文档库 最新最全的文档下载
当前位置:文档库 › 第4章 第3-4节 图论算法 第三节 最短路径算法(C++版)

第4章 第3-4节 图论算法 第三节 最短路径算法(C++版)

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

(完整版)八年级最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即 为P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠ APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有 一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解 1最短路径算法 在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法

有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。 本文主要研究Dijkstra算法的单源算法。 2Dijkstra算法 2.1 Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 2.2 Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。 2.3 Dijkstra算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 2.4 Dijkstra算法举例说明 如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

一笔画问题是图论中一个著名的问题

一笔画问题是图论中一个著名的问题。一笔画问题起源于柯尼斯堡七桥问题。数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题[1]。一般认为,欧拉的研究是图论的开端。 与一笔画问题相对应的一个图论问题是哈密顿问题。 目录[隐藏] 1 问题的提出 2 一笔画定理 2.1 定理一 2.2 定理二 3 例子 3.1 七桥问题 3.2 一个可以一笔画的例子 4 一笔画问题与哈密顿问题 5 参见 6 参考来源 [编辑] 问题的提出 一笔画问题是柯尼斯堡问题经抽象化后的推广,是图遍历问题的一种。在柯尼斯堡问题中,如果将桥所连接的地区视为点,将每座桥视为一条边,那么问题将变成:对于一个有着四个顶点和七条边的连通图G(S,E),能否找到一个恰好包含了所有的边,并且没有重复的路径。欧拉将这个问题推广为:对于一个给定的连通图,怎样判断是否存在着一个恰好包含了所有的边,并且没有重复的路径?这就是一笔画问题。用图论的术语来说,就是判断这个图是否是一个能够遍历完所有的边而没有重复。这样的图现称为欧拉图。这时遍历的路径称作欧拉路径(一个圈或者一条链),如果路径闭合(一个圈),则称为欧拉回路[1]。 一笔画问题的推广是多笔画问题,即对于不能一笔画的图,探讨最少能用多少笔来画成。 [编辑] 一笔画定理 对于一笔画问题,有两个判断的准则,它们都由欧拉提出并证明[1]。 [编辑] 定理一 有限图G是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2。有限连通图G是圈当且仅当它没有奇顶点[2]。 证明[2][3]: 必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离开”这个点的边数:这时点的度为偶数。要么两者相差一:这时这个点必然是起点或终点之一。注意到有起点就必然有终点,因此奇顶点的数目要么是0,要么是2。 充分性: 如果图中没有奇顶点,那么随便选一个点出发,连一个圈C1。如果这个圈就是原图,那么

最短路径问题

最短路径问题 摘要 在图论当中,任意两点间的最短路径问题,运用Dijkstra 算法,Flord 算法,匈牙利算法等都可以就解决这类相关问题,本文主要就是运用图论相关知识,来分析问题的。 在问题一中,需要为货车司机选择一条从地点1到地点11的最短时间问题,其实际归结为求一个两点间最短路径问题,运用运筹学中的网络模型相关知识,建立了一个一个0-1线性模型,并最终求的其结果,最短时间为21,货车司机的运输路线为1891011v v v v v →→→→。 运用Floyd 算法解决问题二,并且运用Matlab 软件编程,Floyd 算法与Matlab 软件编程所得出的结果一致,最后得出了一个最短航程表,及任意两点间的最短航程图。 本文的最大亮点在于将问题二进行更深一步的拓展,从问题实际出发,从公司的差旅费用最小出发,利用Mtlab 软件编程的出了公司到个城市间差旅费用最小图,从而更能为公司节省成本。 任意城市间差旅费用最小 其次是本文结果的准确性,问题一运用Lingo 软件编程,和WinQSB 软件,所得出结果都是一致的,问题二更是运用Floyd 算法,Matlab 软件编程,WinQSB 软件,大大地保证了结果的准确性,并且十分恰当地运用WinQSB 软件将作图功能,把每一提的最短路径都清晰的描绘出来,更加直观地将结果展现出来。 关键字:Matlab Lingo WinQSB Floyd 算法 0-1规划

