文档库 最新最全的文档下载
当前位置:文档库 › 高分子化学知识点总结

高分子化学知识点总结

高分子化学知识点总结
高分子化学知识点总结

第一章 绪论

单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料。

高分子:一个大分子由许多简单的结构单元通过共价键重复键接而成,并具有一定机械性能。 结构单元:在大分子链中出现的以单体结构基础的原子团称为结构单元。

重复单元:大分子链上化学组成和结构均可重复的最小单元,可能与结构单元相同,也可能由2个或多个结构单元组成。

单体单元:与单体中原子种类及个数相同的结构单元,仅电子结构有所变化。 重复单元或结构单元类似大分子链中的一个环节,故俗称链节

由一种单体聚合而成的高分子称为均聚物; 由两种或两种以上的单体聚合而成的高分子则称为共聚物. 结构单元=单体单元=重复单元=链节

聚合度:聚合度是衡量高分子大小的一个指标。 合成尼龙-66具有另一特征:

H 2N(CH 2)6NH 2

+ HOOC(CH 2)4COOH

H--NH(CH 2)6NH--CO(CH 2)4CO--OH

n

(2n-1) H 2O +

结构单元 结构单元 重复结构单元

有两种表示法:[1]以大分子链中的结构单元数目表示,记作:

[2]:以大分子链中的重复单元数目表示,记作:

由聚合度可计算出高分子的分子量: M 是高分子的分子量; M 0 是结构单元的分子量 结构单元=重复单元=链节≠ 单体单元

单体在形成高分子的过程中要失掉一些原子 结构单元 ≠ 重复单元 ≠ 单体单元 重复单元=链节 三大合成材料:橡胶,塑料,纤维

玻璃化温度:聚合物从玻璃态到高弹态的热转变温度。 分子量及其分布

数均分子量:按聚合物中含有的分子数目统计平均的分子量高分子样品中所有分子的总重量除以其分子(摩尔)总数

∑∑∑∑∑∑=

=

=

=i

i

i i

i

i

i

i i

n M

x M W

W

N

M N N W

M )

(

式中,W i ,N i ,M i 分别为i -聚体的重量、分子数、分子量

重均分子量:是按照聚合物的重量进行统计平均的分子量i -聚体的分子量乘以其重量分数的加和

∑∑∑∑∑=

=

=

i

i

i

i

i i i

i

i w M

w M N

M N W

M W M 2

分布指数表示:重均分子量与数均分子量的比值,M w / M n

M w / M n 分子量分布情况

1 均一分布 接近 1 (1.5 ~ 2) 分布较窄

远离 1 (20 ~ 50) 分布较宽 聚合反应

1. 按单体-聚合物结构变化分类

【1】 缩聚 【2】加聚 【3】开环聚合 2. 按聚合机理分类

【1】逐步聚合 【2】连锁聚合(活性种可以是自由基、阴离子、阳离子;过程由链引发、链增长、链终止等基元反应组成)

n x

DP n DP x n ==00M DP M x M n ?=?=

第二章逐步聚合反应

1逐步聚合的基本概念

与连锁聚合不同,逐步聚合的基本特征是聚合度随时间逐步增长,而转化率在聚合初期即可达到很高,因此表现出与连锁聚合完全不同的规律。缩聚反应(绝大部分)

逐步聚合机理

非缩聚型、加聚型聚氨酯的合成、芳核取代制聚砜、氧化偶合制聚苯醚、己内酰胺水催化开环聚合成尼龙-6。2逐步聚合的类型

逐步聚合反应主要有两大类:缩合聚合和逐步加成聚合

(1)缩聚反应

例:聚酯反应:二元醇与二元羧酸、二元酯、二元酰氯等之间的反应。

n H O-R-O H+n H O O C-R’-C O O H====H-(O R O-O C R’C O)n-O H+(2n-1)H2O

聚醚化反应:二元醇与二元醇反应,

n H O-R-O H+n H O-R’-O H====H-(O R-O R’)n-O H+(2n-1)H2O

聚酰胺反应:二元胺与二元羧酸、二元酯、二元酰氯等反应。

n H2N-R-N H2+n C l O C-R’-C O C l====H-(H N R N H-O C R’C O)n-C l+(2n-1)H C l

共同特点:在生成聚合物分子的同时,伴随有小分子副产物的生成,如H2O,H C l,R O H等。

许多特殊结构的聚合物也都是通过缩聚反应制得的。

(2)逐步加成聚合

含活泼氢功能基的亲核化合物与含亲电不饱和功能基的亲电化合物之间的聚合。如:

n O=C=N-R-N=C=O+n H O-R’-O H====

C

O

N R

H

N

H

C

O

O R'O

()n

含活泼氢的功能基:

-N H2,-N H,-O H,-S H,-S O2H,-C O O H,-S i H等

亲电不饱和功能基:主要为连二双键和三键,

如:-C=C=O,-N=C=O,-N=C=S,-C≡C-,-C≡N等

2.2缩聚反应

定义:具有两个或两个以上反应基团的小分子化合物,通过多次缩合反应生成高聚物,并伴随有小分子化合物生成的反应。这种体系包含无数个独立的反应,在研究中通常认为官能团的活性是相同的,与分子链的大小无关。单体常带有各种官能团:-C O O H、-O H、-C O O R、-C O C l、-N H2等

1.缩聚反应单体体系

官能度的概念:是指一个单体分子中能够参加反应的官能团的数目。单体的官能度一般容易判断。个别单体,反应条件不同,官能度不同。例如:苯酚进行酰化反应,官能度为1;与醛缩合,官能度为3

对于不同的官能度体系,其产物结构不同

● 1-n 官能度体系

一种单体的官能度为 1,另一种单体的官能度大于1 ,即 1-1、1-2、1-3、1-4体系,只能得到低分子化合物,属缩合反应。

● 2-2官能度体系 每个单体都有两个相同的官能团。

可得到线形聚合物。如:己二酸与乙二醇的聚合

2 官能度体系 同一单体带有两个不同且能相互反应的官能团,得到线形聚合物。如 n H OR C OOH

H OR C O OH n

(n -1) H 2O +

2-3、2-4官能度体系

如:苯酐和甘油反应、苯酐和季戊四醇反应 体形缩聚物 2.3 线形缩聚反应机理 1. 线型缩聚和成环倾向

双官能度体系的成环反应

2-2或 2 官能度体系是线形缩聚的必要条件,但不是充分条件。 在生成线形缩聚物的同时,常伴随有成环反应。

成环是副反应,与环的大小密切相关 环的稳定性如下: 5, 6 > 7 > 8 ~ 11 > 3, 4

环的稳定性越大,反应中越易成环。 五元环、六元环最稳定,故易形成,

l

成环反应与单体浓度有关

成环是单分子反应,缩聚是双分子反应;低浓度有利于成环,高浓度有利于聚合 。 2. 线型缩聚机理

反应程度:参与反应的基团数占起始基团数的分数。P 表示。可以对任何一种参加反应的官能团而言。 反应程度P 定义为参与反应的基团数(N 0-N )占起始基团数的分率: 反应程度与转化率根本不同 转化率:参加反应的单体量占起始单体量的分数,是指已经参加反应的单体的数目。反应程度:则是指已经反应的官能团的数目。 反应程度与平均聚合度的关系

