文档库 最新最全的文档下载
当前位置:文档库 › 纳米ZrO2粉体的热处理研究 - ※※--材料复合新技术信息门户

纳米ZrO2粉体的热处理研究 - ※※--材料复合新技术信息门户

纳米ZrO2粉体的热处理研究 - ※※--材料复合新技术信息门户
纳米ZrO2粉体的热处理研究 - ※※--材料复合新技术信息门户

纳米ZrO2粉体的热处理研究

近些年来,ZrO2由于其特殊的性能受到了重视,用它制作的产品已经在许多工业领域用于实际。众所周知,陶瓷部件的质量依赖于原料的质量,因此许多学者将制备ZrO2粉体作为了研究重点,国家自然科学基金委也在无机非金属的自然科学学科发展方向上指出了纳米粉体的制备科学与工程是优先发展的方向。目粉的方法一般有水解法、喷雾热解法、共沉淀法、水热法和等前制备纳米ZrO

2

离子体法等,其中共沉淀法因其适于大规模生产和成本低廉等特点而被广泛应用。在共沉淀方法中,热处理是很重要的一步。在粉体制造工艺中热处理的主要目的有三:(1)通过去除残留的有机物及酸根来提高粉体纯度;(2)调控粉体的比表面积。粉体的比表面积与其颗粒度之间应遵从下述关系:

(1)

式中,、s、ρ分别为该粉体的平均粒径、比表面积及密度;k为一常数,它随粉体颗粒形状不同而在6~11之间变化,对于严格的球形粒子足k=6。当然,这里未考虑颗粒之间的团聚问题。(3)调控粉体的物相,亦即调控其微观结构。Kobayashi、Khor等讨论了等离子法制备纳米ZrO2粉体中热处理的作用;Gutzov、Dai Xiaming等对热处理与化学成分、荧光光谱的影响做了研究。系统研究并沉

粉体性能关系的工作尚未见报道.

淀法中热处理与纳米ZrO

2

1.实验方法

所用粉末样品均是以沉淀法制备,各样品的热处理参数如表1所示。

表1样品热处理参数一览表

处理后的样品粉末的形貌和粒径是用TEM观测,部分样品又用X射线小角散射方法(SAXS)测定其粒径;比表面积是用BET模型以氮吸附法测量;粉体的物

)的体积含量按下式计算

相用XRD检测,其单斜相(m-ZrO

2

式中,It(101)、Im(111)、Im(101)分别是t- ZrO

2的(101)、m-ZrO

2

(111)

和(101)的强度,Xm为双相体系中m- ZrO2 的积分强度份额。

2结果与讨论

2.1粉体的几何形态

各样品TEM照片如图1所示。可见所有样品粉体的一次颗粒形状都基本上是等轴的。它们的区别只在于:(1)在较低温度,比如400℃处理时,其颗粒的轮廓线比较圆滑,而在较高温度下则变成多边形了。这显然是由于晶化程度提高或晶粒长大所致,在同一处理温度下,延长时间也有同样的效果,但不如提高温度来得明显;(2)在较低温度下处理较短时间,其颗粒间的相互粘连亦即团聚较轻,而高温下特别是处理较长时间则粘连较重。这实际上是高温下物质扩散的结果。

2.2比表面积和粒径

热处理后粉体比表面积(SSA)测试结果如表2所示。

表2粉体比表面积、粒径与热处理条件的关系

由表中可见,在试验的温度和时间范围内,随着热处理温度的升高,SSA 急速下降。随着处理时间的延长,SSA也下降。但除开始阶段如400℃外,下降速度较慢。

如前所述,我们可据比表面积数据来计算出相应样品的粒径人与人的关系,再利用几个M测定得的粒径八,并参考对照TEM照片即可以估算出是值,对于本系列样品足二6.5,于是各样品粉末的粒径人可以很容易地计算出来,一同列于表2。为清楚起见将人~T(t)的关系绘得一组曲线如图人

从颗粒的角度看,粉末的热处理实际上是其晶化(包括相变)和团聚长大的过程。晶化过程是物质分子的重新排列,在一定温度下,某种相的出现或消失取决于其热力学参数。这一点将在后文中专门讨论,这里仅对粒子长大过程做一简单探讨。