一、 问题重述 问题一需要解决的问题是在一个城市交通网络中(图一),如何从地点1找到一条时间最短路径通往地点11,在这个城市交通网络中,有单向道,也有双向道,即如何处理一个有向图与无向图结合的图论问题,并且是一个两点间的最短路径问题: 图(一) 问题二阐述的是某公司员工往来于六个城市间,给出了这六个城市间的直达航班票价(表二),需要为这家公司提供出这六个城市间任意两点间的最小航班费用表 05040251050015202515010204020100102525201005510 2525550∞ ?? ??∞???? ∞∞?????? ∞?? ∞?? 表(二) 二、问题分析

图论中最短路径问题

图论最短路径问题 在消防选址中的应用 【摘 要】 最短路径问题是图论解决的典型实际问题之一,可用来解决管路铺设、线路 安装、厂区布局和设备更新等实际问题。介绍了图论最短路径问题及其算法,并应用图论最短路径问题的分析方法,解决城市消防站的选址问题。 【关键词】 最短路径;Floyd 算法;消防 1 引言 图论是运筹学的一个重要分支,旨在解决离散型的优化问题,近年来发展十分迅速。在人们的社会实践中,图论已成为解决自然科学、工程技术、社会科学、生物技术以及经济、军事等领域中许多问题的有力工具之一。图论中的“图”,并不是通常意义下的几何图形或物体的形状图,也不是工程设计图中的“图”,而是以一种抽象的形式来表达一些确定的对象,以及这些对象之间具有或不具有某种特定关系的一个数学系统。也就是说,几何图形是表述 物体的形状和结构,图论中的“图”则描述一些特定的事物和这些事物之间的联系。它是数学中经常采用的抽象直观思维方法的典型代表。 2 图论基本概念 2.1 图的定义 有序三元组),,(?E V G =称为一个图,其中: (1)),,,(21n V V V V =是有穷非空集,称为顶点集,其元素叫做图的顶点; (2)E 称为边集,其元素叫做图的边; (3)?是从边集E 到顶点集V 的有序或者无序对集合的影射,称为关联函数。 2.2 图的分类 在图G 中,与V 中的有序偶),(j i V V 对应的边e 称为图的有向边(或弧),而与V 中顶点的无序偶对应的边e 称为图形的无向边,每一条边都是无向边的图,叫做无向图,记为 ),(E V G =;每一条边都是有向边的图叫做有向图,记为),(E V D =;既有无向边又有有 向边的图叫做混合图。 2.3 权 如果图G 中任意一条边),(j i V V 上都附有一个数ij W ,则称这样的图G 为赋权图, ij W 称为边),(j i V V 上的权。

初中最短路径问题

最短路径问题(珍藏版) 【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结 点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】 【问题 1】 作法 图形 原理 在直线 l 上求一点 P ,使 PA +PB 值最小. 连 AB ,与 l 交点即为 P . 两点之间线段最短. PA +PB 最小值为 AB . 【问题 2】“将军饮马” 作法 图形 原理 在直线 l 上求一点 P ,使 PA +PB 值最小. 作 B 关于 l 的对称点 B ' 连 A B ',与 l 交点即为 P . 两点之间线段最短. PA +PB 最小值为 A B '. 【问题 3】 作法 图形 原理 在直线l 1 、l 2 上分别求点 M 、N ,使△PMN 的周长最小. 分别作点 P 关于两直线的 对称点 P '和 P ',连 P 'P '与两直线交点即为 M ,N . , 两点之间线段最短. PM +MN +PN 的最小值为线段 P 'P ''的长. 【问题 4】 作法 图形 原理 在直线l 1 、l 2 上分别求点 M 、N ,使四边形 PQMN 的周长最小. 分别作点 Q 、P 关于直线 l 1 、l 2 的对称点 Q '和 P ' 连 Q 'P ',与两直线交点即为 M ,N . 两点之间线段最短. 四边形 PQMN 周长的最小值为线段 P 'P ''的长.

