文档库 最新最全的文档下载
当前位置:文档库 › 食品冻干过程参数的优化选择

食品冻干过程参数的优化选择

食品冻干过程参数的优化选择
食品冻干过程参数的优化选择

华为LTE重要指标参数优化方案

华为LTE 重要指标参数优化方案 优化无线接通率 1、下行调度开关&频选开关 此开关控制是否启动频选调度功能,该开关为开可以让用户在其信道质量好的频带上传输数据。该参数仅适用于FDD及TDD。MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=Freq SelSwitch-1; 2、下行功控算法开关&信令功率提升开关 用于控制信令功率提升优化的开启和关闭。该开关打开时,对于入网期间的信令、发生下行重传调度时抬升其PDSCH的发射功率。该参数仅适用于TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLPCALGOSWITCH= SigPowerIncreaseSwitch-1; 3、下行调度开关&子帧调度差异化开关

该开关用于控制配比2下子帧3和8是否基于上行调度用户数提升的策略进行调度。当开关为开时,配比2下子帧3和8采取基于上行调度用户数提升的策略进行调度;当开关为关时,配比2下子帧3和8调度策略同其他下行子帧。该参数仅适用于TDD。MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=Subf rameSchDiffSwitch-1; 4、下行调度开关&用户信令MCS增强开关 该开关用户控制用户信令MCS优化算法的开启和关闭。当该开关为开时,用户信令MCS优化算法生效,对于FDD,用户信令MCS 与数据相同,对于TDD,用户信令MCS参考数据降阶;当该优化开关为关时,用户信令采用固定低阶MCS。该参数仅适用于FDD 及TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=UeSi gMcsEnhanceSwitch-1; 5、下行调度开关&SIB1干扰随机化开关

切削过程仿真及工艺参数优化

第33卷第3期2007年6月 东华大学学报(自然科学版) J OU RNAL O F DON GHUA UN IV ERSIT Y (NA TU RAL SCIENCE ) Vol 133,No.3J un.2007 文章编号:16710444(2007)03028703 切削过程仿真及工艺参数优化 3 李蓓智,黄 昊,王胜利(东华大学机械工程学院,上海201620) 摘 要:加工工艺及其相关参数优化是协调加工质量、效率和成本等目标的主要途径之一.以切削过程为对象,研究 基于有限元法(FEM )的切削过程建模与分析方法,考察了切削工艺参数对切削力的作用及其优化策略,根据切削力计算、仿真和实验对比结果,指出现有切削效应分析方法及相关仿真软件的应用尚有一些值得进一步深入研究的内容. 关键词:有限元法;切削过程仿真;工艺参数优化;切削力中图分类号: T G 501.1;TP 391.9 文献标志码:A C u t t i n g P r o c e s s S i m u l a t i o n a n d P a r a m e t e r O p t i m i z a t i o n L I B ei 2z hi ,HUA N G H ao ,W A N G S heng 2li (College of Mech anical E ngineering ,Donghu a U niversity ,Sh angh ai 201620,China) Abstract :Machining process and it s parameter is one of t he main ways t hat harmonize t he target s on t he quality ,t he efficiency and t he cost.The modeling and analysis met hod of t he cutting process are st udied based on t he finite element met hod (FEM ).The effect of t he cutting process parameter on t he cutting force is investigated and t he optimization met hod is given.According to t he co nt rast result of t he cutting force simulation and calculatio n based t he experiment ,it can be pointed out t hat t here is still a lot of research on t he cutting effect analysis met hod and t he applicatio n of t he simulation software. K ey w ords :finite element met hod ;cutting process simulation ;p rocess parameter optimization ;cutting force 机械加工是最广泛应用的机械零件制造工艺, 随着科学技术的飞速发展和全球市场的形成,高性能加工问题已成为越来越多企业家和专家学者的关注重点[1].高性能加工是在保证和提高产品制造质量前提下,使效率最高、成本最低的加工优化问题.国内外的相关研究包括:高速、高精度加工机理研究[2,3];刀具材料研究、刀具几何参数及其结构的优化设计[46];加工工艺及其参数优化设计[79];工 艺系统故障诊断与加工过程监控[4,10,11];基于有限元法的加工过程建模与分析方法[1214]等. 在已确定的加工环境下,优化加工工艺及其相关参数是协调加工质量、效率和成本目标的主要途径之一.为此,本文将以车削过程为对象,研究基于有限元法的加工过程建模与分析方法,建立切削加工工艺参数优化策略及其条件,并探讨现有切削过程分析方法尚存在的不足及其解决方法. 3 收稿日期 :20070110 作者简介:李蓓智(1953),女,上海人,教授,博士,研究方向为先进制造工艺与装备、现代集成制造方法与系统.E 2mail :lbzhi @dhu. https://www.wendangku.net/doc/7717862942.html,