聚合度是指一个高分子中含有的结构单元的数目

2.4 线型缩聚动力学 1. 官能团等活性理论

缩聚反应在形成大分子的过程中是逐步进行的。若每一步都有不同的速率常数,研究将无法进行 。原先认为,官能团的活性将随分子量增加而递减。F l o r y 提出了官能团等活性理论:不同链长的端基官能团,具有相同的反应能力

001N P N N

N N -

-==

N

N X n 0

大分子数结构单元数目=

001N P N N

N N --==

n

X P 11-

=P

Xn -11=

和参加反应的机会,即官能团的活性与分子的大小无关。

自催化缩聚反应

当二元酸和二元醇中两种基团数量相同,又无外加酸,则氢离子来自于二元酸本身。因此氢离子浓度等于羧基数量,也等于羟基数量。

表明自催化的聚酯反应呈三级反应 分离变量,积分得

引入反应程度 且羧基数用羧基浓度C 代替,得C = C o (1-P )

酸自催化酯化反应慢

外加酸催化缩聚反应

为了加速反应,常外加酸作为聚酯化反应的催化剂。反应速率将由自催化和外加酸催化两项组成:在缩聚过程中,外加酸或氢离子浓度几乎不变,而且远远大于低分子羧酸催化的影响,可以忽略自催化的影响。外加酸催化为二级反应:

将 C = C o (1-P ) 代入上式

平衡缩聚动力学

水未排出时 水部分排出时

2.5 线型缩聚物的聚合

1. 反应程度和平衡常数对聚合度的影响 : 即聚合度随反应程度增大而增大。常见的缩聚产物(如

涤纶、尼龙、聚碳酸酯等)的聚合度一般在100~200,要求反应程度P >0.99。

密闭体系

非密闭体系 当 P → 1 ( > 0.99)时 2. 基团数比对聚合度的影响

反应程度和平衡条件是影响线形缩聚物聚合度的重要因素,但不能用作控制分子量的手段。 引入两种单体的基团数比r ,工业上常用过量摩尔百分比或过量分率q 来分析控制聚合度的条件。

讨论两种极限情况:

当原料单体等当量比时,即 r = 1 或 q = 0 当P =1时,即官能团a 完全反应

3kC

dt dC =-t k C C 21

1202=-01P N N

-=2`C k dt dC =-t k C C `110=-1

`110+=t C k P

-1

`0+=t C k X n ()[]

K P P k dt

dP 221

1--=()[]

K n P P k dt

dP w --2

11=P Xn -11=1

1

1111

+===

K K K P

X n +-

-W

n P K

P Xn =-11 ∴=W

n K

Xn ≈

1

1

∴+q r =)

1(222112/)2(2/)(P q q P r r r

P N N N N N X a b a b a n -++-++-++=

==()P P X n --11

122=

=

q q

r r X n 2

1211≈

=+=

+-'

2a

N N N r +=

a A a 、

b B b 等当量比,另加少量单官能团物质C b 2.6 分子量分布

分子量分布宽度

数均聚合度: 质均聚合度: 分子量分布指数为:

2.7

凝胶化作用和凝胶点

凝胶化现象:在反应的某一阶段,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系逸出,可看到凝胶或不溶性聚合物的明显生成。

凝胶点:开始出现凝胶瞬间的临界反应程度。用P c 表示,此时,X n = 无穷大。是高度支化的缩聚物过渡到体型缩聚物的转折点。 凝胶点的预测

(1) C a r o t h e r s 理论 当反应体系开始出现凝胶时,认为数均聚合度趋于无穷大,然后根据 P -X n 关系式,求出当

X n → ∞ 时的反应程度,即凝胶点P c 。

单体的平均官能度:是指混合单体中平均每一单体分子带有的官能团数。

式中f i 、N i 分别为第i 种单体的官能度和分子数

凝胶点与平均官能度的关系:

出现凝胶化时, C a r o t h e r s 认为 X n → ∞,取极限得

两官能团不等当量:对于两单体官能团不等当量,平均官能度的计算方法是: 用非过量组分的官能团数的二倍除以体系中的分子总数 凝胶点理论小结

1。C a r o t h e r s 法

等当量时

非等当量时

2. F l o r y 法 2.8

逐步聚合的实施方法

欲使线形逐步聚合成功,必须要考虑下列原则和措施: 1) 原料要尽可能纯净;

2) 单体按化学计量配制,加微量单官能团物质或某双官能团单体微过量来控制分子量;

()P NP N x x --11=()2

101P P N N x x --=()0

2

100001N P P N x M N N M x W W x x X --==()2

11P P x W

W x x --=P X n -=11P P X w -+=11

++++=

=b a b b a a i

i

i N N N f N f N

N

f f ∑∑()n

X f f

N f N f f N N N P 222220

00--

-===)11(2n

X f P -=

f

P c 2=

f

P c 2

=

++++=

=

b a b b a a i

i

i N N N f N f N

N

f f ∑∑()c

b a

c c a a N N N f N f N f +++2=

3)尽可能提高反应程度;

4)采用减压或其他手段去除副产物,使反应聚合物方向移动。

逐步聚合的实施方法

熔融缩聚:是单体和聚合产物均处于熔融状态下的聚合反应。是最简单的缩聚方法。只有单体和少量催化剂。优点:产物纯净,分离简单;通常以釜式聚合,生产设备简单;是工业上和实验室常用的方法熔融缩聚在工艺上有以下特点:反应温度高反应时间长,一般都在几个小时以上。

延长反应时间有利于提高缩聚物的分子量。

为避免高温时缩聚产物的氧化降解,常需在惰性气体(N2、C O2)中进行。

为获得高分子量产物,聚合后期一般需要减压,甚至在高真空下进行。

反应完成后,聚合物以粘流状态从釜底流出,制带、冷却、切粒。

溶液缩聚:是单体在溶剂中进行的一种聚合反应。溶剂可以是纯溶剂,也可以是混合溶剂。溶液缩聚是工业生产的重要方法,其规模仅次于熔融缩聚。

溶剂的选择:1.对单体和聚合物的溶解性好;2溶剂沸点应高于设定的聚合反应温度;

