责解释。本表还适用于公司TR1系列粗糙度仪。修改后可测量参数的总数没有变化,仍为13个参数,只是显示在不同的标准中,也就是说:时代粗糙度仪产品参数:涵盖新旧标准参数!(详见表)

另附:表面粗糙度国际标准加工方法 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别是:轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。

Ra--在取样长度L内轮廓偏距绝对值的算术平均值。 Rz--在取样长度内5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和。 Ry--在取样长度L内轮廓峰顶线和轮廓谷底线之间的距离。 如果图面没标注粗糙度选用Ra /Rz /Ry 的情况下默认为Ra。 表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在

1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ①表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ②表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 此外,表面粗糙度对零件的外观、测量精度也有影响。 粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100 6.3:半精加工表面。用于不生要的零件的非配合表面,如支柱、轴、、支架、外壳、衬套、盖等的端面;螺钉、螺栓各螺母的自由表面;不要求定心和配合特性的表面,如螺栓孔、螺钉通孔、铆钉孔等;飞轮、带轮、离合器、联轴节、凸轮、偏心轮的侧面;平键及键槽上下面、花键非定心表面、齿顶圆表面;所有轴和孔的退刀槽;不重要的连接配合表面;犁铧、犁侧板、深耕铲等零件的摩擦工作面;插秧爪面等。1、外观的光滑与摩擦是一个矛盾问题,总的来说,既要光滑美观,又要有相当的摩擦, 以方便安装,以下是常见的一些粗糙度数值: 2、粗糙度0.8以下:抛光 3、粗糙度0.8:用磨床加工的面 4、粗糙度1.6—3.2:车床、铣床加工面 5、粗糙度3.2—12.5:一般性的常规加工 6、一般而言,既要光滑美观,又要有相当的摩擦,以方便安装的话,粗糙度0.8可以,既显得美观高档,手感也可以的 7、如果手拧部分需要减低等级的话也可以的,建议选择粗糙度1.6—3.2,但是,好看吗?会不会影响外观的美感呢? 8、如果需要重视手拧的功能,最好是做滚花处理,滚花有“直纹”和“网纹”两种,图纸上的标注:网纹0.8(用箭头指明需要滚花的部位,再写上文字) 如有侵权请联系告知删除,感谢你们的配合!

机械制图表面粗糙度符号1

机械制图表面粗糙度符号、代号及其注法 浏览22742发布时间10/09/11表面粗糙度符号、代号及其注法 Mechanical drawings— Surface roughness symbols and methods of indicating 1993-11-09 批准1994-07-01 实施 国家质量技术监督局发布 本标准等效采用国际标准ISO 1302—1992《技术制图——标注表面特征的方法》。 1 主题内容与适用范围 本标准规定了零件表面粗糙度符号、代号及其在图样上的注法。 本标准适用于机电产品图样及有关技术文件。其他图样和技术文件也可参照采用。 2 引用标准 GB 1031 表面粗糙度参数及其数值 GB/T 13911 金属镀覆和化学处理表示方法 GB 3505 表面粗糙度术语表面及其参数 GB 4054 涂料涂覆标记 GB 10610 触针式仪器测量表面粗糙度的规则和方法 GB 12472 木制件表面粗糙度参数及其数值 3 表面粗糙度符号、代号 3.1图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。 3.2有关表面粗糙度的各项规定应按功能要求给定。若仅需要加工(采用去除材料的方法或不去除材料的方法)但对表面粗糙度的其他规定没有要求时,允许只注表面粗糙度符号。 3.3图样上表示零件表面粗糙度的符号见表1。 表1 符号意义及说明 基本符号,表示表面可用任何方法获得。当不加注粗糙度参 数值或有关说明(例如:表面处理、局部热处理状况等)时,仅