LTE网络无线参数及KPI指标优化(详)

一、LTE小区选择及相关参数 1.1 小区选择S准则 UE进行小区选择时,需要判断小区是否满足小区选择规则。小区选择规则的基础是EUTRAN小区参考信号的接收功率测量值,即:RSRP。 驻留小区的条件要求符合小区选择S准则:Srxlev>0。 Srxlev= Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation; Pcompensation=max(PMax-UE Maximum Outpower,0) 各参数含义如下: 1、Srxlev:小区选择S值,单位dB; 2、Qrxlevmeas:测量小区的RSRP值,单位dBm; 3、Qrxlevmin:小区最小接收电平,单位dBm,目前集团规定为:-128;(该参数可影响用户接入) 4、Qrxlevminoffset:减少PLMN之间的乒乓选择,此参数只在UE驻留在访问PLMN (Visited PLMN)时, 周期性地搜寻更高级别的PLMN时使用.; 5、PMax:UE在小区中允许的最大上行发送功率; 6、UE Maximum Outpower:UE能力决定的最大上行发送功率 1.2 小区选择相关参数 小区选择相关参数如下: 二、LTE小区重选及相关参数 2.1 小区重选相关知识 2.1.1 小区重选知识

小区重选指(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,终端将介入该小区驻留。UE驻留到合适的小区停留1S后,就可以进行小区重选的过程。小区重选过程包括测量和重选两部分过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。 2.1.2 重选的分类 1)系统内小区测量及重选; ●同频小区测量、重选 ●异频小区测量、重选 2)系统间小区测量及重选; 2.1.3 重选优先级概念 1)与2/3G网络不同,LTE系统中引入了重选优先级的概念 ●在LTE系统,网络可配置不同频点或频率组的优先级,通过广播在系统消息中告诉UE,对应参数为cellreselectionPriority,取值为(0….7);(注:0优先级为最低,现网同频设置为5;异频设置宏站加室分底层&高层设置为6,室分高层加宏站为4,室分底层加宏站为5.) ●优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级; ●通过配置各频点的优先级,网络便能方便地引导终端重选到高优先级的小区驻留达到均衡网络负荷、提升资源利用率,保障UE信号质量等作用; 2)重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略广播消息中的优先级信息,以该信息为准; 网络主动引导UE进行系统间小区重选,完成CS域语音呼叫等; 2.1.4 重选系统消息 LTE中,SIB3-SIB8全部为重选相关信息,具体如下:

程序化参数优化问题

如何解决在程序化交易中参数优化的问题程序化交易的书籍在市面上层出不穷,大多数打算进行程序化交易的朋友都会去阅读一两本或者更多。我敢肯定通过阅读大家会发现,这些书里面每一本都会提到交易模型的参数优化的问题。这是由于现代的计算机处理技术发展的同时也带来了一些困惑,程序化交易可以说是建立在计算机和通讯技术的基础之上的一种交易手段,如果没有这些基础设施,那么程序化交易也就不能存在。正是有了可以高速运行的CPU才使我们可以对参数进行优化。光凭技术手段并不足以解决所有交易的问题,这就是为什么说交易是一门艺术之所在,而我们使用机械的交易方法是为了尽可能的避免人为的判断和情绪对交易的不良影响,在我们没有形成自己的一套交易体系之前通过机械的方法来进行交易无疑可以少走很多弯路,把时间和金钱留给我们用来积累更多的经验,让我们首先确保在市场中生存,再去追求如何使交易变成艺术。因此作为一个力求以科学和规律的方法解决交易的问题的人,我试图通过本文来解决大家在程序化交易中参数优化这个矛盾的问题。 什么是参数优化 在这里首先我们介绍一下什么是参数优化,以便一些刚刚接触程序化交易的朋友阅读本文,已经了解这方面知识的朋友可以掠过本段。 对于一些模型来说会有一些参数,这些参数设置的主要含义可能是为模型提供一个周期,举个例子来说象n日均线上穿N日均线(n为短周期均线参数,N为长周期均线参数,一般短周期的移动平均要比长周期的变化要快,所以我们通过这两个不同周期的均线来制定交易计划),n和N参数的意义就是指定周期,一般来说参数的意义都与时间有关系(周期),但也有其他的用途。参数优化实际上就是利用计算机的处理能