3有利于移除小分子:如溶剂与小分子能形成共沸物。

优点:▲反应温度低,副反应少;▲传热性好,反应可平稳进行;

▲无需高真空,反应设备较简单;▲可合成热稳定性低的产品。

缺点:

▲反应影响因素增多,工艺复杂;

▲若需除去溶剂时,后处理复杂:溶剂回收,聚合物的析出,残留溶剂对产品性能的影响等

界面缩聚:是将两种单体溶于两种互不相溶的溶剂中,混合后在两相界面处进行的缩聚反应。

界面缩聚的特点如下:

单体活性高,反应快,可在室温下进行,反应速率常数高达104-105L/m o l.s。

产物分子量可通过选择有机溶剂来控制。

大部分反应是在界面的有机溶剂一侧进行,较良溶剂,只能使高分子级分沉淀。

对单体纯度和当量比要求不严格,反应主要与界面处的单体浓度有关。

原料酰氯较贵,溶剂回收麻烦,应用受限。

固相缩聚:单体或预聚体在固态条件下的缩聚反应。

特点:(1)适用反应温度范围窄,一般比单体熔点低15~30℃;(2)一般采用A B型单体;

(3)存在诱导期;(4)聚合产物的分子量较高;

(5)聚合产物分子量分布比熔融聚合产物宽。

第三章自由基聚合

引言

自由基、阳离子和阴离子的产生:引发剂分解成活性中心时,共价键有两种裂解形式:均裂和异裂。均裂的结果产生两个自由基;异裂的结果形成阴离子和阳离子。

活性中心 :自由基、阴离子和阳离子均有可能作为连锁聚合的活性中心。 一 单体的聚合能力和对不同聚合机理的选择

1 含有1,1-双烷基、烷氧基、苯基和乙烯基的烯烃因推电子能力较强,可进行阳离子聚合。

2阴离子与自由基都是富电性的活性种,因此带吸电子基团的烯类单体易进行阴离子聚合与自由基聚合,如X = -C N ,-C O O R ,-N O 2等;但取代基吸电子性太强时一般只能进行阴离子聚合。如C H 2=C (C N )2

3具有共轭体系的烯类单体:电子云流动性大,易诱导极化,可随进攻试剂性质的不同而取不同的电子云流向,可进行多种机理的聚合反应。因此既可进行自由基聚合,也可进行阴、阳离子聚合。如苯乙烯、 α-苯乙烯、丁二烯、异戊二烯等。 自由基聚合机理

自由基:单电子物质,顺磁性,活性高,具有打开双键的能力。自由基的活性:决定聚合速度 自由基聚合的基元反应:链引发 链增长 链终止 链转移反应 (一)链引发

1、 引发剂I 分解,形成初级自由基 R 。 反应特征:吸热反应,活化能高,反应速率小。

2、 初级自由基与单体加成,形成单体自由基。反应特征:放热反应,活化能低,反应速率大。

(二)链增长:在链引发阶段形成的单体自由基不断地和单体分子结合生成链自由基的过程,实际上是加成反应。 (三)链终止 链终止反应:在一定条件下,增长链自由基失去活性形成稳定聚合物分子的反应。 可分为偶合终止和歧化终止。

(四)链转移反应 链自由基从其它分子上夺取一个原子而终止成为稳定的大分子,而失去原子的分子又成为一个新的自由基,继续新链的增长,使聚合反应继续下去。 引发剂

引发剂的种类(1)偶氮类引发剂

特点:分解反应只形成一种自由基, 无诱导分解; 比较稳定,能单独安全保存; 分解时有N 2逸出 (2) 有机过氧类引发剂 最简单的过氧化物:过氧化氢 过氧化类引发剂的典型代表:过氧化二苯甲酰(B P O )。

C O

O O C

O

2C O

O 2

+CO 2

2

B P O 的分解分两步,第一步分解成苯甲酰自由基,第二步分解成苯基自由基,并放出

C O 2。

(3)无机过氧类引发剂 过硫酸盐 【如过硫酸钾】 水溶性引发剂,主要用于乳液聚合和水溶液聚合。 引发剂分解动力学 研究引发剂浓度与时间、温度间的定量关系。

(1)分解速率常数 引发剂分解属于动力学一级反应,即分解速率R d 与引发剂浓度[I ]的一次方成正比,微分式如

k d —分解速率常数,单位为s -1、m i n -1或h -1

H 3C C CH 3CN N N C CH 3

CH 3

CN H 3C C

CH 3

CN

2+ N 2

偶氮二异丁腈(AIBN)

]

[][I k dt

I d R d

d

=-≡t k I I d -=][]

[ln

t

k d e I I -=][]

[

[I ]0—引发剂的起始浓度,[I ] —时间为t 时的引发剂浓度,单位为m o l /L (2)半衰期 半衰期— 指引发剂分解至起始浓度一半所需的时间, 以t 1/2表示,单位通常为h 。

分解速率常数和半衰期是表示引发剂活性的两个物理量,分解速率常数愈大,或半衰期愈

短,引发剂的活性愈高。

引发剂效率:引发剂效率 f — 引发聚合的部分引发剂占引发剂分解或消耗总量的分率。 诱导分解实际上是自由基向引发剂的转移反应。尤其是过氧化合物引发剂。

笼蔽效应—当体系中引发剂浓度较低时,引发剂分子处于单体或溶剂的包围中而不能发挥作用, 引发剂的选择

(1)首先根据聚合方法选择引发剂类型。

本体、悬浮和溶液聚合:选用油溶性引发剂 乳液聚合和水溶液聚合:选用水溶性引发剂

(2)根据聚合温度选择活化能或半衰期适当的引发剂,使自由基形成速率和聚合速率适中。引发剂在不同温度下有不同的半衰期。半衰期过长,分解速率低,聚合时间长;半衰期过短,则引发剂在早期大量分解,易引起爆聚,后期则无足够的引发剂维持适当的聚合速率。 (3)其他 毒性、使用场合、产品质量、安全生产

聚合速率 聚合动力学研究的主要内容 自由基聚合微观动力学

链引发 引发速率一般仅决定于初级自由基的生成速率,而与单体浓度无关。 引发速率(即初级自由基的生成速率)R i :R i = d [R .] / d t = 2 f k d [I ]

I — 引发剂;M — 单体;R .— 初级自由基;k — 速率常数。[ ]— 浓度;d — 分解i — 引发 链增长

推导自由基聚合动力学的假定:链自由基的活性与链长基本无关,各步速率常数相等, k P 1=k P 2=k P 3=k P 4= … k P x = k P

链终止 偶合终止:M x +M y k tc

M x+y

R tc = 2k tc [M ]2

歧化终止:。。。

d

d k k t 693.02ln 2

/1==∑==-=]