适用于简化代号标注 基本符号加一短划,表示表面是用去除材料的方法获得。例如:车、铣、钻、磨、剪切、抛光、腐蚀、电火花加工、气割等 基本符号加一小圆,表示表面是用不去除材料的方法获得。例如:铸、锻、冲压变形、热轧、冷轧、粉末冶金等。 或者是用于保持原供应状况的表面(包括保持上道工序的状况) 在上述三个符号的长边上均可加一横线,用于标注有关参数和说明 在上述三个符号上均可加一小圆,表示所有表面具有相同的表面粗糙度要求

粗糙集算法

DUFE 管理科学与工程研究方法概论 学号:2013100654 专业:电子商务 姓名:徐麟

粗糙集理论 一、粗糙集的来源与发展 智能信息处理是当前信息科学理论和应用研究中的一个热点领域。由于计算机科学与技术的发展,特别是计算机网络的发展,每日每时为人们提供了大量的信息。信息量的不断增长,对信息分析工具的要求也越来越高,人们希望自动地从数据中获取其潜在的知识。特别是近20年间,知识发现(规则提取、数据挖掘、机器学习)受到人工智能学界的广泛重视,知识发现的各种不同方法应运而生。粗糙集(RoughSet,也称Rough集、粗集)理论是Pawlak教授于1982年提出的一种能够定量分析处理不精确、不一致、不完整信息与知识的数学工具。粗糙集理论最初的原型来源于比较简单的信息模型,它的基本思想是通过关系数据库分类归纳形成概念和规则,通过等价关系的分类以及分类对于目标的近似实现知识发现。由于粗糙集理论思想新颖、方法独特,粗糙集理论已成为一种重要的智能信息处理技术,该理论已经在机器学习与知识发现、数据挖掘、决策支持与分析等方面得到广泛应用。粗糙集理论与应用的核心基础是从近似空间导出的一对近似算子,即上近似算子和下近似算子(又称上、下近似集)。经典Pawlak模型中的不分明关系是一种等价关系,要求很高,限制了粗糙集模型的应用。 二、粗糙集的理论基础 1、概念、可定义集 从经典的角度来看,每个概念都包含其内涵和外延。为了给出概念内涵和外延的具体描述,我们考虑一个简单的知识表达系统,即信息表。信息表就是一组 可定义集的形式化定义如下:在信息表M中,如果称子集XAU是可被属性子集AAAt定义的,当且仅当在语言L(A)中存在一个公式<使得X=m(<)。否则,X 称为不可定义的。 2、近似空间 语言L(A)的所有可定义集正好构造成一个R代数R(U/E(A)),即Def(U,L(A))=R(U/E(A))。序对apr=(U,E(A))称为一个Pawlak近似空间,简称近似空间。所以,也可以将语言L(A)的所有可定义集记为Def(U,L(A))=Def(apr)。通过U/E(A),可以构造一个R代数,即R(U/E(A)),它包含空集á和等价关系E(A)

质量管理的基本原理及理论

质量管理的基本原理与理论 一、质量管理的基本概念与原理 1、质量 质量指产品或服务,满足规定或潜有需要的特征和特性的总和。它既包括有形产品也包括无形产品;既包括产品内在的特性、也包括产品外在的特性。即包括了产品的适用性和符合性的全部内涵。 2、工业产品质量 工业产品质量指工业产品适合一定的用途,满足人们需要所具备的特性和特性的总和,也即是产品的适用性。它包括产品的内在特性,如产品的结构、物理性能、化学成分、可靠性、精度、纯度等;也包括产品的外在特性,如形状、外观、色泽、音响、气味、包装等;还有经济特性如成本、价格、使用维修费等,以及其他方面的特性如交货期、污染公害等。工业产品的不同特性,区别了各种产品的不同用途,满足了人们的不同需要。可把各种产品的不同特性概括为:适用性、可靠性、安全性、寿命、经济性等。 3、工作质量 工作质量指对产品质量有关的工作对于产品质量保证程度。工作质量涉及到企业所有部门和人员,也就是说企业中每个科室、车间、班组,每个工作岗位都直接或间接地影响着产品质量,其中领导者的素质最为重要,起着决定性的作用,当然广大职工素质的普遍提高,是提高工作质量的基础。工作质量是提高产品质量的基础和保证。为保证产品质量,必须首先抓好与产品质量有关的各项工作。 4、服务质量 它指服务满足规定或潜在需要的特征和特性的总和。国际标准列举的服务质量特性实例包括:设施、容量、人员的数量和储存量;等待时间、的供时间和过程的各项时间;卫生、安全、可靠性和保密性;反应、方便、礼貌、舒适、环境美、能力、耐用性、准确性、完整性、技艺水平、可信性和沟通联络等。 5、质量控制(QC) 为保证和提高产品质量和工作质量所进行的质量调查、研究、组织、协调、