我们可以将粉末热处理过程看作是一种无液相的烧结过程,只不过在陶瓷成型后的坯体中粉粒被强行挤压到一起,就是说它们之间的距离比较小,而松散粉体热处理时粉粒间的距离则较大,但松散粉样中的团聚体内粒间距则很小。观察分析热处理样品的TEM照片,可以认为粉末颗粒的长大主要是靠两种机制进行的:

(1)气相扩散导致小颗粒消失、大颗粒长大。据凯尔文(Kelvin)理论,曲率半径为r的粒子表面的蒸汽压p与平面固体的蒸汽压p0

之间应遵循如下关系

(4)

式中,M、ρ、γ分别为该物质的分子量、密度及表面能;R、T则为气体常数和处理温度。这种表面曲率变化引起的物质迁移对粒径很小的纳米粒子是必须考虑的。从TEM照片可见在4—3样品中有许多单独存在的粒径仅为几纳米的小粒子,而随着热处理温度的提高和时间的延长,这些小粒子全部消失了,最可能的机制就是由于蒸汽压的显著差异造成物质从小粒子上蒸发而到大粒子上沉积,最终导致小粒子消失而大粒子长大。

(2)由团聚而合并成大颗粒。从10-6及10-9的TEM照片中(图1)可以看出,存在着另一种颗粒长大机制:蒸发一冷凝过程对相同曲率的粒子来讲应以同样速率进行,所以颗粒的长大应是基本上同步的,但由于凹处的曲率为负,从凸面上蒸发的

ZrO2分子会在这里沉积下来。于是当两个或多个颗粒挨得很近时,由于这一机制的作用会将其连接起来,接着通过表面扩散填平其颈部,进而在降低表面能这一热力学驱动力作用下长成一个等轴晶粒。当然它还可以继续与其它颗粒重复这一过程,可将这一长大机制示意如图(图3)。从TEM照片分析可以认定,这一模型是颗粒长大的主要机制。

正是由于颗粒粘连和长大才导致比表面积的减小。按照双球模型的烧结理论,在比表面积的减少量△S与热处理时间t之间存在着一个函数关系如下式

r=kt

式中,S0为初始比表面积;△S是处理t时间后的比表面积的减少量;γ和k是为两个相关常数,利用表中的相应数据可以很容易地计算得600,且1000℃下的是k值分别为0.023和0.045。而k本身具有速度常数性质,它可以表示如下式

lnk=A+(6)

式中,A为一常数;R,T及Q则分别为气体常数(8.31J/rnol·K),温度和该过程的激活能。同样代入表2的相关数据,可以求得Q=15492.4J/mol)。这一数值大大低于通常氧化物陶瓷的烧结过程激活能(~500kj/mol)。造成这一偏差的可能原因除了模型比较粗略而造成的误差外,主要在于:(1)这里所处理的粉体是纳米粉而不是通常的粗粉。需知颗

粒越大,烧结过程越难。(2)这里所讨论的是纳米粉的长大问题而不是要达到材料致密化的烧结过程。其根本原因是:物质的传递是要借助于扩散过程来进行的,而扩散可分为体积扩散、界面扩散及表面扩散,它们各自的扩散系数之比:D V:D g:Ds=10-14:10-10:10-7。这就可以很好理解纳米粉易烧结更易长大这一现象了。

2.3微观结构

纯ZrO2材料在1170℃以下,其热力学稳定态是单斜晶系即m-ZrO2,t-ZrO2只是在1170~2370℃范围内才是热力学稳定的。从各样品的XRD谱得知,虽然它们的主相均为m-ZrO2飞,但凡是处理温度在600℃以下者全部都有t-ZrO2存在,在800℃下处理3h也仍然含5%的t一ZrO2,只是在800℃下处理9h 及1000℃下处理3h以上t-ZrO2才消失。对此现象只能从热力学观点来解释。按热力学理论,体系总自由能应为体积自由能与表面能

之和

G=Gv+Gs=πr3g+4πr3б(7)

发生相变的驱动力△G=△Gv十△Gs=πr3△g+4πr3△б

由于t-ZrO2的表面能小于m-ZrO2,因此即使在m—ZrO2稳定的低温下也存在一个临界半径r0,对于小于此半径的ZrO2颗粒,满足

πr3△g t+4πr3△бt < πr3△g m+4πr3△бm (8)