[M][M k ][RM [M]k )dt d[M](R .

p

.

i

p

p p

高分子材料化学重点知识点总结只是分享

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

化学与生活知识点总结

化学与生活知识点总结 专题一洁净安全的生存环境 第一单元空气质量的改善 一、空气质量报告 (一)、空气质量评价包括:二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物 空气污染指数:根据空气中二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物等污染物的浓度计算出来的数值。首要污染指数即位该地区的空气污染指数 (二)、大气主要污染物及其危害 1、温室效应 (1)原因:①全球化石燃料用量猛增排放出大量的CO2;②乱砍乱伐导致森林面积急剧减少,吸收CO2能力下降。 2、主要危害:(1)冰川熔化,使海平面上升(2)地球上的病虫害增加(3)气候反常,海洋风暴增多(4)土地干旱,沙漠化面积增大。 3、控制温室效应的措施 (1)逐步调整能源结构,开发利用太阳能、风能、核能、地热能、潮汐能等,减少化石燃料的燃烧;(2)进一步植树造林、护林、转化空气中的CO2 2、酸雨 (1)原因:酸性氧化物(SO2、NO2)SO2+H2O H2SO3 2H2SO3+O2==2H2SO4(2)防止方法:①开发新能源(太阳能、风能、核能等)②减少化石燃料中S的含量 钙基脱硫CaCO3==CaO+CO2CaO+SO2==CaSO3 2CaSO3+O2==2CaSO4 ③吸收空气中的SO2④加强环保教育 3、机动车尾气污染:尾气净化装置2NO+2CO N2+2CO2 4、CO 能和人体的血红蛋白结合使能中毒 5、可吸入颗粒物:静电出尘 6、居室空气污染物:甲醛、苯及其苯的同系物、氡等 危害:甲醛对人体健康的影响(肝功能异常等) 7、白色污染的危害:①破坏土壤结构②降低土壤肥效③污染地下水④危及海洋生物的生存第二单元水资源的合理利用

高分子化学与物理实验指导书总结

高分子化学与物理实验指导书

1. 实验课时间安排 高分子化学实验是在学生主修《高分子化学与物理》课程基础上开设的。其中学时安排如下: 2. 预习情况检查方式 要求学生在实验前必须做好实验预习,否则不予参加实验。实验预习主要包括以下两个方面的内容: 1、检查实验预习报告(预习报告要求包括实验目的、实验原理、实验所需仪器及药品、实验步骤等) 2、老师在实验前要检查学生的实验预习情况,可采取口头提问的方式了解学是对实验的预习情况。 3. 相关知识的讲解 针对高分子化学开设的不同实验,指导教师要做好相关的讲解工作。主要包括:实验一甲基丙烯酸甲酯的本体聚合 实验二酚醛树脂的缩聚 实验三PP球晶观察 实验四PS粘均分子量测定

实验一甲基丙烯酸甲酯的本体聚合 一、实验目的 1. 掌握自由基本体聚合的原理及合成方法; 2. 了解有机玻璃的生产工艺。 二、实验原理 聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃。有机玻璃广泛用在工业、农业、军事、生活等的各个领域,如飞机、汽车的透明窗玻璃、罩盖等。在建筑、电气、医疗卫生、机电等行业也广泛使用,如制造光学仪器、电器、医疗器械、透明模型、装饰品、广告铭牌等。每年全世界要消耗数以百万吨的有机玻璃及其制品。 工业上制备有机玻璃主要采用本体、悬浮聚合法,其次是溶液和乳液法。而有机玻璃的板、棒、管材制品通常都用本体浇铸聚合的方法来制备。如果直接做甲基丙烯酸甲酯的本体聚合,则由于发热而产生气体只能得到有气泡的聚合物。如果选用其它聚合方法(如悬浮聚合等)由于杂质的引入,产品的透明度都远不及本体聚合方法。因此,工业上或实验室目前多采用浇注方法。即:将本体聚合迅速进行到某种程度(转化率 10% 左右)做成单体中溶有聚合物的粘稠溶液(预聚物)后,再将其注入模具中,在低温下缓慢聚合使转化率达到 93 ~ 95% 左右,最后在 100 ℃下聚合至反应完全。其反应方程式如下: 本实验采用本体聚合法制备有机玻璃。本体聚合是在没有介质存在的情况下进行的聚合反应,体系中可以加引发剂,也可以不加引发剂。按照聚合物在单体中的溶解情况,可以分为均相聚合和多相聚合两种:聚合物溶于单体,为均相聚合,如甲基丙烯酸甲酯,苯乙烯等的聚合;聚合物不溶于单体,则为多相聚合,如氯乙烯,丙烯腈的聚合。 本体聚合中因为体系中无介质存在,反应是粘度不断增大,反应热不容易排出,局部容易过热,导致单体气化或聚合物裂解,结果产品内有气泡或空心。在甲基丙烯酸甲酯聚合过程中甚至会使反应进入爆炸聚合阶段(爆聚),所以反应必须严格控制温度。

高分子化学重点

第一章 绪论 单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料。 高分子:一个大分子由许多简单的结构单元通过共价键重复键接而成,并具有一定机械性能。 结构单元:在大分子链中出现的以单体结构基础的原子团称为结构单元。 重复单元:大分子链上化学组成和结构均可重复的最小单元,可能与结构单元相同,也可能由2个或多个结构单元组成。 单体单元:与单体中原子种类及个数相同的结构单元,仅电子结构有所变化。 重复单元或结构单元类似大分子链中的一个环节,故俗称链节 由一种单体聚合而成的高分子称为均聚物; 由两种或两种以上的单体聚合而成的高分子则称为共聚物. 结构单元=单体单元=重复单元=链节 聚合度:聚合度是衡量高分子大小的一个指标。 合成尼龙-66具有另一特征: H 2N(CH 2)6NH 2 + HOOC(CH 2)4COOH H--NH(CH 2)6NH--CO(CH 2)4CO--OH n (2n-1) H 2O + 结构单元 结构单元 重复结构单元 有两种表示法:[1]以大分子链中的结构单元数目表示,记作: [2]:以大分子链中的重复单元数目表示,记作: 单元的分子量 结构单元=重复单元=链节1 单体单元 单体在形成高分子的过程中要失掉一些原子 结构单元 1 重复单元 1 单体单元 重复单元=链节 三大合成材料:橡胶,塑料,纤维 玻璃化温度:聚合物从玻璃态到高弹态的热转变温度。 分子量及其分布 数均分子量:按聚合物中含有的分子数目统计平均的分子量高分子样品中所有分子的总重量除以其分子(摩尔)总数 ∑∑∑∑∑∑= = = =i i i i i i i i i n M x M W W N M N N W M ) ( n x DP n DP x n ==