关于质量管理的基本概念

关于质量管理的基本概念 1、质量 质量指产品或服务,满足规定或潜有需要的特征和特性的总和。它既包括有形产品也包括无形产品;既包括产品内在的特性、也包括产品外在的特性。即包括了产品的适用性和符合性的全部内涵。 2、工业产品质量 工业产品质量指工业产品适合一定的用途,满足人们需要所具备的特性和特性的总和,也即是产品的适用性。它包括产品的内在特性,如产品的结构、物理性能、化学成分、可靠性、精度、纯度等;也包括产品的外在特性,如形状、外观、色泽、音响、气味、包装等;还有经济特性如成本、价格、使用维修费等,以及其他方面的特性如交货期、污染公害等。工业产品的不同特性,区别了各种产品的不同用途,满足了人们的不同需要。可把各种产品的不同特性概括为:适用性、可靠性、安全性、寿命、经济性等。 3、工作质量 工作质量指对产品质量有关的工作对于产品质量保证程度。工作质量涉及到企业所有部门和人员,也就是说企业中每个科室、车间、班组,每个工作岗位都直接或间接地影响着产品质量,其中领导者的素质最为重要,起着决定性的作用,当然广大职工素质的普遍提高,是提高工作质量的基础。工作质量是提高产品质量的基础和保证。为保证产品质量,必须首先抓好与产品质量有关的各项工作。 4、服务质量 它指服务满足规定或潜在需要的特征和特性的总和。国际标准列举的服务质量特性实例包括:设施、容量、人员的数量和储存量;等待时间、的供时间和过程的各项时间;卫生、安全、可靠性和保密性;反应、方便、礼貌、舒适、环境美、能力、耐用性、准确性、完整性、技艺水平、可信性和沟通联络等。 5、质量控制(QC) 为保证和提高产品质量和工作质量所进行的质量调查、研究、组织、协调、控制、信息反馈、改进等到各项工作的总称。为保证产品过程或服务质量,必须采取一系列的作业、技术、组织、管理等有关活动,这些都属于质量控制的范畴。 6、质量管理(QM) 它指对确定和达到质量所必须的全总职能和活动的管理,其管理职能主要是负责质量方针政策的制订和实施等。 7、质量职能