式中,g t,бt及g m,бm分别为t-ZrO2和m-ZrO2的体积自由能和表面自由能。R.C.Garvie,等计算出这一临界粒径ro≈30nm。本文作者在解释喷雾热解ZrO2粉的相成因时也曾指出过,高温相(t,C-ZrO2)更接近无定形,而所有这些粉粒开始都有是从无定形出发的,因此可以认为它们在热处理过程中会首先形成t-ZrO2,随着热处理温度的提高和时间的延长,一方面粒子长得越来越大,另一方面ZrO2分子获得越来越大的动能,于是越来越多的ZrO2粉粒由t 相转变为m相。800℃下9h时没有t—ZrO2,说明此时才完成这一转变。纳米ZrO2粉体中t-ZrO2含量与热处理的关系可以参见图4。

3结论

(1)用共沉淀工艺合成并经适当的热处理可以得到一次粒子为等轴状的纳米ZrO2粉体。

(2)纳米ZrO2粉的比表面积随处理温度的升高和时间的延长而减小。计算表明,这一过程的激法能比一般粗粉烧结过程的激活能要低得多,说明纳米粉的团聚过程很易发生。

(3)以此工艺制备的纯ZrO2纳米粉通常含有单斜相和四方相两种微观结构,其t-ZrO2含量与热处理温度和时间有关。

钇稳定氧化锆纳米粉体制备技术

第25卷第6期 硅 酸 盐 通 报 Vol .25 No .6 2006年12月 BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December,2006  钇稳定氧化锆纳米粉体制备技术研究进展 王洪升1,王 贵2,张景德1,徐廷鸿1 (1.山东大学材料液态结构及其遗传性教育部重点实验室,济南 250061;2.济南大学泉城学院,济南 250061) 摘要:纳米YSZ 是一种新型的高科技材料,有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势,综述了纳米级YSZ 的制备技术,特别就目前研究比较多的水热法和反胶团法给予了重点阐述,并就目前制备过程中存在的问题,解决方法及发展方向作了介绍。 关键词:YSZ;纳米粉体;团聚;制备 The Prepara ti on Progresses of Y SZ Nanom eter Powder WAN G Hong 2sheng 1,WAN G Gui 2,ZHAN G J ing 2de 1,XU Ting 2hong 1(Keb Lab .of L iquid Structure and Heredity of MaterialsM inisity of Educati on,Shandong University,J inan 250061,China; 2.Quancheng College of J inan University,J inan 250061,China )Abstract:U ltrafine YSZ particles are a ne w type of advanced material,which has wide and significant uses .Varieties of p reparati on and drying methods of YSZ powder were revie wed in this paper on the basis of ne w p r ogress and devel op ing trends,es pecially the hydr other mal method and the reverse m icelles were described in detail .The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ;nanometer powder;aggregati on;p reparati on 作者简介:王洪升(19822)男,硕士.主要从事氧化锆气敏陶瓷的研究.E 2mail:wanghongsheng@mail .sdu .edu .cn Y 2O 3稳定的Zr O 2(YSZ )固体电解质,具有较高的氧离子导电性,良好的机械性能,优秀的耐氧化和耐腐蚀性[1]以及不与电极材料反应[2]等优点而成为制作氧传感器、高温固体燃料电池、压电陶瓷、铁电陶瓷以及氧泵等的主要材料,而氧化钇稳定氧化锆粉体超细的晶粒粒度、颗粒的均匀性和合理的成分配比是获得高离子电导性能和良好机械强度YSZ 固体电解质的关键。因此纳米YSZ 微粒的制备一直是纳米材料制备科学中的一个热点,目前人们研究、使用了共沉淀法,s ol 2gel 法、水热法、共沉淀-凝胶法、醇-水溶液法、共沸蒸馏技术、微波辅助法、反胶团法或微乳液法等多种制备氧化锆粉体的方法。 1 粉体的制备方法 1.1 共沉淀法 图1 化学共沉淀法工艺流程Fig .1 Flow chart of the chem ical co 2precip itation method 含有多种阳离子的溶液中加入沉淀剂后,所有离子同时沉 淀的方法称为共沉淀法[3]。一般在可溶性锆盐和钇盐的混合 水溶液中,加入氨水、苛性钠、(NH 4)2CO 3或尿素等碱性物质, 从而生成锆和钇的氢氧化物沉淀,然后对沉淀物经洗涤、干燥、 热处理、粉碎即得超细粉末,该法不仅工艺简单(如图1),对设备要求不高,成本低,重复性好,而且可制得各种晶型的氧化物