网络优化常用方法及相关软件和参数

网络优化常用方法及相关软件和参数 网络优化的工作流程具体包括五个方面:系统信息收集,数据分析及处理,制定网络优化方案,系统调整,调整网络优化方案。 常用的优化方法有话务统计分析法、信令跟踪分析法及路测分析法。在实际优化中,常将三种方法结合起来用,以分析OMC_R话务统计报告,并辅以信令仪表K1205进行A接口或Abis接口跟踪分析和路测仪表Agilent 64XX进行路测分析,是进行网络优化常用的有效手段。 1话统计分析法 主要是用ALCATEL研发地OMC_RPROJ3.x.x工作平台话务统计工具来收集的无线话务报告数据和在OMC_R上收集的系统硬件告警信息和收集的参数分类处理,便于分析网络。 1.1OMC_RPROJ3.XX工作平台介绍 通过OMC_RPRJ3.X.X工作平台导出的话务统计报告中的各项指标(呼叫成功率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话次数、干扰、掉话率及阻塞率等),可以了解到无线基站中存在的坏小区、话务分布及变化情况,从而发现异常,并结合信令跟踪及路测手段,分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等情况。 OMC_RPRJ3.X.X工作平台导出Excel后的话务统计报告中的各项指标如以下各图:

180报告表 180 counter是整个网络小区间的切换数据。 CI_S-原小区CI LAC_S-原小区LAC CI_T-目标小区CI LAC_T-目标小区LAC C400-切换请求次数 C401-切换应答次数 C402-切换成功次数 C402_C400-切换成功率 180counter统计中可检查出切换异常的小区,结合信令和OMC_R上的观察,查找出问题的原因(参数,硬件,时钟是否准确等)。

优化环境配置参数,加快CATIA启动

优化环境配置参数,加 快C A T I A启动 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

1.优化环境配置参数,加快C A T I A启动优化CATIA的环境配置参数,可以让你的CATIA启动更快。 下面我们看看CATIA中的环境配置文件放在哪里?如图所示: 打开Envdir文件,这是环境配置文件放置的路径,根据这个路径找到环境配置文件CATenv。

按照图示操作。 参数如下: !---------------------------------------------------------- CNEXTBACKGROUND=no ! 开始时不显示蓝天背景 CATNoStartDocument=no ! 启动时不加载CATProduct 工作台 CNEXTSPLASHSCREEN=no ! 不显示启动行星动画,如果你想更换为自己的LOGO可替换如下文件即可! ! 。。。。。。。\intel_a\resources\graphic\splashscreens\ !CNEXTOUTPUT=console ! 显示DOS命令和日志窗口,如果不需要出现DOS窗口可设 =no CATLM_ODTS=1 ! 启动时禁止license 错误信息 L_WILSON_LAN=1 ! 使用 Wilson's spline 曲线 CGM_ROLLINGOFFSET=1 ! 使用旋转偏移选项(GSD) TAILLE_MEMOIRE_CHOISIE=1 ! 优化IGES输出内存 SHOW_CST_CHILDREN=1 ! 草图绘制中,父级说明强调显示 MM_NO_REPLACE=1 ! 无关联组件装配复位 IRD_PRODUCTTOPART=1 ! 把 product转为PART的工具,要使用此命令,到装配设计工作台----tools--- Convert Product To Catpart MFG_MULTI_MP_APPLY=1 ! multi instantation the manufacturing process MFG_CATMFG_REMOVE_MOTION_TOOL_CHANGE=1 ! remove th GOTO X Y Z during toolchange in APT file !---------------------------------------------------------- ! V4/V5移植变量: KEEP_HIDDEN_ELEMENT=1 ! No Show Elements are migrated cleanV4Topology=1 ! It cleans topology automatically CATMigrSolidMUV4AsPart=1 ! By Pasting "As_SPEC" It migrates SolidM into CATPart REPORT_BREP_INFO=1 ! It makes migration report V5V4SaveAsVolume=1 ! It migrates *SOL to *VOL