粗糙度 符号及其表示方法

表面粗糙度符号、代号及其注法 本标准等效采用国际标准ISO1302—1992《技术制图——标注表面特征的方法》。 1主题内容与适用范围 本标准规定了零件表面粗糙度符号、代号及其在图样上的注法。 本标准适用于机电产品图样及有关技术文件。其他图样和技术文件也可参照采用。 2引用标准 GB1031表面粗糙度参数及其数值 GB/T13911金属镀覆和化学处理表示方法 GB3505表面粗糙度术语表面及其参数 GB4054涂料涂覆标记 GB10610触针式仪器测量表面粗糙度的规则和方法 GB12472木制件表面粗糙度参数及其数值 3表面粗糙度符号、代号 3.1图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。 3.2有关表面粗糙度的各项规定应按功能要求给定。若仅需要加工(采用去除材料的方法 或不去除材料的方法)但对表面粗糙度的其他规定没有要求时,允许只注表面粗糙度符号。 3.3图样上表示零件表面粗糙度的符号见表1。 表1 符号意义及说明 基本符号,表示表面可用任何方法获得。当不加注粗糙度参数值或有关 说明(例如:表面处理、局部热处理状况等)时,仅适用于简化代号标注 基本符号加一短划,表示表面是用去除材料的方法获得。例如:车、铣、 钻、磨、剪切、抛光、腐蚀、电火花加工、气割等 基本符号加一小圆,表示表面是用不去除材料的方法获得。例如:铸、 锻、冲压变形、热轧、冷轧、粉末冶金等。 或者是用于保持原供应状况的表面(包括保持上道工序的状况) 在上述三个符号的长边上均可加一横线,用于标注有关参数和说明 在上述三个符号上均可加一小圆,表示所有表面具有相同的表面粗糙度 要求 3.4当允许在表面粗糙度参数的所有实测值中超过规定值的个数少于总数的16%时,应 在图样上标注表面粗糙度参数的上限值或下限值。 当要求在表面粗糙度参数的所有实测值中不得超过规定值时,应在图样上标注表面 粗糙度参数的最大值或最小值。 3.5表面粗糙度高度参数轮廓算术平均偏差R a值的标注见表2,R a在代号中用数值表示(单位为微米),参数值前可不标注参数代号。 表2

质量管理基础知识

质量管理基础知识培训内容 基本概念: 什么是认证?:“认证”一词的英文原意是一种出具证明文件的行动。ISO/IEC指南2:1986中对“认证”的定义是:“由可以充分信任的第三方证实某一经鉴定的产品或服务符合特定标准或规范性文件的活动。” 举例来说,对第一方(供方或卖方)生产的产品甲,第二方(需方或买方)无法判定其品质是否合格,而由第三方来判定。第三方既要对第一方负责,又要对第二方负责,不偏不倚,出具的证明要能获得双方的信任,这样的活动就叫做“认证”。 这就是说,第三方的认证活动必须公开、公正、公平,才能有效。这就要求第三方必须有绝对的权力和威信,必须独立于第一方和第二方之外,必须与第一方和第二方没有经济上的利害关系,或者有同等的利害关系,或者有维护双方权益的义务和责任,才能获得双方的充分信任。 那么,这个第三方的角色应该由谁来担当呢?显然,非国家或政府莫属。由国家或政府的机关直接担任这个角色,或者由国家或政府认可的组织去担任这个角色,这样的机关或组织就叫做“认证机构”。 什么是ISO?:ISO是一个组织的英语简称。其全称是International Organization for Standardization , 翻译成中文就是“国际标准化组织”。 ISO是世界上最大的国际标准化组织。它成立于1947年2月23日,它的前身是1928年成立的“国际标准化协会国际联合会”(简称ISA)。他如IEC 也比

较大。IEC即“国际电工委员会”,1906年在英国伦敦成立,是世界上最早的国际标准化组织。IEC主要负责电工、电子领域的标准化活动。而ISO负责除电工、电子领域之外的所有其他领域的标准化活动。 ISO 宣称它的宗旨是“在世界上促进标准化及其相关活动的发展,以便于商品和服务的国际交换,在智力、科学、技术和经济领域开展合作。” 1有关质量的概念 1.1 质量:一组固有特性满足要求的程度。 “质量”可使用形容词差、好或优秀来修饰 “固有的”(其反义是“赋予的”)就是批在某事物或某物中本来就有的,尤其是那种永久的特性。 1.2 要求: 明示的、通常隐含的或必须履行的需求或期望。 “明示的”可以理解为是规定的要求 “通常隐含的”是指组织、顾客和其他相关方的惯例或一般做法 “必须履行的”是指法律法规的要求及强制标准的要求 要求可以由不同的相关方提出,不同的相关方对同一产品的要求可能是不同的。 要求可以是多方面的,如产品要求、质量管理体系要求、顾客要求等。 质量的内涵是由一组固有的特性组成,并且这些固有特性是以满足顾客及其他相关方所要求的能力加以表征。 1.3顾客满意: 顾客对其要求已被满足的程度的感受。 顾客抱怨是一种满意程度低的最常见的表达方式,但没有抱怨并不一

