文档库 最新最全的文档下载
当前位置:文档库 › 第六章 自相关1

第六章 自相关1

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

相关性平均值标准差相关系数回归线及最小二乘法概念

平均值、标准差、相关系数、回归线及最小二乘法相关性 线性相关 数据在一条直线附近波动,则变量间是线性相关 非线性相关 数据在一条曲线附近波动,则变量间是非线性相关 不相关 数据在图中没有显示任何关系,则不相关 平均值 N个数据的平均值计算公式: 标准差 标准差表示了所有数据与平均值的平均距离,表示了数据的散度,如果标准差小,表示数据集中在平均值附近,如果标准差大则表示数据离标准差比较远,比较分散。标准差计算公式: x、y两个变量组成了笛卡尔坐标系中的一 坐标(x,y),这个坐标标识了一个点的位置。 个 各包含n个常量的X,Y两组数据在笛卡尔坐标系中以n个点来进行表示。 相关系数 相关系数用字母r来表示,表示两组数据线性相关的程度(同时增大或减小的程度),从另一方面度量了点相对于标准差的散布情况,它没有单位。包含n个数值的X、Y两组数据的相关系数r的计算方法: 简单的说,就是r=[(以标准单位表示的x )X(以标准单位表示的y )]的平均数 根据上面点的定义,将X、Y两组数据的关系以点的形式在笛卡尔坐标系中画出,SD线表示了经过中心点(以数据组X、Y平均值为坐标的点),当r>0时,斜率=X的标准

差/Y的标准差;当r<0时,斜率=-X的标准差/Y的标准差;的直线。通常用SD线来直观的表示数据的走向: 1、当r<0时,SD线的斜率小于0时,则说明数据负相关,即当x增大时y减少。 2、当r>0时,SD线的斜率大于0时,则说明数据正相关,此时当x增大时y增大。 3、相关系数r的范围在[-1,1]之间,当r=0时表示数据相关系数为0(不相关)。当r=正负1时,表示数据负相关,此(x,y)点数据都在SD线上。 4、r的值越接近正负1说明(x,y)越靠拢SD线,说明数据相关性越强,r的值越接近0说明(x,y)点到SD线的散度越大(越分散),数据相关性越小。 回归方法主要描述一个变量如何依赖于另一个变量。y对应于x的回归线描述了在不同的x值下y的平均值情况,它是这些平均值的光滑形式,如果这些平均值刚好在一条直线上,则这些平均值刚好和回归线重合。通过回归线,我们可以通过x值来预测y值(已知x值下y值的平均值)。下面是y对应于x的回归线方程: 简单的说,就是当x每增加1个SD,平均而言,相应的y增加r个SD。 从方程可以看出: 1、回归线是一条经过点,斜率为的直线。 2、回归线的斜率比SD线小,当r=1或-1时,回归线和SD线重合。 当用回归线从x预测y时,实际值与预测值之间的差异叫预测误差。而均方根误差就是预测误差的均方根。它度量回归预测的精确程度。y关于x的回归线的均方根误差用下面的公式进行计算: 由公式可以看出,当r越接近1或-1时,点越聚集在回归线附近,均方根误差越小; 反之r越接近0时,点越分散,均方根误差越大。 最小二乘法寻找一条直线来拟合所有的点,使得这条直线到所有的点之间的均方根误差最小。可以看到,当求两个变量之间的关系时,最小二乘法求出的直线实际上就是回归线。只不过表述的侧重点不同:

线性回归方程

变量间的相关关系与线性回归方程训练一、选择题 1.以下关于相关关系的说法正确的个数是( ) ①相关关系是函数关系;②函数关系是相关关系;③线性相关关系是一次函数关系; ④相关关系有两种,分别是线性相关关系和非线性相关关系. A.0 B.1 C.2 D.3 2.下列关系属于线性负相关的是( ) A.父母的身高与子女身高的关系B.农作物产量与施肥量的关系 C.吸烟与健康的关系D.数学成绩与物理成绩的关系 3.对于给定的两个变量的统计数据,下列说法正确的是( ) A.都可以分析出两个变量的关系B.都可以用一条直线近似地表示两者的关系C.都可以作出散点图D.都可以用确定的表达式表示两者的关系 4.列两个变量之间的关系具有相关关系的是( ) A.家庭的支出与收入B.某家庭用电量与水价间的关系 C.单位圆中角的度数与其所对孤长D.正方形的周长与其边长 5.下列关系中,是相关关系的有( ) ①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系;④家庭经济条件与学生学习成绩之间的关系. A.①②B.①③C.②③D.②④ 6.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图 中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=1 2 x+1上,则这组样本数据的样本相 关系数为( ) A.-1 B.0 C.1 2 D.1 7.右图是变量x,y的散点图,那么如图所示的两个变量具有相关关系的是( )

A.(2) (3) B.(1) (2) C.(2) (4) D.(3) (4) 8.在对两个变量x,y进行线性回归分析时一般有下列步骤:①对所求的回归方程作出解释; ②收集数据(x i,y i)(i=1,2,…,n);③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图,如果根据可靠性要求能够判定变量x,y具有线性相关性,则下列操作顺序正确的是( ) A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③① 9.对变量有观测数据理力争得散点图1;对变量有观测数据,得散点图由这两个散点图可以判断() A. 变量与正相关,与正相关方 B. 变量与正相关,与负相关 C. 变量与负相关,与正相关 D. 变量与负相关,与负相关 10.设有一个直线回归方程为,则变量增加一个单位时( ) A.平均增加个单位B.平均增加2 个单位 C.平均减少个单位D.平均减少2 个单位 11.甲、乙、丙、丁四位同学各自对、两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表。则哪位同学的试验结果体现、两变量更强的线性相关性() 甲103 乙106 丙124 丁115 A.甲B.乙C.丙D.丁

计量经济学实验报告(多元线性回归 自相关 )

实验报告 课程名称计量经济学 实验项目名称多元线性回归自相关 异方差多重共线性班级与班级代码 08国际商务1班实验室名称(或课室)实验楼910 专业国际商务 任课教师刘照德 学号: 043 姓名:张柳文 实验日期: 2011 年 06 月 23日 广东商学院教务处制

姓名张柳文实验报告成绩 评语: 指导教师(签名) 年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

计量经济学实验报告 实验项目:多元线性回归、自相关、异方差、多重共线性 实验目的:掌握多元线性回归模型、自相关模型、异方差模型、多重共线性模型的估计和检验方法和处理方法 实验要求:选择方程进行多元线性回归;熟悉图形法检验和掌握D-W 检验,理解广义差分法变换和掌握迭代法;掌握Park或 Glejser检验,理解同方差性变换; 实验原理:普通最小二乘法图形检验法 D-W检验广义差分变换加权最小二乘法 Park检验等 实验步骤: 首先:选择数据 为了研究影响中国税收收入增长的主要原因,选择国内生产总值(GDP)、财政支出(ED)、商品零售价格指数(RPI)做为解释变量,对税收收入(Y)做多元线性回归。从《中国统计年鉴》2011中收集1978—2009年各项影响因素的数据。如下表所示: 中国税收收入及相关数据

实验一:多元线性回归 1、将数据导入后,分别对三个解释变量与被解释变量做散点图,选择两个变量作为group打开,在数据表“group”中点击view/graph/scatter/simple scatter,出现数据的散点图,分别如下图所示: 从散点图看,变量间不一定呈现线性关系,可以试着作线性回归。 2、进行因果关系检验

线性回归方程中的相关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。R = R接近于1表明Y与X1,X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1,X2 ,…,Xk之间的线性关系程度不密切 相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位 就一个reg来说y=a+bx+e a+bx的误差称为explained sum of square e的误差是不能解释的是residual sum of square