基于遗传算法的参数优化估算模型

基于遗传算法的参数优化估算模型 【摘要】支持向量机中参数的设置是模型是否精确和稳定的关键。固定的参数设置往往不能满足优化模型的要求,同时使得学习算法过于死板,不能体现出来算法的智能化优点,因此利用遗传算法(Genetic Algorithm,简称GA)对估算模型的参数进行优化,使得估算模型灵活、智能,更加符合实际工程建模的需求。 【关键词】遗传算法;参数优化;估算模型 1.引言 随着支持向量机估算模型在工程应用的不断深入。研究发现,支持向量机算法(包括LS-SVM算法)存在着一些本身不可避免的缺陷,最为突出的是参数的选取和优化问题,以往在参数选取方面,一般依靠专家系统或者设定初始值盲目搜寻等等,在实际应用必然会影响模型的精准度,造成一定影响。如何选取合理的参数成为支持向量机算法应用过程中应用中关注的问题,同时也是目前应用研究的重点。而常用的交叉验证试算的方法,不仅耗时,且搜索目的不清,使得资源浪费,耗时耗力。不能有效的对参数进行优化。 针对参选取的问题,本文使用GA算法对模型中的参数设置进行优化。 2.遗传算法 2.1 遗传算法的实施过程 遗传算法的实施过程中包括了编码、产生群体、计算适应度、复制、交换、变异等操作。图1详细的描述了遗传算法的流程。 其中,变量GEN是当前进化代数;N是群体规模;M是算法执行的最大次数。 遗传算法在参数寻优过程中,基于生物遗传学的基本原理,模拟自然界生物种群的“物竞天则,适者生存”的自然规律。把自变量看作生物体,把它转化成由基因构成的染色体(个体),把寻优的目标函数定义为适应度,未知函数视为生存环境,通过基因操作(如复制、交换和变异等),最终求出全局最优解。 2.2 GA算法的基本步骤 遗传算法操作的实施过程就是对群体的个体按照自然进化原则(适应度评估)施加一定的操作,从而实现模型中数据的优胜劣汰,使得进化过程趋于完美。从优化搜索角度出发,遗传算法可使问题的解,一代一代地进行优化,并逼近最优解。 通常采用的遗传算法的工作流程和结果形式有Goldberg提出的,常用的GA 算法基本步骤如下: ①选择编码策略,把参数集合X和域转换为位串结构空间S。常用的编码方法有二进制编码和浮点数编码。 ②定义合适的适应度函数,保证适应度函数非负。 ③确定遗传策略,包括选择群体大小,选择、交叉、变异方法,以及确定交叉概率、变异概率等其它参数。 ④随机初始化生成群体N,常用的群体规模:N=20~200。 ⑤计算群体中个体位串解码后的适应值。 ⑥按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体。 ⑦判断群体性能是否满足某一个指标,或者以完成预订迭代次数,若满足则

遗传算法在交叉口配时优化中的应用

遗传算法在交叉口配时优化中的应用 摘要:介绍r模糊控制、人匸神经网络、遗传算法、蚁群算法、粒子群算法、女智能体等智能控制方法,详细分析了遗传算法的在交通控制领域的实际应用案例,更深入了解和学握了交通智能算法的应用。 关键词:优化:相位;配时参数:遗传算法 1引言 随着社会经济的发展,交通量急剧增长,交通拥堵加剧,交通事故频发,特别是在一些大城市,交通问题已成为制约城市经济发展的瓶颈⑴。为此,人们提岀建立智能交通系统(ITS)。作为ITS的重要组成部分,交通管理系统(ATMS〉在改善交通流秩序、提高交通安全性等方面发挥积极的作用。英中,交通信号优化控制是保证城市交通安全、有序、畅通、快速、高效运行的重要途径。当前,随着交通控制智能化的不断提高,智能控制方法在交通信号控制的重要性日益凸显。按照控制原理的不同,传统的交通信号控制分为宦时控制和感应控制。左时控制按事先设左的配时方案运行,英配时的依据是交通量历史数据°感应控制是某相位绿时根据车流量的变化而改变的一种控制方式,其中车流量可由安装在平面交叉口进口道上的车辆检测器测量。这两种控制方法存在共同的局限性:以数学模型为基础。由于城市交通系统中被控对象过程的非线性、较大的随机「?扰、过程机理错综复杂以及现场车辆检测的误差,建立精确的数学模型非常困难,这就适成了算法本身就有一定的缺陷。即使经过多次简化己建立的数学模型,它的求解还须简化计算才能完成。所以传统的交通控制方法并不能有效地解决目前复杂的交通问题。针对传统交通控制的固有缺陷和局限性,许多学者将模糊控制、神经网络、遗传算法、蚁群算法、多智能体技术等人工智能基础研究方法同常规交通控制方法结合应用。 2交通优化智能算法 2.1模糊逻辑 模糊逻辑是一种处理不确左性、非线性等问题的有力工具,与人类思维的某些特征相一致,故嵌入到推理技术中具有良好效果。模糊逻借不需要获取模型中的复杂关系,不需要建立精确的数学模型,是一种基于规则的智能控制方式,特别适用于具有较大随机性的城市交通控制系统。 2.2人工神经网络 人工神经网络是模拟生物的神经结构以及其处理信息的方式来进行计算的一种算法。它具有自适应、自组织和自学习能力,在认知处理、模式识别方而有很强的优势,最显著特点是具有学习功能。人工神经网络适用于非线性时变性系统的模拟与在线控制,交通控制系统正是一个非线性、时变系统。 2.3遗传算法 遗传算法是运用仿生原理实现在解空间的快速搜索,广泛应用于解决大规模组合优化问题。它是一种比较先进的参数寻优算法,对于不易建立数学模型的场合实实用价值较为突出,是以同样适用于交通工程。1997年,Kiseok和Michael等应用遗传算法对交通网络内的交叉口信号相位进行设计⑴,在交叉口形成的冲突点,结果显示该方法给出的相位方案要优于TRANSYT给岀的方案。同年,Memon等人给出了利用遗传算法进行信号配时方案设汁的研究结果。陈小锋,史忠科针对典型的多车道双向交叉路口的交通流分布, 建立四相位控制的动态交通控制模型,采用遗传算法同时对信号周期时长和相位绿灯持续时间进行优化⑶。承向军等对到达车辆数目进行模糊分类,将不同数量车辆的信号控制决策方案以规则集形式存储在知识库中,利用改进的遗传算法对交叉口信号模糊控制器的模糊规则进行优化,建立了新的优化算法【旬。顾榕等