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

纳米氧化锆汇总

二氧化锆纳米材料 一.用途:纳米氧化锆本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,由于其卓越的耐热绝热性能,20世纪20年代初即被应用于耐火材料领域。 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧陶瓷的新概念以来,对氧化锆的研究开始异常活跃。——利用其高硬度、抗磨损、耐刮擦、不燃的特性,极大的提高涂料的耐磨性和耐火效果。由于其导热系数低、并具备特殊光学性能,可用于军事、航天领域的热障涂料及隔热涂料。纳米复合氧化锆具备特殊光学性能,对紫外长波、中波及红外线反射率达85%以上;且其自身导热系数低,可提高其隔热性能。——由于不同晶型纳米氧化锆体积不同,可制备具备自修复功能的功能性涂料。 纳米复合氧化锆行业主要企业产能分布

二.目前的制备方法:化学气相沉积(CVD)法,液相法(包括醉盐水解法,沉淀法,水热法,徽乳液法,溶液姗烧法等),徽波诱导法及超声波法等几大类。 三.具体介绍方法:利用溶胶-凝胶法制备出高度有序的二氧化锆纳米管 简介:溶胶一凝胶法是指金属醉盐或无机盐经水解形成溶胶,然后使溶胶一凝胶化再将凝胶固化脱水,最后得到无机材料.在无机材料的制备中通常应用溶胶—凝胶方法,与传统的合成方法相比,具有高纯度、多重组分均匀以及易对制备材料化学掺杂等优点.该方法要使前驱体化合物水解形成胶体粒子的悬浮液(溶胶)后,成为聚集溶胶粒子组成凝胶,凝胶经过热处理得到所需的物质.溶胶—凝胶沉积法广泛用于在模板的纳米通道中制备纳米管或线.本文主要结合溶胶—凝胶法和模板合成法制备二氧化锆纳米管.由于锆的无机盐价格便宜且对大气环境不敏感[,我们利用锆的无机盐(氯化氧锆)作为前驱体溶液制备稳定的溶胶. 具体过程:

纳米氧化锆的应用

纳米级二氧化锆的应用 二氧化锆是一种具有高熔点、高沸点、导热系数小、热膨胀系数大、耐磨性好、抗腐蚀性能优良的无机非金属材料。其纳米材料因具有比较高的比表面积而有许多重要用途,近几年来已成为科研领域中的一个热点,并被广泛应用于工业生产中。由它可以制备出多种功能的陶瓷元件,在固体氧化物燃料电池热障涂层材料、催化剂载体润滑油添加剂气敏性耐磨材料等方面都有一定的应用和发展。 结构陶瓷方面,由于纳米二氧化锆陶瓷具有高韧性、高抗弯强度和高耐磨性,优异的隔热性能,热膨胀系数接近于钢等优点,因此被广泛应用于结构陶瓷领域。主要有:Y-TZP磨球、分散和研磨介质、喷嘴、球阀球座、氧化锆模具、微型风扇轴心、光纤插针、光纤套筒、拉丝模和切割工具、耐磨刀具、表壳及表带、高尔夫球的轻型击球棒及其它室温耐磨零器件等。 钇稳定纳米二氧化锆(优锆纳米材料)粒径小,纯度99.9%,平均粒径20-40纳米,烧出来的陶瓷通透性好,表面光洁度高,适合做牙科陶瓷,刀具陶瓷,结构陶瓷,生物陶瓷。 纳米氧化锆粉体(优锆纳米),具有纳米颗粒尺寸细、粒度分布均匀、无硬团聚和很好的球形度。生产中做到了精确控制各组分含量,实现不同组分之间粒子的均匀混合,严格控制颗粒尺寸、形态和结构,保证了产品的质量。利用该产品掺杂不同元素的导电特性,在高性能固体电池中用于电极制造,成为电池专用。 纳米氧化锆粉体(40-50纳米)分散在水相介质中, 形成高度分散化、均匀化和稳定化的纳米氧化锆液(苏州优锆纳米材料)。纳米氧化锆分散液除具有纳米粉体的特性外,还具有更高的活性、易加入等特性。纳米氧化锆分散液做到产品中纳米材料以单个纳米粒子状态存在,客户使用能用到真正的纳米材料,用出真正的纳米效果,大大提高产品的性能。纳米氧化锆分散液因为达到了完全单分散纳米状态,所以和其他材料表面接触后不是普通粉体材料的吸附,而是和化学键结合一体,所以有极高的稳定性,可以极大的提高耐水洗,耐磨、抗菌等性能,极大地发挥纳米材料的作用。

