文档库 最新最全的文档下载
当前位置:文档库 › AZ31变形镁合金挤压成形工艺研究

AZ31变形镁合金挤压成形工艺研究

AZ31变形镁合金挤压成形工艺研究
AZ31变形镁合金挤压成形工艺研究

AZ31变形镁合金挤压成形工艺研究

摘要:选择AZ31 变形镁合金,设计了实心棒材、矩形和圆形截面薄壁空心型材试样,对坯料加热、模具预热、润滑剂、挤压比、挤压速度及挤压力等工艺问题与工艺参数,进行了系统的试验研究,总结了成形规律和确定工艺参数的方法,对生产应用将起到重要的参考作用。

关键词:AZ31 镁合金挤压成形工艺研究

目前,国内的变形镁合金有MB1、MB2(Az31)、MB3、MB5、MB6、MB7、MB8、MB11、MB14和MB15 等。变形镁合金的塑性变形,主要有模锻、挤压、轧制等方法,其中,挤压是最基本的方法,它不仅是获得作为进一步加工零件的棒材的方法,也是将棒材成形为零件和复杂型材的方法。作者选择AZ31 变形镁合金为原材料,设计了实心棒材、矩形和圆形截面薄壁空心型材试样,对挤压过程及工艺参数进行了系统试验研究。研究内容及结果论述如下。

1. 挤压前坯料的加热

1.1 加热温度

镁具有密排六方晶格,室温下只有基面{0 0 0 1}产生滑移,因此镁及镁合金在常温下进行塑性成形很难;加热至200℃以上时,第一类角锥面{1 0 1 1}产生滑移,塑性得到较大的提高;

225℃以上时第二类角锥面{1 0 1 2}也可能产生滑移,塑性进一步提高。因此镁合金宜在200℃以上成形。镁合金状态图是

确定镁合金挤压温度的首要依据。从镁合金状态图中可以得到某种镁合金的熔化温度和合金中有第二相析出时温度。于是可以得到挤压温度范围在这两个温度范围内,但这只是一个粗略的温度范围。为了比较准确的确定该种镁合金的挤压温度范围,需要对这种镁合金的塑性图和变形抗力图以及再结晶图加以分析研究。从镁合金的塑性图可以得到在某个温度范围内其塑性最高。于是坯料的加热温度范围可以选择在这个温度范围之内。Mg-Al-Zn 合金状态图是确定镁合金挤压温度的首要依据。AZ31 的熔化温度是603℃。

2、从230℃开始,合金中有第二相析出。因此,AZ31 的挤压温度范围一定在230~603℃范围内。

从AZ31 镁合金的塑性图看出,在350~400℃的温度范围内塑性最高。挤压时坯料加热温度为400℃。

1.2 加热设备及方法[1]

镁合金毛坯通常是在电炉中加热,最好带有空气强制循环的装置,以保持炉温均匀。炉内温差不应超过±10℃。炉温用热电偶测量;热电偶装在距坯料100~150毫米处。炉子安装的自动调节炉温的仪器应能保证温度的测量精确度在±8℃之内。

坯料清除掉油渍、镁屑、毛刺及其它脏物。在加热镁合金时,必须严格地做到在炉中没有钢料,而且不使镁合金与加热元件接触,使其相隔一定的距离。而且经常加热镁合金的电炉,其电阻丝旁最好装有保护板,以免过热和引起燃烧。

坯料应均匀地放置在炉底上,保持一定的间隔。装炉前,应将炉子预热到规定的温度。因为镁合金的导热率高,这样可缩短加热时间,避免晶粒长大。如果炉子刚刚在更高的温度下加热过坯料,则应先冷却炉子,使低于规定的温度50~100℃,然后再升高到该种合金所规定的温度,保持20~30 分钟后,再装入坯料。加热时间应从坯料入炉后炉子温度升高到规定温度时算起。

1.3 加热速度及时间

镁合金的导热性良好,故任何尺寸的镁合金毛坯,都可以直接高温装炉,但是镁合金中的原子扩散速度慢,强化相的溶解需要较长时间。为了获得均匀组织,保证在良好塑性状态下挤压,因此实际所采用的加热时间还是较长的。

通常,镁合金挤压前加热时间,可以参照镁合金锻造时[2]加热时间的计算方法来计算。即直径小于50mm 的毛坯,按每

毫米直径或厚度加热1.5min 计算;直径大于100mm 的毛坯,按每毫米直径2.5min计算;对直径在50~100mm 范围内的毛坯,可按照如下推荐的加热速度计算公式确定

T = (1.5 + 0.01*(d ? 50)) * d (1-1)

式中T -加热所需要时间(min);d -毛坯的直径(mm)。

如果挤压过程被迫中断的时间不超过2 小时,毛坯可以留在炉内,但应降低炉温(约120℃)。当继续挤压时,毛坯应重新加热到挤压温度上限,这时的加热时间的计算,是按炉温达到规定的温度时算起,每毫米(直径或厚度)所需的加热时间为上述计算时间的一半。若挤压过程中断超过2 小时,则需将毛坯从炉内取出,置于静止空气中冷却,以后再重新加热挤压。

2. 模具预热与润滑剂的选用

2.1 模具预热

镁合金变形温度范围狭窄,导热性良好,遇到冷模会产生急冷而产生裂纹。所以挤压前要对模具进行预热,其作用是,减小模具与毛坯接触时的温差,使挤压毛坯放入模具时毛坯降温不致过大

而使塑性降低,变形抗力增加;同时可避免毛坯表面和中心层温差过大,使变形不均匀性增加,以至造成挤压件和模具的损坏。由于坯料与模具接触面积大,接触时间长,模具必须加热到比坯料稍低的温度,故模具预热温度范围为260~300℃。

模具预热的方法有在模具上安装专门的电阻预热器,或者用喷灯直接喷射加热。

2.2 润滑剂的选用

为了减轻坯料与挤压筒及凹模工作带之间的摩擦,防止粘模,降低摩擦力,以利于金属流动,必须使用润滑剂进行润滑。润滑剂还可以起到隔热作用,从而提高模具寿命。生产中常使用的润滑剂石墨水剂和玻璃润滑剂。

(1)石墨水剂将石墨水剂润滑剂均匀地涂在挤压筒内壁,在加热的状态下,水份蒸发,在挤压筒内壁形成一层致密石墨薄膜,从而起到润滑效果。

(2)玻璃润滑剂玻璃润滑剂的优点:

1)绝热性好,从而使模具寿命提高及防止毛坯迅速冷却。

2)可提高挤压比。

3)不会产生增碳现象。

4)挤压件表面可保持清洁。

5)在工作温度下玻璃成胶粘状,因而可以不断通过模具间隙进行润滑。这就意味着有可能进行长时间的挤压,进而提高了生产效率。

6)挤压型材和空心断面时,可得到比较清晰的棱角形状。

3. 挤压比和挤压速度

3.1 挤压比的计算与选择

棒材挤压时的挤压比按下式计算

G = D20 / d2 (3-1)