高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格) 高吸油树脂类型及制备方法:(1)聚丙烯酸酯类(2)聚烯烃类树酯(3)丙烯酸酯和烯烃共聚物(4)聚氨酯吸油泡沫

高分子化学概念总结

高分子化学试题 目录 高分子化学试题 (1) 一、名词解释 (1) 第一章绪论(Introduction) (1) 第二章自由基聚合(Free-Radical Polymerization) (4) 第三章自由基共聚合(Free-Radical Co-polymerization) (9) 第四章聚合方法(Process of Polymerization) (11) 第五章离子聚合(Ionic Polymerization) (12) 二、填空题 (15) 一、名词解释 第一章绪论(Introduction) 高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯 重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。

聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量 (Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。 重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。 分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数(Distribution Index) :重均分子量与数均分子量的比值,用来表征分子量分布的宽度或多分散性。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。

(完整版)高分子化学重点

1.解释重复单元,结构单元,单体单元,单体含义 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子化合物 重复单元:重复组成高分子分子结构的最小的结构单元。 结构单元:构成高分子主链结构组成的单个原子或原子团。 单体单元:高分子分子结构中由单个单体分子衍生而来的 最大的结构单元 2 聚合度:单个聚合物分子中所含单体单元的数目。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以D P 表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以X n 表示 3 阻聚常数即阻聚剂的链转移常数,C s =K t r /K p 4.半衰期:指引发剂分解至起始浓度一半所需时间 5.凝胶点:开始出现凝胶瞬间的临界反应程度 6.凝胶现象:在交联逐步聚合反应过程中,随着聚合反应的进行,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系中逸出,可看到凝胶或不溶性聚合物明显生成的实验现象 7.自动加速效应竞聚率:随着聚合反应的进行,单体转化率(c %)逐步提高,【I 】【M 】逐渐下降,聚合反应速率R p 理应下降,但在许多聚合体系中,R p 不但不下降,反而显著升高,这种现象是没有任何外界因素影响,在反应过程中自动发生的,因而称为自动加速现象;是指聚合反应中期,反应速率自动增加的现象。 8.竞聚率:同一种自由基均聚和共聚链增长速率常数之比,r 1=k 11/k 12 r 2=k 22/k 21 9.乳液聚合:单体在水中分散成乳液状态的聚合。体系有单体、水、水溶性引发剂、水溶性乳化剂组成。 10.引发剂:通常是一些可在聚合温度下具有适当的分解速率,生成自由基,并能引发单体聚合的化合物。 11.胶束:表面活性剂在溶液中的浓度达到某一临界值,如果浓度继续增加,表面活性剂分子中的长链亲油基团通过分子间吸引力相互缔合,自身相互抱成团,而亲水基团则伸向水中,与水分子结合形成聚集体,即胶束。 12.配位聚合:是指采用金属有机化合物与过渡金属化合物的络合体系作为引发剂的聚合反应。 13.交联:是使线型聚合物转化成为具有三维空间网状结构、不溶不熔的聚合物过程。 14.逐步聚合 :通常是由单体所带的两种不同的官能团之间发生化学反应而进行的。 15.时温等效原理 16.缩聚反应:带有两个或者两个以上官能团的单体之间连续、重复进行的缩合反应,称为缩合聚合反应,即缩聚反应。 17.数均分子量:聚合物中用不同分子量的分子数目统计的平均分子量。 18诱导期:在聚合反应初期,引发剂分解产生的初级自由基首先被体系中杂质消耗,使聚合反应速率实际为零,故此阶段称为诱导期 19阻聚剂:能与链自由基反应生成非自由基或不能引发单体聚合的低活性自由基而使聚合反应完全停止的化合物。 20 链转移速率常数是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。向单体的链转移常数p M tr M k k C , 21 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大。通常没有小分子副产物生成。 22 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 简答题 1.逐步聚合的实施方法 有熔融聚合、溶液聚合、界面缩聚、固相缩聚等 (1)熔融缩聚是单体和聚合产物均处于熔融状态下的聚合反应。是最简单的缩聚方法。只有单体和少量催化剂。优点:产物纯净,分离简单;通常以釜式聚合,生产设备简单;是工业上和实验室常用的方法。 (2)溶液缩聚是单体在溶剂中进行的一种聚合反应.溶剂可以是纯溶剂,也可以是混合溶剂.所用的单体一般活性较高,聚合温度可以较低,副反应也较少。用于一些耐高温高分子的合成,如聚砜、聚酰亚胺聚苯醚 (3)界面缩聚是将两种单体溶于两种互不相溶的溶剂中,混合后在两相界面处进行的缩聚反应。单体活性高,反应快,可在室温下进行;产物分子量可通过选择有机溶剂来控制;对单体纯度和当量比要求不严格,反应主要与界面处的单体浓度有关;原料酰氯较贵,溶剂回收麻烦,应用受限。 (4) 固相缩聚是在玻璃化温度以上、熔点以下的固态所进行的缩聚。它是上述三种方法的补充。 2.连锁聚合和逐步聚合的三个主要区别 答(1)增长方式:连锁聚合总是单体与活性种反应,逐步聚合是官能团之间的反应,官能团可以来自于单体、低聚体、多聚体、大分子 (2)单体转化率:连锁聚合的单体转化率随着反应的进行不断提高,逐步聚合的单体转换率在反应的一开始就接近100% (3)聚合物的分子量:连锁聚合的分子量一般不随时间而变,逐步聚合的分子量随时间的增加而增加。 3 控制线性缩聚反应的分子量可以采取什么措施? 因为缩聚物的分子两端仍保留着可继续反应的官能团,因此控制聚合物反应的分子量可以采取端基封锁的控制方法:在两官能团等当量的基础上使某官能团稍过量或加入少量单官能团物质。官能团的极少过量,对产物分子量就有显著影响;在线形缩聚中,要得到高分子量,必须保持严格的等当量比。