纳米粉体制备方法总结文档(最新版)

纳米粉体制备方法总结文档(最新版) Summary document on preparation methods of nano powder (latest edition) 汇报人:JinTai College

纳米粉体制备方法总结文档(最新版) 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 1、化学沉淀法: 沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质 的沉淀法、沉淀转化化、直接沉淀法等。 共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完 全沉淀的方法称为共沉淀法共沉淀法.可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体.与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质,生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。 均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中 的沉淀均匀出现,称为均匀沉淀法本法克服了由外部向溶液中直接加入沉淀剂而造成水热合成反应釜沉淀剂的局部不均匀性本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH4OH,

促使沉淀均匀生成制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd2(CO3)3等。 多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的 沸点,可大于100°C,因此可用高温强制水解反应制备纳米 颗粒[20]例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子又如 使酸化的FeCl3—乙二醇—水体系强制水解可制得均匀的Fe (III)氧化物胶粒。 沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化 剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚例如:以Cu(NO3)2·3H2ONi(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂, 加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末。该法工艺流程短,操作简便,但 制备的化合物仅局限于少数金属氧化物和氢氧化物。 2、化学还原法 水溶液还原法

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

粉体纳米材料的表面活性

作者简介:刘剑,女,1972年生,硕士研究生。1996~2001年就职于中国兵器工业第二一三研究所,担任国家“九五”重点预研项目“激光 引爆控制技术”主要完成人之一,及该项目“十五”预研立项人,并获得所级“科技进步三等奖”。此外还担任数个军品项目研制工作的课题负责人。2001年在理学院应用化学系功能材料专业深造,现在主要从事生物医学材料的表面改性研究。曹瑞军,博士,硕士导师。 开发应用 表面活性剂在纳米粉体制备中的应用 刘 剑 曹瑞军 郗英欣 (西安交通大学理学院应用化学系,西安710049) 摘 要 本文论述了表面活性剂在Al 2O 3纳米粉体制备、改性等方面的应用,并简要介绍表面活性剂在纳米粉体修饰中的作用。 关键词 表面活性剂,纳米微粒,Al 2O 3纳米粉体,表面修饰 Application of surfactants in preparation of nano 2particles Liou Jian Cao Ruijun Xi Y ingxin (School of Science ,Xi ’an Jiaotong University ,Xi ’an 710049) Abstract The functions of surfactants during the preparation ,modification and storage of nano 2particle Al 2O 3were discussed in this paper ,and application of surfactant in nano 2particles surface modification were brief described. K ey w ords surfactant ,nano 2particles ,nano -particles Al 2O 3,surface modification 纳米材料和技术是纳米科技领域富有活力、研 究内涵十分丰富的分支学科。近年来,纳米级超微粉是材料制备的热点。纳米材料的合成方法虽然很多,但若想合成超细的纳米级粉料而很少团聚或没有团聚,则很不容易,这是由于纳米微粒特殊的表面性质所致。纳米粉体具有如下的表面特性:(1)庞大的比表面积;(2)纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,并具有不饱和性质,键态严重失配,出现许多活性中心,因而极易与其他原子相结合而趋于稳定,所以,具有很高的化学活性;(3)表面台阶和粗糙度增加,表面出现非化学平衡、非整数配位的化学价。 由于纳米粉体的巨大比表面,以致有巨大的表面G ibb 函数。而团聚将降低这种能量,这在热力学上是自发的。团聚可由各种键合形式聚集,一般而 言,若是由物理上的键合(如范德华力等)引起的团聚,称为软团聚。若是由化学上的键合(如氢健、桥氧键等)引起的团聚,称为硬团聚。软团聚可以用机械方法使之打开,而打开硬团聚就比较困难。微小粒子的团聚可能发生在合成阶段、干燥过程及后处理中,因此重要的是在粒子制备和处理的每一步都使粒子稳定而不团聚。表面活性剂常被用于合成过程中,制备分散粒子或分散已合成的团聚的超细粒子。在液相介质中,利用分散剂分散超细粒子的方法已得到广泛研究。表面活性剂对于纳米微粒的制备、改性和保存都具有非常重要的作用。 1 表面活性剂分散微粒的机理 超细微粒的团聚是由于范德华力的吸引而造成的,或由于使体系的总表面能趋于极小化的驱动力 第31卷第7期 化工新型材料 Vol 131No 172003年7月 N EW CHEMICAL MA TERIAL S J uly 2003