式中,0 D -挤压筒直径(mm);d -挤压棒料直径(mm)。管材挤压时的挤压比按下式计算

(3-2)

式中0 D -挤压筒直径(mm);d -挤压管材直径(mm);s -挤压管材壁厚(mm)。

挤压型材时挤压比按下式计算

G = F / nF1 (3-3)

式中,F -挤压筒的断面积(mm2);1 F -单根型材断面积(mm2);n -模孔数。

挤压比G 太大时,随着挤压力的增大材料的温度剧烈上升;一般镁合金挤压时允许的最大挤压比max G ≤ 60。

镁合金挤压件的宏观组织及机械性能与总的变形程度有很大的关系,变形程度大的镁合金挤压件比变形程度小的镁合金挤压件机械性能高。为了使镁合金挤压件获得一致的机械性能,挤压的总变形程度应不小于75%。本实验的变形程度为95%。

3.2 挤压速度

挤压速度对变形抗力及塑性的影响决定于切应变(或硬化)与软化过程(恢复与再结晶)之间的相互关系。当变形速度较高时,因变形引起的热效应,会使挤压毛坯的温度升高,从而流动应力明显降低;当变形速度再增高时,虽然毛坯的升温很明显,但是由于变形过程中金属的加工硬化速度比再结晶过程中的软化速度快,

坯料的流动应力会明显增大。因此挤压过程中必须认真控制挤压速度。挤压速度对变形热效应,变形均匀性,再结晶和固溶过程,制品力学性能及制品表面质量均有重要影响。挤压速度过快,制品表面会出现麻点、裂纹等倾向;同时,增加了金属变形的不均匀性。注意到有些镁合金如AZ31 镁合金对对挤压速度特别敏感,因此成形应以较低的挤压速度进行挤压。

4. 挤压力的计算及设备选择

4.1 挤压力的计算

参照热挤压工艺时挤压力的计算[3],取图4.1 所示正挤压变形区内的微元体,建立微分方程:

经变化后得到单位压力

当l = 0 时,p = p = C 0 代入式(4-2)得

总的挤压力为

(4-3)

式中,p -在一个半径为R 的挤压筒中挤压长度为0 l 的毛坯所需要单位挤压应力(MPa);t A -挤压筒内腔横截面积(mm2);e -自然对数的底;μ -摩擦系数;l -毛坯的长度(mm)。

西拜勒氏认为进行一次变形所需要的力等于断面变化比的对数与变形抗力的乘积。即

因此

(4-4)

式中,b σ -挤压温度下材料的抗拉强度(MPa);t A -挤压筒内腔横截面积(mm2);m A -金属挤出模口的横截面积(mm2)。

将式(4-4)代入式(4-3),即得总挤压力

(4-5)

同理,可得出挤压内半径为r 的管子挤压力公式

(4-6)

式中,R -挤压筒内半径(mm);r -芯棒的半径(mm);At -挤压筒内腔横截面积(mm2);Al -挤压管子的横截面积(mm2)。

AZ31 属于Mg-Al-Zn 系合金,对挤压速度特别敏感,因此成形应以较低的挤压速度进行挤压,在实验中挤压速度选择为

12mm/s。

4.2 挤压设备的选择

镁合金属于低塑性材料,所以最好是在液压机上挤压。液压机滑块行程速度一般为0.10~0.20m/s。液压机的行程速度比较慢,可以保证镁合金挤压时有良好的变形速度条件;只要变形温度合适,不管应力状态如何,镁合金都具有较高的塑性,可以挤出所需形状、尺寸的挤压件。

变形镁合金的基础介绍

变形镁合金的基础介绍 变形镁合金具有密度低、比强度和比刚度高、电磁屏蔽效果好、抗震减震能力强、易于机加工成形和易于回收再利用等优点,在航空工业、航天工业、汽车工业、3C产品,军工,装备制造,纺织机械,运动器材等领域的具有广泛的应用前景和巨大的应用潜力。 目前,镁合金的应用大多数是以模铸、压铸以及半固态成形等工艺来生产产品。这些镁合金工艺生产的产品,存在着组织部太致密、成分偏析,最小厚度偏大、力学性能偏低等缺憾,不能充分发挥镁合金的性能优势。塑性变形能够改善镁合金的组织和力学性能,大大提高镁合金的强度和塑性,同时,很多领域重要结构材料需要用的镁合金板材、镁合金棒材、镁合金管材和镁合金型材等只能用塑性成形工艺来制取,而不能利用铸造等工艺来生产。 由于镁合金晶体结构是密排六方(Hcp),塑性较差,成形困难,成材率低,加上人们对镁合金易燃、不耐腐蚀等缺点的过分夸张和错误的认识,导致变形镁合金没有得到大规模应用。 目前变形镁合金板材、型材以及锻件等生产仍集中在航空航天工业及军事工业等高端领域或部门,没有普及到民用工业领域。在当今社会节约资源和减少污染成为社会可持续发展战略的要求的背景下,急需加快研究步伐,转变观念,以推动变形镁合金在民用工业产品领域的应用。在此总结变形镁合金及成形工艺的成果,探讨变形镁合金及其成形工艺的研究方向和应用成果。 变形镁合金合金系 变形镁合金主要分为四个系列(美国标准):AZ系列(Mg-Al-Zn),AM系列(Mg-Al-Mn),MgZnZr系列,MgMnRe系列。中国变形镁合金牌号为MB系列。 变形镁合金以AZ系应用最为普遍,其中又以MB2应用最为广泛。变形镁合金MB2的合金成分与AZ31B不同,其力学和成形性能比AZ31B稍差些。 新近研究开发的镁合金如:Mg—Li系合金,由于锂的加入,Mg-Li系合金成为最轻的变形镁合金,金属Li的密度只有0.53g/cm3,用Li作合金元素,除降低密度外,Li的加入可以在合金中形成具有bcc结构的β相,显著改善变形镁合金的塑性,变形加工能力大大增强。在变形镁合金系中加入稀土元素后,如在Mg-Zn系合金中加入Y、Ce、Nd以及Re等元素,能够显著改善变形镁合金的耐蚀性和高温性能,形成新的合金牌号品种。 变形镁合金与铸造镁合金相比,变形镁合金具有更高的强度和塑性。 变形镁合金比重小、比刚度、比强度高的特点,广泛地应用在一些对重量特别敏感的手提工具、体育器材、航空航天、汽车等领域中。 随着新型镁合金及其成形工艺不断研究深入,变形镁合金的用途和应用范围将会不断扩大。