经典图论问题

5经典图论问题 5.1 一笔画问题 一笔画算法即是从起点a开始选择关联边(第一这条边不是往回倒,第二这条边在前面延伸路上没有出现过)向前延伸,如果到达终点b,得到a—b迹,判断路上的的边数是否为图的总边数,是就终止,否则选择迹上某个关联边没有用完的顶点v,用同样方式再搜索v—v的闭迹,添加到a—b迹上,即得到a—v---v—b迹,如果这个迹的边数还没有达到总边数,则再选择迹上某个关联边没有用完的顶点。。。。。。逐步扩展即可。

二、弗罗莱(Fleury )算法 任取v 0∈V(G),令P 0=v 0; 设P i =v 0e 1v 1e 2…e i v i 已经行遍,按下面方法从中选取e i+1: (a )e i+1与v i 相关联; (b )除非无别的边可供行遍,否则e i+1不应该为G i =G-{e 1,e 2, …, e i }中的桥(所谓桥是一条删除后使连通图不再连通的边); (c )当(b )不能再进行时,算法停止。 5.2 中国邮递员问题(CPP ) 规划模型: 设ij x 为经过边j i v v 的次数,则得如下模型。 ∑∈= E v v ij ij j i x z ?min ∑ ∑ E ∈E ∈∈=j i i k v v i v v ki ij V v x x , E ∈∈≤j i ij v v N x ,1 ..t s

5.3旅行推销员问题(TSP,货郎担问题)(NPC问题) 定义:包含图G的所有定点的路(圈)称为哈密顿路(圈),含有哈密顿圈得图称为哈密顿图。 分析:从一个哈密顿圈出发, 算法一:(哈密顿圈的充要条件:一包含所有顶点的连通子图,二每个顶点度数为2) 象求最小生成树一样,从最小权边加边,顶点度数大于3以及形成小回路的边去掉。 算法二: 算法三:

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

最短路径问题(珍藏版纯word版)

第11讲:轴对称 【问题概述】初中数学最值问题是每年中考必出题,更是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.一.【十二个基本问题】 在直线l上求一点 +PB 值最小。 【问题2】作图 在直线l上求一点 A+PB 值最小. 【问题3】“将军饮马”作图 在直线l1 、l2 上分别 求点M、N,使△PMN 周长最小. 【问题 4】作图 在直线l1、l2上分别求 M 、N ,使四 PQMN的周长最小。

直线m∥ n,在m、 上分别求点M、N,使 m,且AM+MN+BN 值最小。 【问题 6】作图 在直线l上求两点M、 在左),使MN a,并使 +MN+NB 的值最小 作图 l1上求点A,在l2 B,使P A+AB值最小. 【问题 8】作图 A 为l1上一定点,B 上;A 为l1上一定点, B 为l2上一定点,在 上求点M在l1上求点N 作图 在直线l上求一点 PA-的值最小 PB

二.“一次对称”常见模型:在直线 l 上求一点 PB PA -的值最大作图 在直线 l 上求一点 PB -的值最大 .【问题 12】“费马点”作图 ABC 中每一内角都小120°,在△ABC 内求一点P ,使 P A +PB +PC 最小.

图论问题

图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。 图论与数学的关系 图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。 图论的起源 图论起源于著名的柯尼斯堡七桥问题。在柯尼斯堡的普莱格尔河上有七座桥将河中的岛及岛与河岸联结起来 问题是要从这四块陆地中任何一块开始,通过每一座桥正好一次,再回到起点。然而无数次的尝试都没有成功。欧拉在1736年解决了这个问题,他用抽像分析法将这个问题化为第一个图论问题:即把每一块陆地用一个点来代替,将每一座桥用联接相应的两个点的一条线来代替,从而相当于得到一个“图”(如下图)。 欧拉证明了这个问题没有解,并且推广了这个问题,给出了对于一个给定的图可以某种方式走遍的判定法则。这就是后