网络优化参数介绍

RSRP: Reference signal receive power. 衡量某扇区的参考信号的强度,在一定频域和时域上进行测量并滤波。可以用来估计UE离扇区的大概路损,LTE系统中测量的关键对象。在小区选择中起决定作用。 SINR:信号与干扰加噪声比(Signal to Interference plus Noise Ratio)是指:信号与干扰加噪声比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。 信号与干扰加噪声比最初出现在多用户检测。假设有两个用户1,2,发射天线两路信号(cdma里采用码正交,ofdm里采用频谱正交,这样用来区分发给两个用户的不同数据);接收端,用户1接收到发射天线发给1的数据,这是有用的信号signal,也接收到发射天线发给用户2的数据,这是干扰interference,当然还有噪声。 RSSI(Received Signal Strength Indicator)是接收信号的强度指示 过接收到的信号强弱测定信号点与接收点的距离,进而根据相应数据进行定位计算的一种定位技术 如无线传感的ZigBee网络CC2431芯片的定位引擎就采用的这种技术、算法。 接收机测量电路所得到的接收机输入的平均信号强度指示。这一测量值一般不包括天线增益或传输系统的损耗。 RSRQ(ReferenceSignalReceivingQuality)表示LTE参考信号接收质量,这种度量主要是根据信号质量来对不同LTE候选小区进行排序。这种测量用作切换和小区重选决定的输入。 RSRQ被定义为N*RSRP/(LTE载波RSSI)之比,其中N是LTE载波RSSI测量带宽的资源快(RB)个数。RSRQ实现了一种有效的方式报告信号强度和干扰相结合的效果。 [1] PL为传播路径损耗(Pathloss),单位为dB采用0kumura_Hata模型来分析WCDMA系统的无线传播:PL=69.55+26.16lgF-13.82lgH+(44.9-6.55lgH)×lgD-C(F)其中,PL为传播路径损耗,单位为dB;F为系统工作频点,单位为Hz;D为小区半径,单位为m;H为基站天线高度,单位为m;C(F)为地物校正因子,一般取值:代入模型后,得到以CS64k业务为例,基站侧接收灵敏度为115.3dBm,假定90%地区覆盖,慢衰落储备为5.6dB,网络负荷为50%,干扰储备为3dB,软切换增益为5dB,汽车穿透损耗为8dB,直放站天线增益为18dBi,馈线损耗为3dB,直放站总输出功率为20W,控制信道为 5.2W,话务信道可用功率为14.8W,则每信道平均发射功率为14.8W/6=2.47W=33.9dBm,则PL=33.9-5.6-3+5-8+18-3+115.3=152.6dBm 通过计算得到:城市D=3km;郊区D=6.8km;农村D=25.6km。 power headroom 功率上升空间

网络优化基本知识

无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 二GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法:OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试):在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。