AZ31镁合金塑性变形不均匀性与变形机制的研究

AZ31镁合金塑性变形不均匀性与变形机制的研究镁合金性能优异、应用广泛,但较差的室温塑性及变形过程中的不均匀性极大地制约了它的生产应用。深入研究镁合金的变形不均匀性及内在塑性变形机制是理解镁合金变形行为的关键。 本文以商用轧制AZ31镁合金为初始材料,基于数字图像相关方法(DIC)、电子背散射衍射技术(EBSD),建立了微观尺度应变不均匀性及组织变形不均匀性的有效表征方法。在此基础上详细研究了晶粒尺度变形不均匀性与变形机制的内在联系,并深化了对不均匀变形条件下塑性变形机制的行为理解。 获得的主要研究结论如下:借助纳米级表面标记颗粒实现了试样表面高分辨应变场的分析,探索了晶粒以及晶内孪晶尺度的应变分布情况,证实了应变分布在微观尺度的不均匀性。同时结合微观组织结构及变形机制的研究解释了应变不均匀性的产生原因,研究表明晶体取向的自身软硬程度以及与相邻区域的相对软硬状态都会影响应变的分布,在某些界面处的应变累积是由于界面两侧缺乏有效的塑性变形机制以完成应变的传递。 为理解局部应变对塑性变形机制的行为影响,对晶界处的孪晶穿透行为进行了详细的统计研究。总结了孪晶穿透在小取向差角晶界处容易发生的规律,探究了Schmid因子对孪晶穿透的影响,并利用几何协调因子m’从应变协调角度解释了某些不遵循Schmid定律的孪晶行为。 分析表明m’可以较好地解释局部应变下的孪晶变体选择行为,但对于孪晶穿透在何处发生并没有良好的预测性。基于EBSD获得的取向数据,建立了晶粒尺度组织变形不均匀性的两种可视化表征方法。 验证了“晶内取向分散”方法表征晶粒分裂的有效性及优越性,并运用“晶

内取向发展”方法揭示了介观变形带的信息。研究表明晶粒分裂在低应变量下就已经发生,结合Sachs模型及低能位错结构(LEDS)理论分析得出晶内同一组滑移体系间相对开动量的不同会导致晶内各部分不同的转动行为。 利用上述表征方法能够帮助对热变形过程中组织的不均匀变化及动态再结晶形核机制的理解。研究表明在低应变阶段,晶粒长大可以降低体系能量从而弱化晶内变形的不均匀性,晶粒长大过程中晶界的迁移大多符合降低界面能量的要求。 随着应变量的增加,晶内变形的不均匀性迅速增加,并在不均匀变形组织中观察到晶界突出和应变诱发的矩形晶界迁移形貌。AZ31镁合金在200℃的热变形过程中同时存在着不连续动态再结晶(DDRX)及连续动态再结晶(CDRX)的形核机制。

铝挤压成型的工艺特点及其优缺点分析

发布时间:2017-05-12 铝挤压成型定义 铝挤压成型是对放在模具型腔(或挤压筒)内的金属坯料施加强大的压力,迫使金属坯料产生定向塑性变形,从挤压模具的模孔中挤出,从而获得所需断面形状、尺寸并具有一定力学性能的零件或半成品的塑性加工方法。 铝挤压成型的分类 按金属塑变流动方向,挤压可以分为以下几类: 正挤压:生产时,金属流动方向与凸模运动方向相同 反挤压:生产时,金属流动方向与凸模运动方向相反 复合挤压:生产时,坯料一部分金属流动方向与凸模运动方向相同,另一部分金属流动方向与凸模运动方向相反 径向挤压:生产时,金属流动方向与凸模运动方向成90度 铝挤压成型的工艺特点 1、在挤压过程中,被挤压金属在变形区能获得比轧制锻造更为强烈和均匀的三向压缩应力状态,这就可以充分发挥被加工金属本身的塑性; 2、挤压成型不但可以生产截面形状简单的棒、管、型、线产品,还可以生产截面形状复杂的型材和管材; 3、挤压成型灵活性大,只需要更换模具等挤压工具,即可在一台设备上生产形状规格和品种不同的制品,更换挤压模具的操作简便快捷、省时、高效; 4、挤压制品的精度高,制品表面质量好,还提高了金属材料的利用率和成品率; 5、挤压过程对金属的力学性能有良好的影响; 6、工艺流程短,生产方便,一次挤压即可或得比热模锻或成型轧制等方法面积更大的整体结构件,设备投资少、模具费用低、经济效益高; 7、铝合金具有良好的挤压特性,特别适合于挤压加工,可以通过多种挤压工艺和多种模具结构进行加工。

铝挤压成型的优点 1、提高铝的变形能力。铝在挤压变形区中处于强烈的三向压应力状态,可以充分发挥其塑性,获得大变形量。 2、制品综合质量高。挤压成型可以改善铝的组织,提高其力学性能,其挤压制品在淬火时效后,纵向(挤压方向)力学性能远高于其他加工方法生产的同类产品。与轧制、锻造等加工方法相比,挤压制品的尺寸精度高、表面质量好。 3、产品范围广。挤压成型不但可以生产断面形状简单的管、棒、线材,而且还可以生产断面形状非常复杂的实心和空心型材、制品断面沿长度方向分阶段变化的和逐渐变化的变断面型材,其中许多断面形状的制品是采用其他塑性加工方法所无法成形的。挤压制品的尺寸范围也非常广,从断面外接圆直径达500-1000mm 的超大型管材和型材,到断面尺寸有如火柴棒大小的超小型精密型材。 4、生产灵活性大。挤压成型具有很大的灵活性,只需更换模具就可以在同一台设备上生产形状、尺寸规格和品种不同的产品,且更换工模具的操作简单方便、费时小、效率高。 5、工艺流程简单、设备投资少。相对于穿孔轧制、孔型轧制等管材与型材生产工艺,挤压成型具有工艺流程短、设备数量与投资少等优点。 铝挤压成型的缺点 1、制品组织性能不均匀。由于挤压时金属的流动不均匀(在无润滑正向挤压时尤为严重),致使挤压制品存在表层与中心、头部与尾部的组织性能不均匀现象。 2、挤压工模具的工作条件恶劣、工模具耗损大。挤压时坯料处于近似密闭状态,三向压力高,因而模具需要承受很高的压力作用。同时,热挤压时工模具通常还要受到高温、高摩擦作用,从而大大影响模具的强度和使用寿命。 3、生产效率较低。除近年来发展的连续挤压法外,常规的各种挤压方法均不能实现连续生产。一般情况下,挤压速度远远低于轧制速度,且挤压生产的几何废料损失大、成品率较低。 总结 近年来,由于各行业对小型化、轻量化的追求,铝及铝合金型材被广泛应用于建筑、交通运输、电子电器、航天航空等行业。因此铝挤压制品的比例也迅速增加,据资料显示,挤压加工制品中铝及铝合金制品约占70%以上。