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

钇稳定氧化锆纳米粉体制备技术解析

第25卷第6期硅酸盐通报 Vol . 25No . 62006年12月BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December, 2006 钇稳定氧化锆纳米粉体制备技术研究进展 王洪升, 王贵, 张景德, 徐廷鸿1211 (1. 山东大学材料液态结构及其遗传性教育部重点实验室, 济南250061; 2. 济南大学泉城学院, 济南250061 摘要:纳米YSZ 是一种新型的高科技材料, 有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势, 综述了纳米级YSZ 的制备技术, 特别就目前研究比较多的水热法和反胶团法给予了重点阐述, 并就目前制备过程中存在的问题, 解决方法及发展方向作了介绍。 关键词:YSZ; 纳米粉体; 团聚; 制备 The Prepara ti on Progresses of Y SZ Nanom WAN G Hong 2sheng , WAN G Gui , J , XU 2. Quancheng College of J China 1211(Keb Lab . of L iquid Structure and Heredity of MaterialsM J inan 250061, China; Abstract:U ltrafine ne advanced material, which has wide and significant uses . methods of YSZ powder were revie wed in this paper on the basis of ne w op trends, es pecially the hydr other mal method and the reverse m icelles were described in The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ; nanometer powder; aggregati on; p reparati on

粉体纳米材料制备方法及其应用前景

收稿日期:2000-03-14 作者介绍:李芳宇,1977—,南方冶金学院机械系98级研究生。 纳米粉体制备方法及其应用前景 李芳宇,刘维平 (南方冶金学院机械系,江西赣州341000) 摘 要:论述了纳米粉末材料的物理、化学及其他的一些特殊制备方法,并详述了纳米粉末材料在高强度、高韧性材料、电磁材料、光学材料、催化剂材料、传感器材料、医学和生物工程材料等领域的应用。关键词:纳米粉体;制备;应用 中图分类号:TQ029+.1 文献标识码:A 文章编号:1008-5548(2000)05-0029-04 近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。纳米颗粒一般在1~100nm 之间,处于微观粒子和宏观物体之间的过渡区域。它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。 在纳米粉体材料的研究中,它的制备、特性和应用是比较重要的方面,本文将着重介绍近期国内外的一些关于这些方面的研究现状。 1 纳米粉体材料的制备方法 1.1 物理法1.1.1 气体冷凝法 气体冷凝法(IGC ),其主要过程是在低压的氩、 氦等惰性气体中加热金属,使其蒸发,产生原子雾,经冷凝后形成纳米颗粒。纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。这种方法是制备清洁界面的纳米粉体的主要方法之一。1.1.2 测射法 用两块金属板分别作阳极和阴极,阴极为蒸发 用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。而且加大被溅射的阴阳表面可提高纳米微粒的获得量。该方法可有效制备多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。 1.1.3 高能机械球磨法 高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有较好的工业应用前景。它是将欲合金化的元素粉末混合起来[1],在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠球磨过程中粉末的塑性变形产生复合,并发生扩散和固态反应而形成合金粉末。由于该过程引入大量的粉末颗粒应变、缺陷以及纳米量级的微结构,使合金过程的热力学和动力学不同于普通的固态反应过程,有可能制备出用常规液态或气相法难以合成的新型合金。此外,通过高能机械球磨中气氛的控制与外部磁场的引入,使这一技术得到了较大的发展。1.2 化学法 1.2.1 固相配位化学法 固相配位化学法在物质合成方面特别是在利用固相配位化学反应合成金属簇合物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体制备方法。用此法制备氧化物纳米粉体的主要过程[2],就是首先在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。与液相合成法相比,具有纯度高、工艺简单、可缩短制备时间等特点。在400℃热分解就可得到平均晶粒尺寸约为10nm 具有纤锌矿结构的ZnO 纳米粉体。1.2.2 溶胶-凝胶法(sol -gel ) 溶胶-凝胶法是指在高分子界面活性剂存在及 第6卷第5期2000年10月 中 国 粉 体 技 术 China Powder Science and T echnology Vol 16No 15 October 2000