机器学习工具WEKA的使用总结 包括算法选择、属性选择、参数优化

一、属性选择: 1、理论知识: 见以下两篇文章: 数据挖掘中的特征选择算法综述及基于WEKA的性能比较_陈良龙 数据挖掘中约简技术与属性选择的研究_刘辉 2、weka中的属性选择 2.1评价策略(attribute evaluator) 总的可分为filter和wrapper方法,前者注重对单个属性进行评价,后者侧重对特征子集进行评价。 Wrapper方法有:CfsSubsetEval Filter方法有:CorrelationAttributeEval 2.1.1Wrapper方法: (1)CfsSubsetEval 根据属性子集中每一个特征的预测能力以及它们之间的关联性进行评估,单个特征预测能力强且特征子集内的相关性低的子集表现好。 Evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them.Subsets of features that are highly correlated with the class while having low intercorrelation are preferred. For more information see: M.A.Hall(1998).Correlation-based Feature Subset Selection for Machine Learning.Hamilton,New Zealand. (2)WrapperSubsetEval Wrapper方法中,用后续的学习算法嵌入到特征选择过程中,通过测试特征

优化滤池运行参数的几点做法(精)

优化滤池运行参数的几点做法 上海南汇自来水有限公司李梅,顾春平 摘要青草沙原水切换后,对水厂的生产和水质管理要求更高,通过发挥在线水质仪表的作用,加强过程监控,及时发现和解决航头水厂一期滤池运行中出现的问题,确保出厂水质安全、稳定。 关键词:在线水质仪表监测气水反冲洗均质滤料滤池反冲洗程序过滤周期1引言 随着青草沙原水的切换,原水水质的改 善,对制水生产的管理和水质控制指标的要求 有了进一步的提高,近期通过发挥在线水质仪 表的监测作用,加强水质指标数据的分析,发 现航头水厂一期滤池在反冲洗过程中存在滤后 水浊度突变的现象,对此,通过原因排查分 析,进行滤池清水阀门维修,科学调控反冲洗 程序,优化调整过滤周期,有效解决了滤后水 浊度突变问题,确保了出厂水质安全、稳定。 2航头水厂一期滤池基本情况及出现的问题 航头水厂一期滤池原设计为普通快滤池, 处理规模12万吨/天,共有10个滤格,成双

行排列,每行5格,中间是管廊,单格滤池 面积83.64m2(滤砂面积71.40m2)。2001 年改造成气水反冲均质滤料滤池。设计滤速 7.84 m/h,石英滤砂粒径0.8~1.0mm,滤料 厚度1.20m,支撑层滤砂粒径2.0mm,厚度 0.05m;滤池反冲洗采用气、水反冲加表扫方 式;池体结构由于条件限制未作大的改动。 自2012年12月初开始,在线滤后及出厂 浊度仪读数显示,航头水厂一期滤池反冲洗 过程中存在滤后水浊度明显升高的现象,有 6~7个滤格反冲时,滤后水浊度由冲洗前的 0.15NTU左右,一路飙升至2NTU以上,从 而对出厂水造成一定的水质波动,见图1。 3原因查找分析 针对以上问题,通过逐一分析排查,找出 问题症结所在。 3.1清水阀门渗漏 在排除在线浊度监测仪表问题的情况下,图1异常情况下航头出厂水浊度曲线首先考虑为清水阀门渗漏致使部分冲洗高浊度水流入清水总渠引起滤后水浊度升高,对此,通过手动控制滤格运行状态,关闭进水阀和清水阀,测试3分钟内滤格液位变化值,液位均有不同程度下降,严重者3分钟液位下降10cm以上,证明清水阀门的确存在渗漏,于是对阀门进行调节和维修,基本解决了清水阀渗漏问题。但滤格反冲洗过程引发滤后水浊度波动的现象仍然存在,可见,清水阀门渗漏并非根本原因所在。3.2池体改造不彻底,反冲洗程序设置存在不适应一期滤池改造时由于条件限制,只是将配水系统由大阻力配水改为小阻力配水,将滤料改为石英砂均质滤料,单一水反冲洗改为气水反冲洗,而池体结构基本未作改动;反冲洗控制程序上采用与二期V型滤池相同的设置,即:启动程序—关闭进水阀—清水阀开度调至100%,降低滤池水位至目标值—气冲3分钟—气水混冲5分钟—水冲6分钟。考虑到二期V型滤池反冲洗时并未发现滤后浊度猛增的情况,那么很可能是滤池结构上改造不彻底,是遗留问题引起的。为了进一步查找问题原因,寻求解决措施,直接对滤后 管路开孔取样,检测反冲洗全过程滤后管路内