镁合金的冲压成形工艺

镁合金的冲压成形工艺 近年来镁合金发展速度很快,每年都以20%~30%的速度增长。镁合金广泛用于汽车、摩托车、自行车等一些交通工具领域内,采用最多的加工方法是模具冲压成形。冲压生产相比其它成形加工方法来说,具有生产率高,操作简单,零件表面光洁,尺寸精度高,强度和刚度大等优点。因此,特别适合于车辆的内外壳板、承载零件、散热片、挡泥板等之类零件。它的冲压性能和成形方法有别于钢板和铝板的成型工艺。要扩大镁合金的应用范围,研究镁合金板材冲压技术具有重要义。 镁合金的冲压成形冲压加工是借助于常规或专用冲压设备的动力,使板料在模具里直接受到变形力并进行变形,从而获得一定形状,尺寸和性能的产品零件的生产技术。板料,模具和设备是冲压加工的三要素。冲压加工是一种金属冷变形加工方法。所以,被称之为冷冲压或板料冲压,简称冲压。它是金属塑性加工(或压力加工)的主要方法之一,也隶属于材料成型工程技术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点。主要表现如下。 (1)冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是因为冲压是依靠冲模和冲压设备来完成加工,普通压力机的行程次数为每分钟可达几十次,高速压力要每分钟可达数百次甚至千次以上,而且每次冲压行程就可能得到一个冲件。 (2)冲压时由于模具保证了冲压件的尺寸与形状精度,且一般不破坏冲压件的表面质量,而模具的寿命一般较长,所以冲压的质量稳定,互换性好,具有“一模一样”的特征。 (3)冲压可加工出尺寸范围较大、形状较复杂的零件,如小到钟表的秒表,大到汽车纵梁、覆盖件等,加上冲压时材料的冷变形硬化效应,冲压的强度和刚度均较高。 (4)冲压一般没有切屑碎料生成,材料的消耗较少,且不需其它加热设备,因而是一种省料,节能的加工方法,冲压件的成本较低。 镁合金常用的成形方法有压铸、半固态铸造、挤压铸造、挤压和轧制等,其中镁合金产品的80%是通过铸造方法获得。镁合金的冲压成形是一种技术难度较大的生产工艺,但以其生产效率高、可直

快速成型工艺比较

快速成形典型工艺比较 关键词及简称 光固化成形(简称:SLA或AURO)光敏树脂为原料 熔融挤压成形(简称:FDM或MEM)ABS丝为原料 分层实体成形(简称:LOM或SSM)纸为原料 粉末烧结成形(简称:SLS或SLS)蜡粉为原料 光固化成形 光固化成形是最早出现的快速成形工艺。其原理是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(x=325nm)和强度(w=30mw)的紫外光的照射下能迅速发生光聚合反应, 分子量急剧增大, 材料也就从液态转变成固态。图1光固化工艺原理图 图1 工艺过程为:液槽中盛满液态光固化树脂,激光束在偏转镜作用下, 能在液体表面上扫描, 扫描的轨迹及激光的有无均由计算机控制, 光点扫描到的地方, 液体就固化。成型开始时,工作平台在液面下一个确定的深度,液面始终处于激光的焦平面,聚焦后的光斑在液

面上按计算机的指令逐点扫描即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕, 得到一个三维实体原型。 光固化工艺的设备做出的零件其优点是精度较高、表面效果好,零件制作完成后需要少量打磨,将层层的堆积痕迹去除。光固化工艺制作的零件打磨工作量相对其他工艺设备制作的零件的打磨量是最小的;其缺点是强度低无弹性,无法进行装配。光固化工艺设备的原材料很贵,种类不多。光固化设备的零件制作完成后,还需要在紫外光的固化箱中二次固化,用以保证零件的强度。液漕内的光敏树脂经过半年到一年的时间就要过期,所以要有大量的原型服务以保证液漕内的树脂被及时用完,否则新旧树脂混在一起会导致零件的强度下降、外形变形。如需要更换不同牌号的材料就需要将一个液漕的光敏树脂全部更换,工作量大树脂浪费很多。三十几万的紫外激光器只能用1万小时,使用一年后激光器更换需要二次投入三十几万的费用。 熔融挤压成形 熔融挤压成形工艺是利用热塑性材料的热熔性、粘结性,在计算机控制下层层堆积成型。熔融挤压成形工艺原理是材料先抽成丝状,通过送丝机构送进喷头,在喷头内被加热熔化,喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结,层层堆积成型。图2熔融挤压工艺原理图

镁合金疲劳性能的研究现状_高洪涛

镁合金疲劳性能的研究现状 高洪涛,吴国华,丁文江 (上海交通大学材料科学与工程学院,上海200030) 摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。提出对镁合金疲劳性能研究的展望。 关键词:镁合金;疲劳性能;影响因素;强化途径 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03 Review on the Fatigue Behavior of Magnesiu m Alloys GAO Hong-tao,W U Guo-hua,DI NG W en-jiang (Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China) A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed. Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。据预测,从2001~2007年,镁合金铸件在汽车上的用量将以25%~30%速度递增[2]。 随着镁合金需求的急剧增加,对其性能要求也越来越高。本文总结近几年镁合金疲劳性能方面的研究,以及提高其性能的建议。 1 镁合金的疲劳与断裂 M g属于密排六方结构,此类金属的塑性变形取决于c/a(c为点阵的高,a为基面的边长),Mg的c/a=1.6235,略小于按原子为等径刚球模型计算出的轴比1.633。孪晶和疲劳变形与现存孪晶的结合是疲劳变形的主要形式,滑移带沿着孪晶带堆积的区域是一些常见的裂纹源。许多微裂纹是一些微空洞造成的。位错环集团是Mg典型的疲劳位错结构。 镁合金的疲劳断裂是由最大剪应力控制的,并且沿着最大剪应力方向扩展。它的解理断裂发生在高指数面上,并且裂纹的形态因孪晶和滑移而强烈变化着。镁合金疲劳断裂结构中也有一些韧窝特征,它们来源于加载过程中出现并长大直到在塑性应变和塑性断裂条件下联合起来的微空洞,在沉淀相-基体界面处结合力较小,沉淀相或者夹杂物的破碎、局部的应力集中 收稿日期:2003-02-17; 修订日期:2003-03-24 基金项目:国家863计划资助项目,编号:200233AA1100. 作者简介:高洪涛(1976- ),河南洛阳人,博士生.研究方向:镁合金的研究与开发.都可能形成一些微空洞。 2 影响镁合金疲劳性能的因素 2.1 冶金因素 微观组织对疲劳裂纹的萌生和扩展有很大的影响[3]。砂型铸造M g-Zn-Zr合金,不管是铸态还是热处理态,晶粒越粗大,疲劳强度越低。另外,第2相质点或颗粒也影响镁合金的疲劳行为,第2相的切变模量和第2相质点间的平均距离是影响疲劳裂纹扩展速率的重要参数。另外,在小的ΔK区域,镁合金位错密度越高,疲劳裂纹扩展速率就越低。 镁基复合材料的疲劳性能与断裂特征与其基体上增强颗粒和晶须的尺寸和形态关系密切[4],含20% SiC晶须的AZ91D镁基复合材料低周疲劳断裂后发现,由于晶须散乱的分布于基体之上,裂纹表面粗糙并且裂纹扩展路径看起来很弯曲。断裂组织观察表明疲劳断裂扩展区和最后断裂区没有明显区别,并且特征是解理断裂。 在冶炼过程中,不可避免的引进一些夹杂物。这些夹杂物引起应力集中从而降低镁合金的抗疲劳能力,如果夹杂物是尖角,危害更大。夹杂物分布不均匀时,也会降低疲劳强度。 2.2 形状因素 (1)缺口敏感性及表面状况 镁合金比铝合金和钛合金有更大的缺口敏感性,变形镁合金比铸造镁合金有更大的缺口敏感性。 · 266· 铸造技术 FO UN DRY TECHN OLOG Y V ol.24N o.4 Jul.2003