氧化锆纳米粉体的制备及其烧结性能研究

氧化锆纳米粉体的制备及其烧结性能研究

目录 第1章前言 (1) 1.1纳米材料概述 (1) 1.2纳米氧化锆及其陶瓷材料概述 (2) 1.2.1二氧化锆的结构与性质 (2) 1.2.2氧化锆纳米材料的研究进展 (5) 1.2.3纳米氧化锆粉体的制备 (6) 1.2.4氧化锆陶瓷材料的成型 (9) 1.2.5氧化锆陶瓷的烧结 (10) 1.2.6纳米氧化锆及其陶瓷的应用 (12) 1.3本课题研究目的及主要研究内容 (14) 1.3.1课题研究目的 (14) 1.3.2课题研究内容 (14) 第2章实验材料及方法 (16) 2.1实验试剂与仪器 (16) 2.2粉体制备实验步骤与流程 (17) 2.2.1实验步骤 (17) 2.2.2实验流程 (18) 2.3氧化锆陶瓷试样的制备 (20) 2.4纳米氧化锆粉体的测试与表征手段 (20) 2.4.1物相组成(X射线衍射)分析 (21) 2.4.2热重-差热(TG-DTA)分析 (21) 2.4.3红外光谱(FT-IR)分析 (21) 2.4.4形貌(TEM)分析 (22) 2.5烧结试样的性能测试 (22) 2.5.1密度的测定 (22) 2.5.2收缩率的测定 (22) 2.5.3抗弯强度的测定 (23) 2.5.4显微结构分析 (23) 第3章氧化锆纳米粉体合成工艺条件的研究与机理分析 (24) 3.1常压水热法制备氧化锆纳米粉体 (24) 3.1.1实验内容 (24)

3.1.2实验结果与讨论 (25) 3.2有机网络凝胶法制备ZrO2纳米粉体 (34) 3.2.1实验内容 (34) 3.2.2实验原理 (34) 3.2.3实验结果与讨论 (35) 3.3本章小结 (46) 第4章氧化锆纳米粉体的烧结性能研究 (47) 4.1烧结试样的密度测试与分析 (48) 4.2烧结试样收缩率的测试与分析 (50) 4.3烧结试样的抗弯强度测试与分析 (51) 4.4烧结试样的显微结构测试与分析 (52) 4.5本章小结 (57) 第5章结论 (58) 参考文献 (59) 致谢 (63) 攻读硕士期间发表论文及专利情况 (65)

ZnO纳米粉体材料的制备

实 验 2 ZnO 纳米粉体材料的制备 (一)实验类型:综合性 (二)实验类别:设计性实验 (三)实验学时数:16 (四)实验目的 (1)掌握沉淀法制备纳米粉体的工作原理。 (2)了解X-射线粉末衍射仪鉴定物相的原理。 (五)实验原理 纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。 合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线粉末衍射仪是分析材料晶体结构的重要工具。晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。这就是X射线衍射物相定性分析的方法的依据。 根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。 0.89cos D λ βθ= (λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角) (六)实验内容 1. 制备 以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。 2. 称量、计算产率 3. X-射线物相测定:计算晶粒尺寸 (七)实验要求 1、设计实验方案: (1)设计不同煅烧温度及时间 (2)设计不同原料比及模板剂 设计实验方案要求:方案必须切合实际,具有可操作性;尽量选择原料易得,反应条件温和,催化剂价廉,后处理方便,收率高及环境友好的方案。