来的欧拉路径和欧拉回路。这项工作使欧拉成为图论〔及拓扑学〕的创始人。 汉密尔顿的游戏与图论 1859年,英国数学家汉密尔顿发明了一种游戏:用一个规则的实心十二面体,它的20个顶点标出世界著名的20个城市,要求游戏者找一条沿着各边通过每个顶点刚好一次的闭回路,即“绕行世界”。用图论的语言来说,游戏的目的是在十二面体的图中找出一个生成圈。这个生成圈后来被称为汉密尔顿回路。这个问题后来就叫做汉密尔顿问题。由于运筹学、计算机科学和编码理论中的很多问题都可以化为汉密尔顿问题,从而引起广泛的注意和研究。 四色猜想 在图论的历史中,还有一个最著名的问题--四色猜想。这个猜想说,在一个平面或球面上的任何地图能够只用四种颜色来着色,使得没有两个相邻的国家有相同的颜色。每个国家必须由一个单连通域构成,而两个国家相邻是指它们有一段公共的边界,而不仅仅只有一个公共点。这一问题最早于1852年由Francis Guthrie提出,最早的文字记载则现于德摩根于同一年写给哈密顿的信上。包括凯莱、肯普等在内的许多人都曾给出过错误的证明。泰特(Tait)、希伍德(Heawood)、拉姆齐和哈德维格(Hadwiger)对此问题的研究与推广引发了对嵌入具有不同亏格的曲面的图的着色问题的研究。一百多年后,四色问题仍未解决。1969年,Heinrich Heesch发表了一

选址问题数学模型

选址问题数学模型 摘要 本题是用图论与算法结合的数学模型,来解决居民各社区生活中存在三个的问题:合理的建立3个煤气缴费站的问题;如何建立合理的派出所;市领导人巡视路线最佳安排方案的问题。通过对原型进行初步分析,分清各个要素及求解目标,理出它们之间的联系.在用图论模型描述研究对象时,为了突出与求解目标息息相关的要素,降低思考的复杂度。对客观事物进行抽象、化简,并用图来描述事物特征及内在联系的过程.建立图论模型是为了简化问题,突出要点,以便更深入地研究问题 针对问题1:0-1规划的穷举法模型。该模型首先采用改善的Floyd-Warshall 算法计算出城市间最短路径矩阵见附录表一;然后,用0-1规划的穷举法获得模型目标函数的最优解,其煤气缴费站设置点分别在Q、W、M社区,各社区居民缴费区域见表7-1,居民与最近的缴费点之间平均距离的最小值11.7118百米。 针对问题2:为避免资源的浪费,且满足条件,建立了以最少分组数为目标函数的单目标最优化模型,用问题一中最短路径的Floyd算法,运用LINGO软件编程计算,得到个社区之间的最短距离,再经过计算可得到本问的派出所管辖范围是2.5千米。最后采用就近归组的搜索方法,逐步优化,最终得到最少需要设置3个派出所,其所在位置有三种方案,分别是:(1)K区,W区,D区;(2)K区,W区,R区;(3)K区,W区,Q区。最后根据效率和公平性和工作负荷考虑考虑,其第三种方案为最佳方案,故选择K区,W区,Q区,其各自管辖区域路线图如图8-1。 针对问题3:建立了双目标最优化模型。首先将问题三转化为三个售货员的最佳旅行售货员问题,得到以总路程最短和路程均衡度最小的目标函数,采用最短路径Floyd算法,并用MATLAB和LINGO软件编程计算,得到最优树图,然后按每块近似有相等总路程的标准将最优树分成三块,最后根据最小环路定理,得到三组巡视路程分别为11.8km、11km和12.5km,三组巡视的总路程达到35.3km,路程均衡度为12%,具体巡视路线安排见表9-1和图9.2 。 关键词Floyd-Warshall算法穷举法最小生成树最短路径 1问题重述 1.1问题背景 这是一个最优选址问题,是一种重要的长期决策,它的好坏直接影响到服务方法,服务质量,服务效率,服务成本,所以选址问题的研究有着重大的经济社

maab图论程序算法大全

图论算法m a t l a b实现求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 0 11 0 17 0 0 0 0 0 8 0 0 0 0 0]; %弧容量 b=[0 4 1 0 0 0 0 0 6 1 0 2 0 3 0 0 0 0 0 2 0 0 0 0 0]; %弧上单位流量的费用 wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值 for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流 while(1)

for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图 for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路 for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;e nd if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 向赋权图中不会含负权回路, 所以不会出现k=n dvt=Inf;t=n; %进入调整过程, dvt 表示调整量 while(1) %计算调整量 if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量 elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题- 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即为 P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P , 点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一 点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