镁合金塑性变形与断裂行为的研究

镁合金塑性变形与断裂行为的研究 刘天模,卢立伟,刘宇 重庆大学材料科学与工程学院,重庆(400030) E-mail: haonanwa@https://www.wendangku.net/doc/7717737609.html, 摘要:通过室温压缩拉伸实验,研究了AZ31挤压镁合金的断裂失效机制。研究表明,在压缩破坏实验中有镦粗现象,金相显示沿粗大晶界处形成了大量的孪晶,部分孪晶界诱发裂纹源,裂纹沿晶界处传播,同时部分孪晶对裂纹起钝化阻碍作用,断口扫描表明属于韧脆混合断裂;在拉伸破坏实验中出现明显颈现象,金相显示沿拉长晶晶界处形成大量孪晶,孪晶和裂纹之间存在交互作用,断口扫描表明属于韧性断裂,同时显示出空洞形核诱发裂纹的机制。 关键词:压缩变形;拉伸变形;孪晶;断裂 中图分类号:TG 1. 引言 镁合金属于密排六方晶体结构,其轴比(c/a)值为1.623,接近理想的密排值1.633,室温滑移系少在室温塑性变形时,出现大量的孪晶协调其塑性变形,塑性变形能力差,容易断裂[1]。金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。因为材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原子间的结合力遭到破坏,便出现了裂纹,裂纹经过扩展而使金属断开。金属塑性的好坏表明了它抑制断裂能力的高低。在塑性加工生产中,尤其是对塑性较差的材料,断裂常常是引起人们极为关注的问题。加工材料的表面和内部的裂纹,以至于整体的断裂,都会使得成品率和生产率大大降低[2,13]。因此,研究镁合金塑性变形中的断裂行为和规律对于有效地防止金属成形过程中的断裂,充分发挥金属材料潜在的塑性有重要意义. 2. 实验内容 实验材料选用AZ31挤压材,挤压温度为300℃,挤压比为4.5,挤压速度为1mm/s,将挤压样加工成标准压缩样Φ7×14mm和标准拉伸样,并选此标准压缩样进行400℃保温2小时的退火,利用新三思万能电子试验机CMT-5150以1mm/min的速度沿挤压方向进行压缩和拉伸破坏实验;然后利用数码相机对失效后试样断口方向及断面进行拍照宏观分析;再对失效试样的压缩或拉伸方向进行金相显微组织分析;最后利用扫描电子显微镜对压缩和拉伸的断口形貌进行分析。 3.试验结果 3.1 挤压态压缩破坏样 3.1.1 断口宏观分析

镁合金材料工艺

镁合金发展 针对陕北的跨越式发展目标,提出了建设府谷、神木镁产业基地,推进榆林能源基地资源深度转化,拉长产业链条,加大财政引导资金投入力度,组建省级镁业企业集团,集中力量开展技术攻关,重点发展六种镁合金,加强镁业人才建设 镁锂合金材料是当今世界上最轻的金属结构材料,属于国际上列入高度保密的技术。今年年底,中国将在西安阎良国家航空高技术产业基地实现这种金属结构材料的规模化生产,用于航空、航天、能源等多个领域。 据西安交通大学材料专家柴东朗教授介绍,镁锂合金材料具有低密度、高塑性等特点,是当今世界上最轻的金属结构材料,可部分替代目前应用于航空、航天领域的铝材及其他铝合金材料,具有广泛的应用前景。中国对镁锂合金材料研究已有一段时间,但是大多数处于实验室阶段,直到2010年西安交通大学与西安四方超轻材料有限公司合作在西安阎良国家航空高技术产业基地建成了中国第一条镁锂合金生产线。 经过两年来的进一步研发,目前西安四方超轻材料有限公司已在镁锂合金的冶炼工艺、质量控制、表面处理、机械加工等方面取得了突破性成果,为产品的推广应用创造了良好条件。 根据规划,到今年年底,西安四方超轻材料有限公司镁锂合金超轻材料项目将实现规模化生产,预计可年产100吨镁锂合金超轻材料。 我国镁深加工能力很薄弱。虽然早在50年代后期镁压铸业就已经起步,先后有若干厂家生产林业用机械和工具、风动工具等镁合金压铸件。到了90年代初,在汽车工业、电子工业发展的带动下,国内的镁压铸业有了较大的发展。为3C等产品配套的镁合金压铸件厂主要云集在华南和江、浙地区,尤以珠江三角洲一带最为突出。这一地区受到香港、台湾两地资金的投入、技术的支撑、市场的开拓以及管理的介入等全方位的拉动,发展速度令人关注。 积极稳妥地发展镁产业实现镁合金产业化是一项涉及面广、技术集成度高的大型系统工程。近10多年来,在世界范围内相继建立的一大批镁合金压铸工

挤压成型11111

挤压成形技术 (南昌航空大学航空制造学院南昌330063)孟维金 摘要:挤压成形是最重要的压力加工技术之一。本文综述了挤压成形技术的基本实现原理,简述了挤压成形工艺的发展历史及研究现状。并介绍了几种先进的挤压成形技术,以及展望了挤压成形技术的发展前景。 关键字:挤压成形;等温挤压;静液挤压;半固态挤压 1引言 挤压成型[1](Press Forming)是对放在模具模腔(或挤压筒)内的的金属坯料施加强大的压力,迫使金属坯料产生定向塑性变形,从挤压模的模孔中挤出而获得所需断面形状、尺寸并具有一定力学性能的零件或半成品的塑性加工方法。挤压成形的成形原理如图1所示。挤压是在专用挤压机上进行的,也可在经适当改进后的通用曲柄压力机或摩擦压力机上进行。这种成形方法起初只用于生产金属型材,至20世纪50年代以来[5],逐步扩大到用来制造各种零件或毛坯。 图1金属挤压方法示意图 Figure1Sketch of metal extrusion method 按挤压温度可分为冷挤压、温挤压和热挤压;按金属从模孔中流出部分的运动方向与凸模运动方向的关系可分为正挤压、反挤压、复合挤压和径向挤压。由于挤压处于三