Eviews序列相关性实验报告

实验二序列相关性 【实验目的】 掌握序列相关性问题出现的来源、后果、检验及修正的原理,以及相关的Eviews操作方法。 【实验内容】 经济理论指出,商品进口主要由进口国的经济发展水平,以及商品进口价格指数与国内价格指数对比因素决定的。由于无法取得价格指数数据,我们主要研究中国商品进口与国内生产总值的关系。 以1978-2001年中国商品进口额与国内生产总值数据为例,练习检查和克服模型的序列相关性的操作方法。 【实验步骤】 一、建立线性回归模型

利用表中数据建立M 关于GDP 的散点图(SCAT GDP M )。 可以看到M 与GDP 呈现接近线性的正相关关系。 建立一个线性回归模型(LS M C GDP )。 即得到的回归式为: GDP M 0204.09058.152+= (3.32) (20.1) 9461.02=R D.W.=0.63 F=405 二、 进行序列相关性检验 1、 观察残差图

做出残差项与时间以及与滞后一期的残差项的折线图,可以看出随机项存在正序列相关性。 2、 用D.W.检验判断 由回归结果输出D.W.=0.628。若给定05.0=α,已知n=24,k=2,查D.W.检验上下界表可得,45.1,27.1==U L d d 。由于D.W.=0.628<1.27=L d ,故存在正自相关。 3、 用LM 检验判断

在估计窗口中选择Serial Correlation LM Test,设定滞后期Lag=1,得到LM 检验结果。 由于P值为0.0027,可以拒绝原假设,表明存在自相关。 4、用回归检验法判断 对初始估计结果得到的残差序列定义为E1,首先做一阶自回归(LS E1 E1(-1))。

第三章附录:相关系数r 的计算公式的推导

相 关 系 数 r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符 号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ= 12)1(-i i P P 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2 P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。 由于使(2P σ)′=0的A A 值只有一个,所以据公式(3)计算出的A A 使2 P σ为最小值。

以上分析清楚地说明:对于证券A和证券B,只要它们的系数r AB 适当小(r AB 的“上限”的 计算,本文以下将进行分析),由证券A和证券B构成的投资组合中,当投资于风险较大的证券B 的资金比例不超过按公式(3)计算的(1—A A ),会比将全部资金投资于风险较小的证券A的方 差(风险)还要小;只要投资于证券B的资金在(1—A A )的比例范围内,随着投资于证券B的资 金比例逐渐增大,投资组合的方差(风险)会逐渐减少;当投资于证券B的资金比例等于(1—A A )时,投资组合的方差(风险)最小。这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。按公式(3)计算出的证券A和证券B的投资比例构成的投资组合称为最小方差组合,它是证券A和证券B的各种投资组合中方差(亦即风险)最小的投资组合。

简单线性相关(一元线性回归分析)..

第十三讲 简单线性相关(一元线性回归分析) 对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。 一、一元线性回归模型及其对变量的要求 (一)一元线性回归模型 1、一元线性回归模型示例 两个变量之间的真实关系一般可以用以下方程来表示: Y=A + BX + ε 方程中的A 、B 是待定的常数,称为模型系数,ε是残差,是以X 预测Y 产生的误差。 两个变量之间拟合的直线是: y a bx ∧ =+ y ∧ 是 y 的拟合值或预测值,它是在X 条件下Y 条件均值的估计 a 、 b 是回归直线的系数,是总体真实直线A 、B 的估计值,a 即 constant 是截距,当自变量的值为0时,因变量的值。 b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。 可以对回归方程进行标准化,得到标准回归方程: y x ∧ =β β 为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位(Z X X S j j j = -),因变量Y 的标准差的平均变化。