氧化锆粉体制备及其应用

氧化锆粉体制备及其应用摘要: 本文重点介绍了氧化锆陶瓷原料制备工艺和性能覆其在蛄构瓷、功 能瓷、颜料与宝石、涂层、纤堆和耐火材料等方面的应用。对如何使氧化铬畸瓷产 业化远一问题,提出了自己的见解。 关键词:氧化锆;高性能陶瓷;制备;应用 Abstract:This paper focuses on the zirconia ceramic material preparation process and performance review of its structure in the mantis porcelain, functional ceramics, pigments and precious stones, coating, fiber and other aspects of heap and refractory applications. Chromium oxide on how to make porcelain produced abnormal Much a problem of industry, put forward their own views. Keywords: zirconia; high-performance ceramics; preparation; application 一、引言 随着科学技术的发展,人们对材料的需求也在不断地提高。当今世界新型陶瓷的发展趋向是:原料超细化(含纳米级细度),发展了材料复台、成型与烧结工艺、制品的后处理(包括制品后加工及其与其他材料联接等)和相应的测试方法。氧化锆陶瓷也与其他新型陶瓷一样,随着新工艺、新技术的运用,进一步充分发挥了它高熔点、比重大、耐腐蚀、耐磨损、低导热、半导体及相变等特点,世界各国都给予高度重视,在功能和结构等各个领域中,都起着重大作用。下面就ZrO2陶瓷材料及倒品的有关情材料多功能化、轻质高强化和材料结构梯度化。为此也相应地况作简单概述,供有关人士参阅。 ZrO2具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2有了更深刻的了解,人们进一步研究开发ZrO2作为结构材料和功能材料。1975年澳大利亚R.G.Garvie以CaO为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2在结构陶瓷领域的应用。1973年美国R.Zechnall, G.Baumarm,H.Fisele制得ZrO2电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980年把它应用于钢铁工业。1982年日本绝缘子公司和美国Cummins发动机公司共同开发出ZrO2节能柴油机缸套。自此,ZrO2高性能陶瓷的研究和开发获得了许多进展。 二、ZrO2粉体的制备方法 2.1 微粉制备

纳米粉体制备方法的研究

纳米粉体制备方法地研究 辛辉,易贝贝 (平顶山工业职业技术学院化工系,河南平顶山) 摘要:纳米粉体具有独特地性能而被广泛应用.其制备方法地研究已经成为材料研究领域地重要内容.本文对纳米粉体地制备方法进行了研究,总结出各种方法地利弊.文档来自于网络搜索 关键词:纳米粉体制备方法团聚性质 (文档来自于网络搜索 ) : . . .文档来自于网络搜索 : ; ; ; 文档来自于网络搜索 引言 纳米粉体泛指粒径在范围内地粉末.由于纳米粉体地晶粒小,表面曲率大或表面积大,所以它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出奇特地性能,因而广泛应用于高性能结构与功能陶瓷材料、涂层材料、磁性材料、催化材料、气敏材料、医药和石油化工领域.纳米粉体制备方法地研究已经成为材料研究领域地一个重要内容.文档来自于网络搜索 激光法制备纳米粉体 激光法制备粉体是以激光为加热源,利用激光地诱导作用和作用物质对特定激光波长地共振吸收制备出所要求地纳米粉体[].激光法有激光诱导化学气相沉积法()和激光烧蚀法().文档来自于网络搜索 激光诱导化学气相沉积法 激光诱导化学气相沉积法是利用反应气体分子(或光敏分子)对特定波长激光地共振吸收,诱导反应气体分子地激光热解、激光离解(如紫外光解、红外多光子离解)、激光光敏化等化学反应,在一定工艺条件下(激光功率密度、反应池压力、反应气体配比、流速和反应温度等)反应生成物成核和生长,通过控制成核与生长过程,即可获得纳米粒子[].文档来自于网络搜索 激光烧蚀法 激光烧蚀法是将作为原料地耙材置于真空或充满氩等保护气体地反应室中,耙材表面经激光照射后,与入射地激光束相作用.耙材吸收高能量激光束后迅速升温、蒸发形成气态.气态物质可直接冷凝沉积形成纳米微粒,气态物质也可在激光作用下分解后再形成纳米微粒.若反应室中有反应气体,则蒸发物可与反应气体发生化学反应,经过形核生长、冷凝后得到复合化合物地纳米粉体.文档来自于网络搜索 激光烧蚀法与激光诱导化学气相法相比,生产率更高,使用范围更广,并可合成更为细小地纳米粉体. 溶剂蒸发法制备纳米粉体 常用地溶剂蒸发法有喷雾干燥法、喷雾热分解法.喷雾干燥法是将金属盐溶液喷入热风中,溶剂迅速蒸发从而析出金属盐地纳米颗粒.喷雾热分解法则是将溶液喷入高温气氛中,使溶剂蒸发和金属盐地热分解同时进行,从而用道工序制得氧化物纳米颗粒.文档来自于网络搜索 采用喷雾法生成地氧化物颗粒一般为球状,流动性好且易于处理,并且可以连续进行,因而

相关文档