向压应力状态,可显著提高金属的塑性。不仅塑性号的低碳钢,铝、铜合金可以挤压,而且塑性差的合金结构钢、不锈钢,甚至在一定变形量条件下某些高碳钢、轴承钢、以至高速钢也可以挤压成形[6]。图2为挤压时金属的流动。 图2金属流动的四个阶段 Figure2The four stages of metal flow 用作少无切削工艺的方法主要是冷挤压,冷挤压件尺寸精度IT7-IT6,表面粗糙度Ra值可达1.6-0.2μm,材料利用率可高达95%,并能提高机械性能[2]。 2挤压技术的发展与现状 与其他技术塑性加工方法相比,挤压发出现较晚,而且初期发展非常缓慢,在很长一段时期内只对及中国软金属(铅和锡)进行挤压[3]。约在1797年[4],英国人布拉曼设计出了世界上第一台用于铅挤压的机械式挤压机。到19世纪末20世纪初,开始挤压较硬的有色金属。由于在挤压钢材时需要很大的挤压力,在当时不能解决挤压钢用的模具材料、适合的润滑剂与大吨位的压力机等问题。1910年出现了铝材挤压机,1927年出现了可移动挤压筒,并采用了电感应加热技术。1930年欧洲出现了钢的热挤压,但由于润滑效果差,使制品缺陷多,模具寿命短,后来玻璃润滑剂的发明才使钢的挤压大范围地得到工业应用,而钢的冷挤压在1947年正式应用于民用工业。 在我国[5],建国前的冷挤压加工十分落后。建国后,冷挤压技术得到了发展。20世纪70年代末,国内不少高等学校、研究所和工厂开展了冷挤压技术的研究发展,初步

镁合金压铸工艺、安全操作要点实用版

YF-ED-J3457 可按资料类型定义编号 镁合金压铸工艺、安全操作要点实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

镁合金压铸工艺、安全操作要点 实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 随着镁合金压铸的兴起与发展,对镁合金 的压铸工艺和安全操作要点进行探讨,有利于 安全、优质地生产。针对镁合金的不同特点, 应该有特别的防护措施及设备。有的工厂仍用 传统的普通冷室压铸机进行镁合金压铸件的生 产,在生产中存在着潜在的危险及隐患。 1、压铸工艺 镁合金的压铸工艺同其他合金的压铸工艺 相似,但是由于镁合金的不同特性,在压力、 速度、温度及涂料的应用上又有着不同的地

方。 1.1压力 镁合金压铸分热室和冷室两种形式,压铸时压力也不同,热室机的压射比压在40MPa左右,冷室机的比压要高于热室机,通常的比压在40-70MPa. 另外重要的一点是增压建压时间,由于镁合金的凝固潜热低,镁合金在模具内的凝固时间要比铝合金的短的多,如果增压时间太晚的话,浇口和型腔的金属液已经凝固,增压也就失去意义.所以建压时间是衡量镁合金压铸机性能的一个重要因素,大部分压铸机的增压建压时间都在60ms以上,这时浇口的镁合金已经凝固,增压的压力无法传到模具型腔里面,优秀的压射系统建压时间通常在20ms以内.

冷挤压成型工艺及模具设计作业

华中科技大学 课程考试答题本 姓名 学号 专业班级 考试科目 考试日期 评分 评阅人

冷挤压成型工艺及模具设计作业 一、结构分析 此零件为一个较长的阶梯轴,单向、多阶梯、无孔,有24°倒角X2,相对简明。材料为20Cr(合金结构钢)。 二、坯料设计与挤压前处理 下料:由零件结构分析可知:加工此零件宜选用实心棒状坯料,在锯床上锯切下料。

挤压前处理 1.软化处理:查表知,加热到860℃,保温14h,随炉冷却至300℃后空冷,密封光亮退火,硬度达到120-130HBS。 2.表面处理:参选碳钢与合金钢坯料的表面处理,即采用磷化处理,把钢坯料放在磷酸盐溶液中进行处理,金属表面发生溶解和腐蚀,形成一层很薄的磷酸盐盖层。 3.润滑处理:工业猪油或机油拌二硫化钼

三、工艺设计与对比分析 工艺方案一:A 正挤压+B 镦粗 (1)由UG 三维图测得零件体积Vp=256506.9079mm 3 修边余量体积Vx=Vp*(3%~5%) 毛坯体积取V0=Vx+Vp=(264202~269322mm 3) 由零件尺寸可以初步选取毛坯直径d0=36mm , h=260mm ,经验算知所选毛坯直径在上述范围之内。则设计第一步正挤压和第二步镦粗的模 具示意图如下图所示: 毛坯 凸模1 凹模1 凸模2 凹模2

则其相应的工步图为: 成形力计算与设备选择: A正挤压第一步:εA=(362-27.52)/27.52=41.6% 由下表知,单位挤压力取下端小值p=1400Mpa 则F=pA0=1400x3.14x362/4=1424KN B镦粗第二步:εA=(79.1-33.3)/79.1=57.8% 由下表可知,单位挤压力p=950Mpa 则F=pA0=950x3.14x362/4=966KN

挤压工艺与模具设计

挤压工艺及模具设计Extrusion Technology and Mould Design

一、挤压工艺分类 挤压可分为以下三类: 1)冷挤压,又称冷锻,一般指在回复温度以下(室温)的挤压。 2)温挤压,一般指坯料在金属再结晶温度以下、回复温度以上进行的挤压。对于黑色金属,以600℃为界,划分为低温挤压和高温挤压。 3)热挤压,指坯料在金属再结晶温度以上进行的挤压。

1)冷挤压工艺 冷挤压是在冷态下,将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及一定力学性能的挤压件。 冷挤压与热锻、粉末冶金、铸造及切削加工相比,具有以下主要优点: 1)因在冷态下挤压成形,挤压件质量好、精度高、其强度性能也好; 2)冷挤压属于少、无切削加工,节省原材料; 3)冷挤压是利用模具来成形的,其生产效率很高; 4)可以加工其它工艺难于加工的零件。 。

2)温挤压工艺 温挤压成形技术是近年来在冷挤压塑性成形基础上发展起来的一种少无切削新工艺,又称温热挤压。它与冷、热挤压不同,挤压前已对毛坯进行加热,但其加热温度通常认为是在室温以上、再结晶温度以下的温度范围内。对温挤压的温度范围目前还没有一个严格的规定。有时把变温前将毛坯加热,变形后具有冷作硬化的变形,称为温变形。或者,将加热温度低于热锻终锻温度的变形,称为温变形。 从金属学观点来看,区分冷、热加工可根据金属塑性变形后有无加工硬化现象存在来决定似乎更合理些。在金属塑性变形后存在加工硬化现象这个过程称为冷变形及温变形。

3)热挤压工艺 热挤压是几种挤压工艺中最早采用的挤压成形技术,它是在热锻温度时借助于材料塑性好的特点,对金属进行各种挤压成形。目前,热挤压主要用于制造普通等截面的长形件、型材、管材、棒料及各种机器零件等。热挤压不仅可以成形塑性好,强度相对较低的有色金属及其合金,低、中碳钢等,而且还可以成形强度较高的高碳、高合金钢,如结构用特殊钢、不锈钢、高速工具钢和耐热钢等。