表面粗糙度对照表

表面粗糙度对照表: 高度特征参数 轮廓算术平均偏差Ra:在取样长度(lr)内轮廓偏距绝对值的算术平均值。在实际测量中,测量点的数目越多,Ra越准确。 轮廓最大高度Rz:轮廓峰顶线和谷底线之间的距离。 在幅度参数常用范围内优先选用Ra。在2006年以前国家标准中还有一个评定参数为“微观不平度十点高度”用Rz表示,轮廓最大高度用Ry表示,在2006年以后国家标准中取消了微观不平度十点高度,采用Rz表示轮廓最大高度。 间距特征参数 用轮廓单元的平均宽度Rsm表示。在取样长度内,轮廓微观不平度间距的平均值。微观不平度间距是指轮廓峰和相邻的轮廓谷在中线上的一段长度。 形状特征参数 用轮廓支承长度率Rmr(c)表示,是轮廓支撑长度与取样长度的比值。轮廓支承长度是取样长度内,平行于中线且与轮廓峰顶线相距为c的直线与轮廓相截所得到的各段截线长度之和。 表面粗糙度(surface roughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。

表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。 表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。一般标注采用Ra。 取样长度 取样长度lr是评定表面粗糙度所规定一段基准线长度。取样长度应根据零件实际表面的形成情况及纹理特征,选取能反映表面粗糙度特征的那一段长度,量取取样长度时应根据实际表面轮廓的总的走向进行。规定和选择取样长度是为了限制和减弱表面波纹度和形状误差对表面粗糙度的测量结果的影响。 评定长度 评定长度ln是评定轮廓所必须的一段长度,它可包括一个或几个取样长度。由于零件表面各部分的表面粗糙度不一定很均匀,在一个取样长度上往往不能合理地反映某一表面粗糙度特征,故需在表面上取几个取样长度来评定表面粗糙度。评定长度ln一般包含5个取样长度lr。 基准线 基准线是用以评定表面粗糙度参数的轮廓中线。基准线有下列两种:

第五讲:粗糙集(Rough Set)

第三节粗糙集(Rough Set,RS) 如果我们将研究对象看成是现象,那么我们可以将这些现象分类。现象被分为确定现象与不确定现象。不确定现象有分为随机现象,模糊现象和信息不全的粗糙现象。如下所示: ? ? ?? ?? ???????? ??∈ 确定现象 随机现象,0-1律,多种可能性满足分布规律。 现象 不确定现象模糊现象,律属度?(0,1),不是非此即彼。 粗糙现象,研究那些因为信息不充分而导致的不确定性 相对于前两种现象的处理,粗糙现象是基于不完全的信息或知识去处理不分明的现象,因此需要基于观测或者测量到的部分信息对数据进行分类,这就需要与概率统计和模糊数学不同的处理手段,这就是粗糙集理论。直观地讲,粗糙集是基于一系列既不知道多了还是少了,也不知道有用还是没用的不确定、不完整乃至于部分信息相互矛盾的数据或者描述来对数据进行分析、推测未知信息。下面我们对粗糙集的基本特征、以及数学符号进行简述。 1.粗糙集的特点 粗糙集的特点是利用不精确、不确定、部分真实的信息来得到易于处理、鲁棒性强、成本低廉的决策方案。因此更适合于解决某些现实系统,比如,中医诊断,统计报表的综合处理等。粗糙集的另一个重要特点就是它只依赖于数据本身,不需要样本之外的先验知识或者附加信息,因此挑选出来的决策属性可以避免主观性,有英雄不问出身的意味。用粗糙集来处理的数据类型包括确定性的、非确定性的、不精确的、不完整的、多变量的、数值的、非数值的。粗糙集使用上、下近似来刻画不确定性,使得边界有了清晰的数学意义并且降低了算法设计的随意性。 3.粗糙集的基本概念 粗糙集要涉及论域U(这与模糊系统相似),还要涉及属性集合R C D = 1

相关文档