高分子化学复习题答案资料

答案大部分都是在网上或者书上找到的,少数自己总结的,不能确保百分之百正确,仅供 参考,如发现错误和遗漏之处,请大家指出! 计算题第二题方法应该没错,答案有保留小数方面的问题,如果有人找到正确的解答欢迎 补充。 一、名词解释 1. 凝胶化现象:多官能团单体聚合到某一程度,开始交联,粘度突增,气泡也难上升的现象。 2. 多分散性:合成聚合物总是存在一定的分子量分布,常称作多分散性。 3. 玻璃化温度:非晶态热塑性聚合物在玻璃态下受热转变成高弹态时的转变温度。 4. 自由基聚合:自由基成为活性种,打开烯类的n键,弓I发聚合,成为自由基聚合。| 5. 胶束成核:难溶于水的单体其短链自由基只增长少数单元(<4),就被沉析出来,与初级自由基一起 被增溶胶束捕捉,引发其中的单体聚合而成核,即所谓胶束成核。 6. 力口聚:稀类单体n键断裂而后加成聚合起来的反应。 7. 缩聚反应:是官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、氨或氯化氢等低分子副产 物产生。 8. 接枝共聚物:主链由某一种单元组成,支链则由另一种单元组成。 9. 竞聚率:是指单体均聚和共聚链增长反应速率之比。 10. 均相成核:溶于水中的单体引发聚合形成短链自由基,多条这样亲水性较大、链较长的短链自由基 相互聚集在一起,絮凝成核的现象。 11. 定向聚合:定向聚合指单体经过定向配位、络合活化、插入增长等形成立构规整(或定向)聚合物 的过程 12. 开环聚合:环状单体b -键断裂而后开环、形成线性聚合物的反应,称作开环聚合。 13. 共聚合:由两种或两种以上单体共同聚合,生成同一分子中含有两种或两种以上单体单元的聚合物的反应。 14. 化学计量聚合 :阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计 量聚合。 15. 嵌段共聚物:是将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物,每 一锻炼可长达至几千结构单元。

高分子化学复习简答题(四)---自由基共聚合(精)

高分子化学复习简答题(四)---自由基共聚合 学校名称:江阴职业技术学院 院系名称:化学纺织工程系 时间:2017年3月10日

1、根据预聚物性质与结构不同预聚物分为那几种? 答:根据预聚物性质与结构不同分为:无规预聚物和结构预聚物。 2、写出二元共聚物组成微分方程并讨论其适用的范围? 答:21112 122 1112222r f f f F r f f f r f +=++, (或d[M 1]/d[M 2]=[M 1]/[M 2]·{r 1[M 1]+[M 2]}/{r 2[M 2]+[M 1]}) 1122121221 ,k k r r k k = = 使用范围:适用于聚合反应初期,并作以下假定。 假定一:体系中无解聚反应。 假定二:等活性。自由基活性与链长无关。 假定三:无前末端效应。链自由基前末端(倒数第二个)单体单元对自由基 活性无影响 假定四:聚合度很大。引发和终止对聚合物组成无影响。 假定五:稳态假定。体系中总自由基浓度和两种自由基浓度都不变 3、什么叫交替共聚物?要制备交替共聚物,对单体的结构有何要求?(2分) 答:两种结构单元交替排列的共聚物。 两个单体双键的电子密度大小相差得越大越有利于交替共聚。 4、什么叫嵌段共聚物?用自由基聚合制备嵌段共聚物,对单体的竞聚率r 1、r 2有什么要求? 答:各种单体容易自增长,形成M 1一大段、M 2一大段的共聚物 r 1>1;r 2>1

5、按照大分子链的微观结构分类,共聚物分几类?它们在结构上有何区别?各如何制备? 答:共聚物分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物四种。 无规共聚物中两种单体单元无规排列,M 1、M 2 连续的单元数不多;交替共聚 物中M 1、M 2 两种单体单元严格相间排列;嵌段共聚物由较长的M 1 链段和另一较长 的M 2 链段构成的大分子;接枝共聚物主链由一种(或两种)单体单元构成,支链由另一种(或另两种)单体单元构成。 无规共聚物、交替共聚物可由自由基共聚合制备;嵌段共聚物可由阴离子聚合制备;接枝共聚物可由聚合物的化学反应制备。 6、甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、马来酸酐、醋酸乙烯、丙烯腈等单体分别与丁二烯共聚,试以交替倾向的次序排列上述单体,并说明原因。 答: 根据r 1r 2 乘积的大小,可以判断两种单体交替共聚的倾向。即r 1 r 2 趋向于0 , 两单体发生交替共聚;r1r2越趋于零,交替倾向越大。根据单体的r 1、r 2 和r 1 r 2 值上述各单体与丁二烯产生交替共聚的次序为:马来酸酐>丙烯腈>丙烯酸甲酯>甲基丙烯酸甲酯>醋酸乙烯>苯乙烯。 直线性和支链形高分子靠范德华力聚集在一起, 分子间力较弱.宏观物理性质表现为密度小、强度低.聚合物具有热塑性, 加热可融化, 在溶剂中可溶解. 其中支链形高分子由于支链的存在使分子间距离较直线形的大, 故各项指标如结晶度、密度、强度等比直线形的低,而溶解性能更好, 其中对结晶度的影响最为显著。

高分子化学知识总结

一、绪论 1.聚合物的分类及命名可按来源、合成方法、用途、热行为、结构等来分类,主要是按主链结构来分类,分为:(1)碳链聚合物,(2)杂链聚合物,(3)元素有机聚合物; 2.聚合物的命名 (1)单体来源命名法 烯类聚合物单体名前加“聚”; 两种单体合成的,取二者简名加后缀“树脂”“橡胶”; 杂链聚合物按其特征结构命名; *有些聚合物按单体名来命名容易引起混淆,例如[]22OCH CH --,可以从环氧乙烷、乙二醇、氯丙醇或氯甲醚来合成,因为环氧乙烷单体最常用,故通常称作聚环氧乙烷,按结构该聚合物应称作聚氧乙烯。 (2)系统命名法 命名原则和程序:先确定重复单元结构,再排好其中次级单元次序,给重复单元命名,最后冠以“聚”字,就成为聚合物的名称。写次级单元时候,先写侧基最少的元素,再写有取代的亚甲基,然后写无取代的亚甲基。 3.聚合反应 (1)按单体-聚合物结构变化分类 缩聚 官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、 氨或氯化氢等低分子产物产生 加聚 烯类单体π键断裂而后加成聚合起来的反应称作加聚,产物称作加聚 物。加聚物结构单元的元素组成与其单体相同,仅仅是电子结构有所变化,因此加聚物的分子量是单体分子量的整数倍 开环聚合 环状单体σ键断裂而后聚合成线形聚合物的反应,反应时无低分子副 产物产生 (2)按聚合物机理分类 逐步聚合 多数缩聚和聚加成反应属于逐步聚合,其特征是低分子转变成高分 子是缓慢逐步进行的,每步反应的速率和活化能大致相同,单体分子首先聚合成二、三、四具体等低聚物(齐聚物),短期内单体转化率很高,随后,低聚物间相互缩聚分子量缓慢增加,直至集团反应程度很高分子量才达到较高的数值 *连锁聚合 多数烯类单体的加聚反应属于连锁聚合。有自由基、阴离子或阳离 子聚合,自由基聚合过程中,分子量变化不大,除微量引发剂外,体系始终由单体和高分子量聚合物组成,没有分子量递增的中间产物,转化率随时间而增大,单体则相应减少。活性阴离子聚合的特征是分子量随转化率的增大而线性增加。 4.分子量是影响强度的重要因素,聚合物强度随着分子量的增大而增加。 5.平均分子量 (1)数均分子量n M (通常由渗透压,蒸汽压等依数性方法测定)定义:某 体系的总质量m 被分子总数所平均。