镁合金研究现状及发展趋势

镁合金研究现状及发展趋势 摘要:镁合金作为21世纪的绿色环保工程材料之一,近年来已成为学术界的一个研究热点。本文主要综述了镁合金的研究进展和应用,介绍了耐热、耐蚀、阻燃和高强高韧等高性能镁合金材料的最新发展。还介绍了镁合金成型技术的研究成果,最后展望了高性能镁合金的发展前景。 关键词:镁合金;高强高韧;成型技术;应用 1.引言 镁(Mg)是地球上储量最为丰富的元素之一,在陆地、湖泊和海洋中都广为分布,例如,其在地壳表层金属矿资源中的含量达2.3%,仅次于占8.1%的铝和5%的铁,居第三位;海水中的镁含量达到2.1×1015吨,可以认为是取之不尽、用之不竭的元素[1]。此外,我国的白云石矿储量、菱镁矿以及原镁的产量位列世界镁资源储量首位[2]。同时,随着当前钢铁行业中铁矿石等资源的日趋紧张,开发和利用镁作为替代材料是必然的趋势。被誉为“二十一世纪绿色金属结构工程材料”的镁合金是目前所知金属结构材料中最轻的,与其他同类材料相比,它具有密度小,比强度、比刚度较高,可以回收再利用且机加工性能优异,阻尼减震性好,电磁屏蔽效果佳等一系列优点,因此在交通运输(如汽车、摩托车、自行车等工业)、航空航天、武器装备、计算机通讯和消费电子产品等领域具有广阔的应用前景[3],但其使用量与铝合金和塑料相比还相当少[4]。 目前,从全球镁合金研发状况看,发展方向如图1所示[5],我国在镁合金材料的应用研究与产业化方面也己取得重大进展,形成了从高品质镁材料生产到镁合金产品制造的完整产业链,为我国实现由镁资源大国向镁应用强国的跨越奠定了坚实的基础。

图1 镁合金的研发方向[5] Fig. 1 Directions of Mg alloy development 2.镁合金的特点及分类 通过在纯镁中添加其他化学元素,可显著改善镁的物理、化学和力学性能。但镁合金同时存在着显著的缺点,下面对镁合金的优缺点进行简要的阐述。 2.1镁合金的优点[6 ~ 8] 1)密度小、质量轻。镁合金是目前工业应用中最轻的金属结构材料,根据合金成分的不同,其密度通常在1.75-2.10g/cm3范围内,约为铝的2/3,钢的1/4。 2)比强度、比刚度高。镁合金的比强度高于铝合金和钢铁,但略低于比强度最高的纤维增强塑料。其比刚度与铝合金和钢铁相当,但却远高于纤维增强塑料。镁合金材料与其他相关材料的物理性能和力学性能分析比较如表1所示。 表1 镁合金和相关材料的物理和力学性能比较 Tab. 1 The comparison of physical and mechanical properties between magnesium alloy and other materials [9] 材料抗拉强度/Mpa 屈服强度/Mpa 延伸率/% 弹性模量/Gpa 比强度镁合金AZ31 251 154 13.8 45 141 镁合金AZ91 275 145 13.8 45 151 镁合金AM60 240 140 15 45 134 铝合金380 315 160 3 71 106 碳钢517 140 22 200 80 塑料ABS 35 - 40 2.1 41 塑料PC 104 - 3 6.7 102 3)吸震阻尼性能好。镁合金与铝合金、钢、铁相比具有较低的弹性模量,在同样受力条件下,可消耗更大的变形功,具有降噪、减振功能,可承受较大的冲击震动负荷。镁合金具有极好的滞弹吸震能力,其抗冲击性是铝合金的10倍,塑料的20倍。 4)良好的铸造性能。镁与铁的反应低,熔炼时可用铁坩埚,熔融镁对坩埚的侵蚀小,压铸时对压铸模的侵蚀小,与铝合金压铸相比,压铸模使用寿命可提高2-3倍,通常可维持20万次以上。镁合金的比热和结晶潜热小,所以流动性

变形镁和镁合金牌号和化学成分

变形镁及镁合金牌号和化学成分 (送审稿)编制说明 1 工作简况 1.1任务来源 随着当今世界对结构材料轻量化、减重节能、环保以及可持续发展的要求日益提高,镁合金产品展现出广阔的应用前景。镁合金具有密度低,比强度和比刚度高,电磁屏蔽效果好,抗震减震能力强,易于机加工成形和易于回收再利用等优点,在航空、航天、汽车、3C产品以及军工等领域都具有巨大的应用潜力。尤其是近几年来,国家新材料产业规划中,镁合金以其自身的优点更是作为十二五期间重点推广和应用的金属材料。 随着镁合金应用领域的不断拓展,新型镁合金的研究与投入应用也是层出不穷。其中具有典型意义的产品包括3C行业用超轻镁锂系列合金的研发成功,更是突破了镁合金原有的合金系列;镁合金稀土系高强耐热镁合金的不断深入研究,更是将镁合金的品种和应用推向了更高更广的领域。GB/T 5153-2003国家标准中规定的原有的合金牌号和化学成分已经无法满足新型镁合金生产、使用与发展的要求,修订和完善本标准势在必行而且迫在眉睫,镁合金行业的蓬勃发展需要一部完善的统一的国家标准对镁合金牌号与化学成分进行统一和规范。 国标委综合[201×]×××号文件及中国有色金属工业协会中色协综字[201×]×××号文件,下达了编制《变形镁及镁合金牌号和化学成分》国家标准的任务,并确定了东北轻合金有限责任公司为编写单位。 1.2 起草单位 东北轻合金有限责任公司(原东北轻合金加工厂)简称东轻公司,是作为“一

五”期间原苏联援建的156项重点工程中的2项建设发展起来的新中国第一个铝镁合金加工企业。2008年被国家有关部委认定为国家级高新技术企业。 东北轻合金有限责任公司现生产能力8.25万吨,生产《天鹅》牌铝、镁及其合金板、带、箔、管、棒、型、线、锻件和深加工制品等18类产品,228种合金,公司每年有10%左右的产品远销美国、日本、新加坡等16个国家和地区。 东轻公司现已装备各类铝镁加工设备7000余台套,其中有2000mm四重可逆式热轧机、1700mm四重可逆式冷轧机、50MN卧式挤压机等,以及从美国、德国、意大利等国引进的1400mm薄板冷轧机、1200mm和1350mm箔材轧机、16MN油压机等先进设备,其中从美国引进的40MN拉伸机是我国第一台铝合金厚板拉伸机。 目前东轻公司投资40多亿元建设改造项目,包括年产5万吨中厚板项目与年产15万吨高精板带材项目,已全部投入生产,东轻公司在铝加工行业的地位与竞争优势将进一步得到巩固和增强。 1.3 主要工作过程 2014年3月主编单位根据标准的起草原则和企业的一些内控技术指标及检验数据毫无保留的撰写了标准的草案稿,2014年3月26日~29日在扬州会议中心召开《变形镁及镁合金牌号和化学成分》国标的讨论会,与会专家对标准的讨论稿进行了认真、热烈的讨论,撰写了会议纪要,形成了征求意见稿。5月广泛征求相关单位意见,对标准进行修订,形成标准的预审稿。2014年11月3日~6日在宜兴凯宾斯基饭店召开《变形镁及镁合金牌号和化学成分》国标的预审会,与会专家对本标准逐条进行了讨论,提出了宝贵意见,撰写了会议纪要,形成了标准的送审稿。 2 标准制定的主要原则和依据