由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y的重要性。 (二)对变量的要求:回归分析的假定条件 回归分析对变量的要求是: 自变量可以是随机变量,也可以是非随机变量。自变量X值的测量可以认为是没有误差的,或者说误差可以忽略不计。 回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。 (三)数据要求 模型中要求一个因变量,一个或多个自变量(一元时为1个自变量)。 因变量:要求间距测度,即定距变量。 自变量:间距测度(或虚拟变量)。 二、在对话框中做一元线性回归模型 例1:试用一元线性回归模型,分析大专及以上人口占6岁及以上人口的比例(edudazh)与人均国内生产总值(agdp)之间的关系。 本例使用的数据为st2004.sav,操作步骤及其解释如下: (一)对两个变量进行描述性分析 在进行回归分析以前,一个比较好的习惯是看一下两个变量的均值、标准差、最大值、最小值和正态分布情况,观察数据的质量、缺少值和异常值等,缺少值和异常值经常对线性回归分析产生重要影响。最简单的,我们可以先做出散点图,观察变量之间的趋势及其特征。通过散点图,考察是否存在线性关系,如果不是,看是否通过变量处理使得能够进行回归分析。如果进行了变量转换,那么应当重新绘制散点图,以确保在变量转换以后,线性趋势依然存在。 打开st2004.sav数据→单击Graphs → S catter →打开Scatterplot 对话框→单击Simple →单击 Define →打开 Simple Scatterplot对话框→点选 agdp到 Y Axis框→点选 edudazh到 X Aaxis框内→单击 OK 按钮→在SPSS的Output窗口输出所需图形。 图12-1 大专及以上人口占6岁及以上人口比例与人均国内生产总值的散点图

计量经济学 自相关 实验报告

1.编辑输入某市1991-2011年国内生产总值X 和出口总额Y 、通过OLS 估计法进行回归分析得到线性回归结果 线性回归方程:i X ?0.288354-3398.045i Y ?+= (-1.0118467) (17.5565) --t 统计量 R 2 =0.9419 F=308.2308 2.自相关检验 (1)图示法(e 与e(-1)的散点图、残差序列图、相关图和Q 统计量检验) (2)D .W .检验:给定显著水平a=0.05,得到临界水平值d L =1.22、d U =1.42。从回归分析中查得DW=0.5235 (3)LM 检验

给定显著水平a=0.05,得临界值X2 0.05 (1)=3.84,根据回归结果知n*R2=11.578, 与临界值比较得n*R2>X2 0.05 (1)故认为存在一阶序列相关。 3.序列相关修正 (1)广义差分法 ○1DW =0.5235估计p值为0.74做广义差分,创建新序列DY DX、进行线性回归 对结果做DW 2检验,存在自相关。○2再次做差分p估计值为1-DW 2 /2,创建新序 列LY LX、对回归结果做DW 3 检验,从而得到不存在自相关。○3检验最终结果序列相关性,可得不存在序列相关。 (2)科克栏内-奥克特迭代法 在用OLS估参时同时选择c和X,AR(p)作为解释变量可得参数β 0,β 1, p p 的估计 值,AR(p)即为随即干扰项的p阶自回归。根据DW统计量逐次引入AR(p)直到满意。所以引入AR(1),AR(2)对迭代一次与迭代二次的回归结果分别检验,得迭代二次回归结果不存在自相关。

第三章:相关系数r 的计算公式的推导

设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ= 11 -n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1 122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 2 2 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22 2 2 2---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ =---∑1 )])([(

自相关实验报告

附件二:实验报告格式(首页) 山东轻工业学院实验报告成绩 课程名称计量经济学指导教师苏卫东实验日期 2013/05/25 院(系)商学院专业班级实验地点二机房 学生姓名学号 2 同组人无 实验项目名称自相关实验报告 一、实验目的和要求 2、练习并熟练线性回归方程的建立和基本的经济检验和统计检验;学会判别自相关的存在,并能 够熟练使用学过的方法对模型进行修正。 二、实验原理 1、 Eviews软件的操作和自相关的检验与修正,图表法,DW检验, 三、主要仪器设备、试剂或材料 Eviews软件,计算机、课本 四、实验方法与步骤 2、CREATE abc A 1978 2000 回车 3、DATA CONSUM INCOME PRICE 回车 1)建立工作组,输入数据如下: 344.88 388.32 1 385.2 425.4 1.01 474.72 526.92 1.062 485.88 539.52 1.075 496.56 576.72 1.081 520.84 604.31 1.086 599.64 728.17 1.106 770.64 875.52 1.25 949.08 1069.61 1.336 1071.04 1187.49 1.426 1278.87 1329.7 1.667