注塑工艺标准参数优化

'' 培训课程 2 工艺参数的优化

受训者手册 德马格注塑机工艺参数优化的步骤指导 页面周期分析 3 注塑工艺参数优化 6 步骤 1: 找出转压点7 步骤 1结果8 步骤 2: 找出保压时间(浇口冷凝时间) 9 步骤 2 结果10 步骤 3: 优化注射速度11 步骤 3 结果12 步骤 4: 采用正确的螺杆转速13 步骤 4 结果14 步骤 5: 优化多级螺杆转速和背压曲线15 步骤 5 结果16 步骤 6: 优化松退17 步骤 6 结果18 步骤 7: 优化保压曲线19 步骤 7 结果20 TABULATED RESULTS 21 步骤 8: 优化锁模力22 步骤 8 结果22 步骤 9: 设定注射压力23 步骤 9 结果23 典型工艺参数公差设定24

成型周期分析 采用下面表格估计注塑过程中的每一阶段对周期的影响. 然后去机床看正在运行的模具, 写下实际的时间并计算出百分比. 哪一阶段在整个周期中占最多的时间? 那里可以是最有效的缩短成型周期?

模具 1 估计 % 实际实 评价 际% 合模 射台前进和后退 注射时间 保压时间 冷却时间 开模 顶出 整个成型周期 100% seconds 100%

模具 2 评价 估计 % 实际实 际% 合模 射台前进和后退 注射时间 保压时间 冷却时间 开模 顶出 整个成型周期 100% seconds 100%

工艺参数优化 目标: ?一步步改进工艺过程稳定性. ?评估各个参数的更改对工艺过程稳定性的影响 ?to demonstrate the cumulative improvemnt in the process and product consistency 方法: At each stage, after the process has been given sufficient time to stabilise, a run of sixteen consecutive mouldings is to be made. These mouldings will be assessed for consistency by weight (a dimension, a physical property or some other attribute could equally well be used, weight is simply the most widely applicable). 稳定性通过计算重量的标准偏差来衡量. 同时打印出机床IBED上的过程统计数据. 1. 找出转压点 2. 找出浇口冷却时间 3. 优化注射速度 4. 采用正确的螺杆转速 5. 优化多级预塑曲线 6. 优化松推 7. 优化多级保压曲线 8. 优化锁模力 9. 设定注射压力限定

粒子群优化算法及其参数设置(程序部分)

附录 程序1 当22111==c c ,5.12212==c c ,2.1=w 。 a)%主函数源程序(main.m ) %------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法 %------初始格式化 clear all ; %清除所有变量 clc; %清屏 format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------ N=40; %3初始化群体个数 D=10; %初始化群体维数 T=100; %初始化群体最迭代次数 c11=2; %学习因子1 c21=2; %学习因子2 c12=1.5; c22=1.5; w=1.2; %惯性权重 eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------ x=zeros(N,D); v=zeros(N,D); for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------显示群位置----------------------

figure(1) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始位置') tInfo=strcat('第',char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维'); end title(tInfo) end %------显示种群速度 figure(2) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始速度') tInfo=strcat('第,char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维); end title(tInfo) end figure(3)

华为LTE-重要指标参数优化方案

华为L T E-重要指标参 数优化方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

华为LTE 重要指标参数优化方案 优化无线接通率 1、下行调度开关&频选开关 此开关控制是否启动频选调度功能,该开关为开可以让用户在其信道质量好的频带上传输数据。该参数仅适用于FDD及TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=FreqSelSwitch-1; 2、下行功控算法开关&信令功率提升开关 用于控制信令功率提升优化的开启和关闭。该开关打开时,对于入网期间的信令、发生下行重传调度时抬升其PDSCH的发射功率。该参数仅适用于TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLPCALGOSWITCH=SigPowerIncre aseSwitch-1; 3、下行调度开关&子帧调度差异化开关

该开关用于控制配比2下子帧3和8是否基于上行调度用户数提升的策略进行调度。当开关为开时,配比2下子帧3和8采取基于上行调度用户数提升的策略进行调度;当开关为关时,配比2下子帧3和8调度策略同其他下行子帧。该参数仅适用于TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=SubframeSchDiffS witch-1; 4、下行调度开关&用户信令MCS增强开关 该开关用户控制用户信令MCS优化算法的开启和关闭。当该开关为开时,用户信令MCS优化算法生效,对于FDD,用户信令MCS与数据相同,对于TDD,用户信令MCS参考数据降阶;当该优化开关为关时,用户信令采用固定低阶MCS。该参数仅适用于FDD及TDD。MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=UeSigMcsEnhanceS witch-1; 5、下行调度开关&SIB1干扰随机化开关 该开关用于控制SIB1干扰随机化的开启和关闭。当该开关为开时,SIB1可以使用干扰随机化的资源分配。该参数仅适用于TDD。