高分子化学心得体会

高分子化学心得体会 在未学习高分子化学以前,对高分子化合物的认识停留在涤纶、橡胶、纤维、树脂等这一些常见的化合物上,对高分子化学的认知就是我们有机化学所讲述的聚合物之间的加成、缩聚之类。学习了高分子化学之后,让我了解到现在的高分子科学的研究十一高分子化学为基础,研究高分子化合物的分子设计、合成及改性等,为高分子科学研究提供新生化合物、为国民经济提供新材料及合成方法。而高分子科学的发展由三大合成材料(塑料、合成橡胶和合成纤维)到了精细高分子、功能高分子、生物医学高分子等领域。下面我就本学期以来自己对高分子化学主要内容的学习的心得体会做一简单地总结。 一、对高分子化合物的基本认识 1、高分子化合物的定义及特点 所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在10000以上的化合物。所谓“相对分子质量在10000以上”其实只是一个大概的数值。对于不同种类的高分子化合物而言,具备高分子材料特殊物性所必需的相对分子质量下限各不相同,甚至相去甚远。 高分子化合物的基本特点主要表现在4个方面:a.相对分子质量很大,而且具有多分散性,一般高分子化合物实际上都是由相对分子质量大小不等的同系物组成的混合物,其相对分子质量具有统计平均意义;b.化学组成比较简单,分子结构有规律;c.分子形态多种多样;d.物性迥异于低分子同系物,尤其是具有黏弹性。 2、高分子化合物的分类 A.按照来源分类 可分为天然高分子和合成高分子两大类。天然高分子如云母、石棉、石墨、蛋白质、淀粉、纤维素、核糖核酸(RNA)、脱氧核糖核酸(DNA)等;合成高分子如聚乙烯、尼龙-66、涤纶等。 B.按材料用途分类 可分为塑料、橡胶、纤维、涂料、胶黏剂和功能高分子等6大类。 C.按主链元素组成分类 a.碳链高分子(主链完全由碳原子组成。如聚乙烯); b.杂链高分子(主链除碳原子

完整高分子化学知识点

2.名词解释 交替共聚物:两种单体在大分子链上严格交替相间排列。 嵌段聚合:两种或两种以上单体分别聚合成链节(或链段)生成嵌段共聚物的一类共聚合反应。活性聚合:阴离子聚合由链引发、链增长和链终止三个基元反应组成,如聚合体系纯净、无质子供体,阴离子聚合可控制其终止反应,这种无终止;无链转移的聚合反应即为活性聚合。特征为(1)无链终止;(2)无链转移;(3)引发反应比增长反应快,反应终了时聚合链仍是活的。 异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。反应程度:高分子缩聚反应中用以表征高分子聚合反应反应深度的量。计算方法为参加反应的官能团数占起始官能团数的比例。 转化率:进入共聚物的单体量占起始单体量M的百分比。笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。 诱导分解:诱导分解(Induced Decomposition)自由基向引发剂转移的反应为诱导分解。自由基发生诱导分解反应将使引发剂的效率降低,同时也使聚合度降低平均官能度:有两种或两种以上单体参加的混缩聚或共缩聚反应中在达到凝胶点以前的线形缩聚阶段,反应体系中实际能够参加反应的官能团数与单体总物质的量之比。(每一份子平均带的官能度) 凝胶点:开始出现凝胶瞬间的临界反应程度Pc。高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。 配位聚合:单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)链中增长形成大分子的过程。这种聚合本质上是单体对增长链Mt-R键的插入反应,所以又称为插入聚合。(配位聚合具有以下特点:活性中心是阴离子性质的,因此可称为配位阴离子聚合;单体π电子进入嗜电子金属空轨道,配位形成π络合物;π络合物进一步形成四圆环过渡态;单体插入金属-碳键完成链增长;可形成立构规整聚合物。配位聚合引发剂有四种:Z-N催化剂;π烯丙基过渡金属型催化剂;烷基锂引发剂;茂金属引发剂。其中茂金属引发剂为新近的发展,可用于多种烯类单体的聚合,包括氯乙烯。) 线形缩聚:是两种或者以上的双官能团单体聚合最终生成物是长链的线性大分子 理想衡比共聚:不论单体配比和转化率如何,共聚物组成总是与单体组成完全相等,共聚物组成曲线是一条对角线。 动力学链长:是指活性中心(自由基)从产生到消失所消耗的单体数目 立构规整度:是立构规整聚合物占总聚合物的分数,是评价聚合物性能、引发剂定向聚合能力的一个重要指标。 降解:大分子分解成较小的分子。(分子量变小的反应) 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。PMA聚丙烯酸甲酯PAN 聚丙烯腈PTFE 聚四氟乙烯 SMA 苯乙烯-马来酸酐(顺丁烯二酸酐)AIBN 偶氮二异丁腈ABVN 偶氮二亿庚腈BPO 过氧化二苯甲酰PP 聚丙烯 PS 聚苯乙烯PMMA 聚甲基丙烯酸甲酯PVA 聚乙烯醇PAN 聚丙烯晴PET 聚酯PA66 6 尼龙66PA6 尼龙. PET:聚对苯二甲酸乙二醇酯PVAc聚醋酸乙烯酯ABS 丙烯醇-丁二烯-苯乙烯共聚物3影响线形缩聚聚合物的分子量因素答:反应程度,平衡常数,。Xn=1/1-p=√k+1;