镁合金的分类及特点

镁合金的分类及特点 镁合金的分类 镁合金是以金属镁为基体,通过添加一些其它的元素而形成的合金,镁合金中添加的合金元素主要有Al、Zn、Mn、Si、Zr、Ca、Li以及部分稀土族元素等[10],一般说来镁合金的分类依据有以下三种:合金化学成分、成形工艺和是否含锆。 镁合金按合金化组元数目可分为二元、三元和多元合金体系。常见的镁合金体系一般都含有不止一种合金元素。但在实际中,为了分析方便,简化和突出合金中主合金元素的作用,可以把镁合金分为Mg-Mn、Mg-Al、Mg-RE、Mg-Th、Mg-Li 和Mg-Ag 等合金系列[11]。 ' 按合金中是否含锆,镁合金可划分为含锆和不含锆两大类。最常见的含锆镁合金系列为:Mg-Zn-Zr、Mg-RE-Zr、Mg-Th-Zr、Mg-Ag-Zr 系列。不含锆镁合金有:Mg-Zn、Mg-Mn和Mg-Al 系列。目前应用最多的是不含锆压铸镁合金Mg-Al 系列。含锆和不含锆镁合金中均既包含着变形镁合金,又包含着铸造镁合金。锆在镁合金中的主要作用就是细化镁合金晶粒。含锆镁合金具有优良的室温性能和高温性能。遗憾的是Zr不能用于所有的工业合金中,对于Mg-Al 和Mg-Mn 合金,由于冶炼时Zr与Al及Mn形成稳定的化合物,并沉入坩埚底部,无法起到细化晶粒的作用[12]。 按成形工艺镁合金可分为两大类,即变形镁合金和铸造镁合金。变形镁合金是指可用挤压、轧制、锻造和冲压等塑性成形方法加工的镁合金。铸造镁合金是指适合采用铸造的方式进行制备和生产出铸件直接使用的镁合金[11]。变形镁合金和铸造镁合金在成分、组织和性能上存在着很大的差异。目前,铸造镁合金比变形镁合金的应用要广泛,但与铸造工艺相比,镁合金热变形后合金的组织得到细化,铸造缺陷消除,产品的综合机械性能大大提高,比铸造镁合金材料具有更高的强度、更好的延展性及更多样化的力学性能[13]。因此,变形镁合金具有更大的应用前景。 主合金元素的作用 根据镁合金的强化效果,其合金的元素可以分为三类[14,15]: 1)既提高强度又提高韧性的合金元素,按作用效果顺序为: ( 强度标准:Al、Cn、Ag、Ce、Ga、Ni、Cu、Th;韧性标准:Th、Ga、Zn、Ag、Ce、Ca、Al、Ni、Cu; 2)强化能力较低,提高韧性的元素:Cd,Ti和Li; 3)强化效果较好,但使韧性降低的元素:Sn、Pb、Bi和Sb。 Mg-Zn-RE系合金的研究现状 Mg-Zn系合金 》 纯粹的Mg-Zn二元合金在实际中几乎没有得到应用,因为该合金的铸造性差,合金组织粗大,容易出现偏析和热裂等铸造缺陷,对显微疏松非常敏感。但Mg-Zn合金有一个最为明显的优点,就是可以通过时效处理来提高合金的强度。所以该合金的进一步的发展就是寻找新的合金添加元素,达到细化晶粒,使组织均匀化,减少合金显微疏松[1,16,17]。在Mg-Zn 合金中加入Cu元素,会使合金的韧性和时效硬化明显增加,这是因为Cu元素能提高Mg-Zn 合金的共晶温度,因而可在较高的温度固溶,使更多的Zn、Cu溶于合金中,增加了合金随后的时效强化效果[16]。Mg-Zn合金中引入Cu元素的缺点是导致合金的耐蚀性降低;Zr是对

变形镁合金及其成形工艺

变形镁合金及其成形工艺 镁合金具有密度低、比强度和比刚度高、电磁屏蔽效果好、抗震减震能力强、易于机加工成形和易于回收再利用等优点,在航空、航天、汽车、3C产品以及军工等领域的具有广泛的应用前景和巨大的应用潜力。目前,镁合金的应用大多数是以模铸、压铸以及半固态成形等工艺来生产产品。这些工艺生产的产品,存在着组织部太致密、成分偏析,最小厚度偏大、力学性能偏低等缺憾,不能充分发挥镁合金的性能优势。研究和实践表明,塑性变形能够改善镁合金的组织和力学性能,大大提高镁合金的强度和塑性,同时,很多领域重要结构材料需要用的板材、棒材、管材和型材等只能用塑性成形工艺来制取,而不能利用铸造等工艺来生产,所以,变形镁合金及其成形工艺的研究越来越受到重视。 但是,由于镁合金晶体结构是密排六方(Hcp),塑性较差,成形困难,成材率低,加之人们对镁合金易燃、不耐腐蚀等缺点的过分夸张甚至是错误的认识,导致变形镁合金没有得到大规模应用,变形镁合金及成形工艺的研究没有引起足够的重视和深入的开展。目前变形镁合金的板材、型材以及锻件等生产仍集中在航空航天及军事等高端领域或部门,没有普及到一般民用领域。在当今社会节约资源和减少污染成为社会可持续发展战略的要求的背景下,急需加快研究步伐,转变观念,以推动变形镁合金镁在民用领域的应用。本文旨在总结变形镁合金及成形工艺的成果,探讨变形镁合金及其成形工艺的研究方向。 变形镁合金的合金系 变形镁合金主要分为四个系列(美国标准):AZ系列(Mg-Al-Zn),AM系列(Mg-Al-Mn),AS系列 (Mg-Al-Si),AE系列(Mg-Al-Re)。中国变形镁合金牌号为MB系列。几个主要工业发达国家的变形镁合金标准及牌号见表1所示。变形镁合金以AZ系应用最为普遍,其中又以MB2应用最为广泛。需要指出的是变形镁合金中MB2的合金成分与AZ31B不同,其力学和成形性能比AZ31B稍差些,介于AZ31B和AZ31C二者之间。 表1 变形镁合金牌号对照表

相关文档