5G通信网络优化载波聚合特性参数描述

5G RAN 载波聚合特性参数描述 1 变更信息 变更信息不包含参数/性能指标/术语/参考文档等章节的内容变更,提供其他章节的如下变更: ?技术变更 技术变更描述不同版本间的功能和对应参数变更。 ?文字变更 文字变更是在功能没有变更时,仅对文字内容进行优化或修改描述问题。 1.1 5G RAN 2.1 Draft A (2018-12-30) 相对于5G RAN2.0 02 (2018-10-30),本版本变更如下。 技术变更

文字变更 无。 2 文档介绍 2.1 文档声明 文档目的 特性文档目的如下: ?让读者了解特性相关参数原理。

?让读者了解特性使用场景、增益衡量以及对网络和功能的影响。 ?让读者了解特性对运行环境的要求。 ?让读者了解特性开通以及开通后的观测与监控。 说明: 由于特性部署及增益验收与具体网络场景相关,本特性文档仅用于指导 特性激活。如果想要达到理想的增益效果,请联系华为专业服务支撑。 软件接口 特性文档中的MO、参数、告警和性能指标与文档发布时的最新软件版本一致。 如需获取当前软件版本的MO、参数、告警和性能指标信息,请参见随当前版本 配套发布的产品文档。 体验特性 体验特性是由于产业链配套(终端/核心网)等原因在当前版本无法正式商用,但可以满足客户测试和商用网络体验的特性。客户如要体验,需和华为沟通, 正式体验前需要和华为签署MOU声明。此类特性在当前版本不销售,客户可免 费体验。 客户承认并接受,体验特性因缺乏商用网络验证存在一定风险,客户使用体验 特性前应充分了解其预期增益和对网络可能带来的影响。同时客户承认并接受,因华为对体验特性并没有向客户收取相应费用,华为不对客户因不能使用或/和使用体验特性造成的任何损失承担任何赔偿责任。体验特性本身出现问题,华 为不承诺本版本内解决。华为保留在后续R/C版本中,将体验特性改为商用特 性的权利。后续版本中若体验特性转为商用特性,客户需支付许可费,购买相 应的License,方可使用。如果客户未购买License,新版本升级后体验特性自动失效。 2.2 特性映射 本文档描述以下特性: 3 概述 定义

粒子群优化算法参数设置

一.粒子群优化算法综述 1.6粒子群优化算法的参数设置 1.6.1粒子群优化算法的参数设置—种群规模N 种群规模N影响着算法的搜索能力和计算量: PSO对种群规模要求不高,一般取20-40就可以达到很好的求解效果,不过对于比较难的问题或者特定类别的问题,粒子数可以取到100或200。 1.6.2粒子的长度D 粒子的长度D由优化问题本身决定,就是问题解的长度。 粒子的范围R由优化问题本身决定,每一维可以设定不同的范围。 1.6.3最大速度Vmax决定粒子每一次的最大移动距离,制约着算法的探索和开发能力 Vmax的每一维一般可以取相应维搜索空间的10%-20%,甚至100% ,也有研究使用将Vmax按照进化代数从大到小递减的设置方案。 1.6.4惯性权重控制着前一速度对当前速度的影响,用于平衡算法的探索和开发能力 一般设置为从0.9线性递减到0.4,也有非线性递减的设置方案; 可以采用模糊控制的方式设定,或者在[0.5, 1.0]之间随机取值; 设为0.729的同时将c1和c2设1.49445,有利于算法的收敛。 1.6.5压缩因子限制粒子的飞行速度的,保证算法的有效收敛 Clerc0.729,同时c1和c2设为2.05 。 1.6.6加速系数c1和c2 加速系数c1和c2代表了粒子向自身极值pBest和全局极值gBest推进的加速权值。 c1和c2通常都等于2.0,代表着对两个引导方向的同等重视,也存在一些c1和c2不相等的设置,但其范围一般都在0和4之间。研究对c1和c2的自适应调整方案对算法性能的增强有重要意义。 1.6.7终止条件 终止条件决定算法运行的结束,由具体的应用和问题本身确定。将最大循环数设定为500,1000,5000,或者最大的函数评估次数,等等。也可以使用算法

相关文档