1291.09 1477.77 1.912 1440.47 1638.92 1.97 1585.71 1844.98 2.171 1907.71 2238.38 2.418 2322.19 2769.26 2.844 3301.37 3982.13 3.526 4064.1 4929.53 4.066 4679.61 5967.71 4.432 5204.29 6608.56 4.569 5471.01 7110.54 4.546 5851.53 7649.83 4.496 6121.07 8140.55 4.478 4、GENR Y=CONSUM /PRICE 回车 5、GENR X= INCOME /PRICE 回车 6、SCAT X Y 回车 2)相关图分析 Scat x y,得到关于X和Y的散点图如下 从上图可知,X和Y存在线性关系。 7、LS Y C X 回车 Eviews 估计结果如下图: Dependent Variable: Y Method: Least Squares Date: 05/25/13 Time: 10:56 Sample: 1978 2000

相关系数计算公式

相关系数计算公式 相关系数计算公式 Statistical correlation coefficient Due to the statistical correlation coefficient used more frequently, so here is the use of a few articles introduce these coefficients. The correlation coefficient: a study of two things (in the data we call the degree of correlation between the variables). If there are two variables: X, Y, correlation coefficient obtained by the meaning can be understood as follows: (1), when the correlation coefficient is 0, X and Y two variable relationship. (2), when the value of X increases (decreases), Y value increases (decreases), the two variables are positive correlation, correlation coefficient between 0 and 1. (3), when the value of X increases (decreases), the value of Y decreases (increases), two variables are negatively correlated, the correlation coefficient between -1.00 and 0. The absolute value of the correlation coefficient is bigger, stronger correlations, the correlation coefficient is close to 1 or -1, the higher degree of correlation, the correlation coefficient is close to 0 and the correlation is weak. The related strength normally through the following range of judgment variables: The correlation coefficient 0.8-1.0 strong correlation 0.6-0.8 strong correlation

自相关实验报告

《计量经济学》实训报告 实训项目名称自相关的检验与消除 实训时间 实训地点 班级 学号 姓名 实训(实践) 报告

实训名称自相关的检验与消除 一、实训目的 1、中国进口需求与国内生产总值是一个值得研究的问题。通过实际出口额模型的分析可 以判断中国进口需求,这是宏观经济分析的重要参数。 2、使学生掌握针对实际问题简历、估计、检验和应用计量经济学单方程模型的方法以及 至少掌握一种计量经济学软件的使用,提高学生的动手能力。 二、实训要求 1、要求学生能对一般的实际经济问题运用计量经济学方法进行分析研究 2、掌握计量经济学软件包Eviews估计和检验单方程模型的同法和操作步骤 3、对模型的结果进行经济解释 三、实训内容 1、用DW验证法,验证该模型是否存在自相关。 2、用广义差分法消除自相关,进行多次迭代法。 四、实训步骤 课后练习题6.5的数据1985—2003年中国实际GDP和进口额 1. 用OLS方法估计参数,建立回归模型:ls y c x

回归结果: Y=-1690.309+0.387979X T= (-3.824856) (21.93401) R^2=0.96587 S.E.=822.3285 2. 检验是否存在自相关 (1)图示法(scat e1 e2):

结果表明:由上图e1与e2的散点图可知,大部分的点落在I、III象限,表明随即误差项存在着正相关。 (2)DW检验法 回归结果: Y = -1690.309+0.3880X , R^2=0.9659, df=17, DW=0.5239 该方程的可绝系数较高,回归系数均显著。对样本量为19、一个解释变量的模型,查DW统计表可知,dL=1.18,dU=1.4;模型中DW