高分子化学知识总结

二、缩聚和逐步聚合 2.2 缩聚反应(缩聚反应是缩合聚合的简称,是多次缩合重复结果形成缩聚物 的过程) (1) 缩合反应 *官能度:一分子中能参与反应的官能团数称作官能度(f );考虑官能度时需以参与的反应集团为基准。 (2)缩合反应 线形缩聚的首要条件是需要2-2或2-官能度体系作原料,采用2-3或2-4官能度体系是,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构,这就称作体形缩聚。 (3) 共缩聚 羟基酸或氨基酸一种单体的缩聚,可称作均缩聚;由二元酸和二元醇2种单体进行的缩聚是最普通的缩聚;从改进缩聚物结构性能角度考虑,将1种二元酸和2种二元醇、2种二元酸和2种二元醇进行所谓“共缩聚”。 2.3 线形缩聚反应的机理 2.3.1 线形缩聚和成环倾向 *线形缩聚时,需考虑单体及其中间产物的成环倾向,一般情况下,五、六元环的结构比较稳定。 *成环是单分子反应,缩聚则是双分子反应,因此,低浓度有利于成环,高浓度有利于线形缩聚。 2.3.2 线形缩聚机理 (特征有2:逐步、可逆) (1)逐步特性 缩聚反应无特定的活性种,各步反应速率常数和活化能基本相等,缩聚早期,转化率就很高,因此用基团的反应程度来表述反应的程度更为确切,现已等摩尔二元酸和二元醇的缩聚反应为例来说明 *反应程度p 的定义为参与反应的基团数(0N N -)占起始基团数0N 的分数,因此: 0001N N N p N N -==- *如将大分子的结构单元数定义为聚合度n X ,则: 0n N X N ==结构单元总数大分子数 进一步可得 11n X p =-; (2) 可逆平衡 聚酯化和低分子酯化反应相似,都是可逆平衡反应,正反应是酯化,逆反应是水解。 *平衡常数小,低分子副产物水的存在限制了分子量的提高,需在高度减压条件下脱除; *平衡常数中等,300—400;水对分子量有所影响,聚合早期可在水中进行,只是后期,需要在一定的减压条件下脱水,提高反应程度; *平衡常数很大,K>1000;可以看作不可逆。 2.3.3 缩聚中的副反应 (1)消去反应; 影响产物的分子量

最新-潘祖仁第五版高分子化学知识点 精品

潘祖仁第五版高分子化学知识点 篇一:高分子化学第五版潘祖仁第一章思考题1举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。 答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。 在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。 在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。 如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。 以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以表示。 2举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。 聚合物()可以看作是高分子()的同义词,也曾使用的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。 多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

有机化学知识点总结归纳(全)

催化剂 加热、加压 有机化学知识点归纳 一、有机物的结构与性质 1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。 2、常见的各类有机物的官能团,结构特点及主要化学性质 (1)烷烃 A) 官能团:无 ;通式:C n H 2n +2;代表物:CH 4 B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C 原子的四个价键也都如此。 C) 物理性质:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。 一般地,C1~C4气态,C5~C16液态,C17以上固态。 2.它们的熔沸点由低到高。 3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。 4.烷烃都不溶于水,易溶于有机溶剂 D) 化学性质: ①取代反应(与卤素单质、在光照条件下) , ,……。 ②燃烧 ③热裂解 C 16H 34 C 8H 18 + C 8H 16 ④烃类燃烧通式: O H 2 CO O )4(H C 222y x y x t x +++????→?点燃 ⑤烃的含氧衍生物燃烧通式: O H 2 CO O )24(O H C 222y x z y x z y x +-+ +????→?点燃 E) 实验室制法:甲烷:3423CH COONa NaOH CH Na CO +→↑+ 注:1.醋酸钠:碱石灰=1:3 2.固固加热 3.无水(不能用NaAc 晶体) 4.CaO :吸水、稀释NaOH 、不是催化剂 (2)烯烃: A) 官能团: ;通式:C n H 2n (n ≥2);代表物:H 2C=CH 2 B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。 C) 化学性质: CH 4 + Cl 2CH 3Cl + HCl 光 CH 3Cl + Cl 2 CH 2Cl 2 + HCl 光 CH 4 + 2O 2 CO 2 + 2H 2O 点燃 CH 4 C + 2H 2 高温 隔绝空气 C=C 原子:—X 原子团(基):—OH 、—CHO (醛基)、—COOH (羧基)、C 6H 5— 等 化学键: 、 —C ≡C — C=C 官能团 CaO △

高分子化学复习简答题(七)---聚合物的化学反应(精)

高分子化学复习简答题(七)---聚合物的化学反应 学校名称:江阴职业技术学院 院系名称:化学纺织工程系

时间:2017年3月10日

1.聚合物化学反应有哪两种基本类型? 答:(1)相对分子质量基本不变的反应,通常称为相似转变。仅限于侧基或端基反应等。 (2). 相对分子质量变大变小的反应, 如交联、接枝、嵌段、扩链、降解、老化等. 2、简述聚合物老化的原因。 答:聚合物或其制品在使用或贮存过程中, 由于环境的影响,其性能逐渐变坏(变软发黏或变硬变脆)的现象统称为聚合物的老化. 导致老化的原因主要是力、光、热、氧、潮气、霉及化学试剂的侵蚀等许多因素的综合作用。 3、有些聚合物老化后龟裂变黏, 有些则变硬发脆。这是为什么? 答:聚合物老化后降解为较低相对分子质量产物时则变粘。聚合物老化后分子间发生交联时则易变硬发脆。 4、聚合物降解有几种类型?热降解有几种情况? 答:聚合物的降解有热降解、机械降解、超声波降解、水解、化学降解、生化降解、光氧化降解、氧化降解等。 热降解有解聚、无规断链和取代基的消除反应等。 5、简要说明物理因素(结晶度、溶解性、温度)对聚合物化学反应的影响。 答:(1)结晶性:对于部分结晶的聚合物而言,由于在其结晶区域(即晶区)分子链排列规整,分子链间相互作用强,链与链之间结合紧密,小分子不易扩散进晶区,因此反应只能发生在非晶区; (2)溶解性:聚合物的溶解性随化学反应的进行可能不断发生变化,一般溶解性好对反应有利,但假若沉淀的聚合物对反应试剂有吸附作用,由于使聚合物上的反应试剂浓度增大,反而使反应速率增大; (3)温度:一般温度提高有利于反应速率的提高,但温度太高可能导致不期望发生的氧化、裂解等副反应。

高分子化学知识点总结

第一章绪论 1.1 高分子的基本概念 高分子化学:研究高分子化合物合成与化学反应的一门科学。 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 端基:连接在主链末端原子上的原子或原子集合。 重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。 结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 聚合反应:由低分子单体合成聚合物的反应。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 1.2 高分子化合物的分类 1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。④无机高分子:主链与侧链均无碳原子的高分子。 2)按用途分可分为:塑料、橡胶、纤维三大类,如果再加上涂料、粘合剂和功能高分子则为六大类。塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。橡胶:具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。纤维:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 3)按来源分可分为:天然高分子、合成高分子、半天然高分子(改性的天然高分子) 4)按分子的形状分:线形高分子、支化高分子、交联(或称网状)高分子 5)按单体分:均聚物、共聚物、高分子共混物(又称高分子合金) 6)按聚合反应类型分:缩聚物、加聚物 7)按热行为分:热塑性聚合物:聚合物大分子之间以物理力聚集而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分

相关文档
相关文档 最新文档