线性相关与线性回归方程

时间:2018年3月20日必修3第二章统计 第9课时线性相关与线性回归方程 学习目标:能在散点图中作出线性回归直线,能用线性回归方程进行预测 了解最小二乘法的含义及思想 理解数形结合、数学模型化的数学思想与方法 学习过程: 一、最小二乘法是什么?怎样得到线性回归直线方程? 1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据。 人体的脂肪百分比和年龄: 年龄23 27 39 41 45 49 50 脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄53 54 56 57 58 60 61 脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6 根据上述数据,人体的脂肪含量y与年龄x之间有怎样的关系? (1)回归直线方程可不可以象前节一样取其中两个点得到? (2)可不可以考虑选择不同的几组点求出相应的直线的斜率与截距,再求这些斜率、截距的平均值得到回归直线方程? (3)你认为回归直线相对于样本数据的各点而言应具备什么特点才可靠? (4)怎样刻画“样本数据的各点到回归直线的距离最小”? (5)将表中的年龄作为x代入所求回归方程,得出的数值与真实值之间有什么关系?你怎样看待这种情况? 2.当两个变量线性相关时,这两个变量的线性回归直线方程(简称回归方程)如何求? 其中系数可直接由公式求之: 回归直线方程表明回归直线过点(称之为样本点的中心)

二、问题分析 1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为 y=0.85x-85.71, 则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(x,y) C.若该大学某女生身高增加1cm,则其体重约增加0.85kg D.若该大学某女生身高为170cm,则可断定其体重为58.79kg 2.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 摄氏温度/℃-5 0 4 7 12 15 19 23 27 31 36 热饮杯数156 150 132 128 130 116 104 89 93 76 54 (1)画出散点图; (2)从散点图中发现气温与热饮销售杯数之间关系的一般规律; (3)求回归方程; (4)如果某天气温是2℃,预测这天卖出的热饮杯数。 三、总结性思考 1.最小二乘法是什么意思? 2.怎样根据样本数据求线性回归直线方程? 四、课后作业 P94 A3 五、再思考

计量经济学实验报告(自相关性)

实验6.美国股票价格指数与经济增长的关系 ——自相关性的判定和修正 一、实验内容:研究美国股票价格指数与经济增长的关系。 1、实验目的: 练习并熟练线性回归方程的建立和基本的经济检验和统计检验;学会判别自相关的存在,并能够熟练使用学过的方法对模型进行修正。 2、实验要求: (1)分析数据,建立适当的计量经济学模型 (2)对所建立的模型进行自相关分析 (3)对存在自相关性的模型进行调整与修正 二、实验报告 1、问题提出 通过对全球经济形势的观察,我们发现在经济发达的国家,其证券市场通常也发展的较好,因此我们会自然地产生以下问题,即股票价格指数与经济增长是否具有相关关系? GDP是一国经济成就的根本反映。从长期看,在上市公司的行业结构与国家产业结构基本一致的情况下,股票平均价格的变动跟GDP的变化趋势是吻合的,但不能简单地认为GDP增长,股票价格就随之上涨,实际走势有时恰恰相反。必须将GDP与经济形势结合起来考虑。在持续、稳定、高速的GDP增长下,社会总需求与总供给协调增长,上市公司利润持续上升,股息不断增加,老百姓收入增加,投资需求膨胀,闲散资金得到充分利用,股票的内在含金量增加,促使股票价格上涨,股市走牛。 本次试验研究的1970-1987年的美国正处在经济持续高速发展的状态下,据此笔者利用这一时期美国SPI与GDP的数据建立计量经济学模型,并对其进行分析。 2、指标选择: 指标数据为美国1970—1987年美国股票价格指数与美国GDP数据。 3、数据来源: 实验数据来自《总统经济报告》(1989年),如表1所示:

表1 4、数据处理 将两组数据利用Eviews绘图,如图1、2所示: 图1 GDP数据简图图2 SPI数据简图

计量经济学自相关实验报告

第六章自相关实验报告 一、研究目的 对于广大的中国农村人口而言,其消费总量比重却不高。农村居民的收入和消费是一个值得研究的问题。消费模型是研究居民消费行为的常用工具。通过中国农村居民消费模型的分析可判断农村居民的边际消费倾向,这是宏观经济分析的重要参数。同时,农村居民消费模型也能用于农村居民消费水平的预测。二、模型设定 影响居民消费的因素很多,但由于受各种条件的限制,通常只引入居民收入一个变量做解释变量,即消费模型设定为: Y t=β 0+β 1 X t+ U t 参数说明: Y t ——农村居民人均消费支出 (单位:元) X t ——农村居民人均纯收入(单位:元) U t ——随机误差项 收集到数据如下(见表2-1) 表2-1 1985-2011年农村居民人均收入和消费单位:元

注:资料来源于《中国统计年鉴》1986-2012。 为了消除价格变动因素对农村居民收入和消费支出的影响,不宜直接采用现价人均收入和现价人均消费支出的数据,而需要用经消费价格进行调整后的1985年可比价格及人均纯收入和人均消费支出的数据做回归分析。 根据表2-1中调整后的1985年可比价格计的人均纯收入和人均消费支出的数据,使用普通最小二乘法估计消费模型得如下结果。 表2-2 最小二乘估计结果 Dependent Variable: Y Method: Least Squares Date: 12/04/13 Time: 20:00 Sample: 1985 2011 Included observations: 27 Coefficien t Std. Error t-Statistic Prob. C45.4022510.30225 4.4070250.0002 X0.7185260.01252657.360690.0000 R-squared0.992459Mean dependent var580.5296 Adjusted R-squared0.992157S.D. dependent var256.4506 S.E. of regression22.71079 Akaike info criterion9.154744 Sum squared resid12894.50Schwarz criterion9.250732 Log likelihood-121.5890 Hannan-Quinn criter.9.183287 F-statistic3290.249Durbin-Watson stat0.528075 Prob(F-statistic)0.000000

第三章:相关系数r 的计算公式的推导

第三章附录:相关系数r的计算公式的推导 -CAL-FENGHAI.-(YICAI)-Company One1

相关系数r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 22 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22222 ---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()])([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22 -+- … …………………………………(3) AB B A i i r n B B A A σσ =---∑1 )])([(

(整理)两个变量间的线性相关及回归方程的求法专题.

两个变量间的线性相关及回归方程的求法专题 一、如何认识两个变量间的相关关系 相关关系我们可以从以下三个方面加以认识: (1)相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S与边长x之间的关系2x S 就是函数关系.即对于边长x的每一个确定的值,都有面积S的惟一确定的值与之对应.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如人的身高与年龄;商品的销售额与广告费等等都是相关关系. (2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系.然而学会新词并不能使儿童马上长高,而是涉及到第三个因素——年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大身高也会高些. (3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可使我们对函数关系的认识上升到一个新的高度. 二、如何判断两个变量线性相关关系 1、利用变量相关关系的概念 利用变量相关关系的概念判断时,一般是看当一个变量的值一定时,另一个变量是否带有确定性,两个变量之间的关系具有确定关系--函数关系;两个变量之间的关系具有随机性,不确定性--相关关系。 例1、在下列各个量与量的关系中:①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的收入与支出之间的关系;⑤某户家庭用电量与水费之间的关系。其中是相关关系的为 (C④⑤) (D②③④ (A②③) (B③④) ) 解析:①正方体的体积与棱长之间的关系是确定的函数关系;⑤某户家庭用电量与水费之间无任何关系。②③④中,都是非确定的关系,但自变量取值一定时,因变量的取值带有一定的随机性。 点评:解题的关键是首先分析两个量是否有关系,然后判断这种关系是确定性的关系还是随机的不确定性的关系。 变式练习1:下列关系中是带有随机性的相关关系的有_____。 ①光照时间与果树的亩产量的关系;②圆柱的体积与底面直径的关系;③自由下落的物体的质量与落地时间的关系;④学生的数学成绩与物理成绩。 2、利用散点图 通过散点图观察它们的分布是否存在一定的规律,直观地判断。 例2下面的4个散点图中,两个变量具有相关关系的是()

相关文档
相关文档 最新文档