图论及其算法

《图论及其算法》 --最短路问题 学院:通信学院 姓名:周旋 学号: S110131133 指导老师:陈六新

摘要 图论是数学的一个分支,它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这些图形通常用来描述某些事物之间的特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有的关系。通过对《图论及其应用》中最短路问题的深入学习,本文利用Dijkstra算法来解决日常生活中寻找最短路的问题。同时也是对本学期学习知识的巩固。 关键词:最短路径 Dijkstra算法迭代

Abstract Graph theory is a branch of mathematics, it studies the object of picture. Graph theory graph is given by the number of points and lines connecting the two points of the graphic form. These graphics are often used to describe a specific relationship between certain things. And with the point on behalf of things, with the line connecting the two points that have a corresponding relationship between two things. Through the "Graph Theory and Its Applications," in-depth study of the shortest path problem. In this paper, we use The Dijkstra's algorithm not only to solve everyday life to find the shortest path problem, but also for the consolidation of the semester to learn the knowledge. Keyword: shortest path Dijkstra's algorithm Iteration

1043 【图论基础】求一个无向图的最短路径(dijkstra) 1044 有向图中任意两点最短路径(floyd)

【图论基础】求一个无向图的最短路径(dijkstra) Time Limit:10000MS Memory Limit:65536K Total Submit:112 Accepted:46 Description 一个含n个结点的无向图,以矩阵存储方式给出,请求出指定的两个点之间的最短距离。 Input 第一行,一个整数n(0 < n < 1000 ),表示无向图中结点的个数。 接下来是一个n*n的矩阵,表示无向图中各结点之间的联结情况,矩阵中的数值为小于等于1000的下整数,其中0 表示两点之间无直接连接。 最后一行,两个整数i,j。表示求解i点到j点的最短距离。 Output 一个数值,表示指定的两点之间最短距离。 Sample Input 2 0 2 2 0 1 2 Sample Output 2 Source

?var ? i,j,k,n,min:longint; ? x,y:longint; ? a:array[1..1000,1..1000] of longint; ? b:array[1..1000] of longint; ? c:array[1..1000] of boolean; ?begin ? readln(n); ? for i:=1 to n do ? for j:=1 to n do read(a[i,j]); ? readln(x,y); ? fillchar(c,sizeof(c),0); ? fillchar(b,sizeof(b),$7); ? k:=x; b[x]:=0; ? for i:=1 to n-1 do begin ? c[k]:=true; ? for j:=1 to n do ? if (a[k,j]<>0) and not c[j] and (a[k,j]+b[k]

图论经典问题

常见问题: 1、图论的历史 图论以图为研究对象的数学分支。图论中的图指的是一些点以及连接这些点的线的总体。通常用点代表事物,用连接两点的线代表事物间的关系。图论则是研究事物对象在上述表示法中具有的特征与性质的学科。 在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。例如,国家用点表示,有外交关系的国家用线连接代表这两个国家的点,于是世界各国之间的外交关系就被一个图形描述出来了。另外我们常用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。 事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。由此经数学抽象产生了图的概念。研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。 图论的产生和发展经历了二百多年的历史,大体上可分为三个阶段: 第一阶段是从1736年到19世纪中叶。当时的图论问题是盛行的迷宫问题和游戏问题。最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题(Konigsberg Seven Bridges Problem)。 东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔(Pregel)河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。这就是有名的哥尼斯堡七桥问题。 哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。 瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。这篇论文被公认为是图论历史上的第一篇论文,Euler也因此被誉为图论之父。 欧拉把七桥问题抽象成数学问题---一笔画问题,并给出一笔画问题的判别准则,从而判定七桥问题不存在解。Euler是这样解决这个问题的:将四块陆地表示成四个点,桥看成是对应结点之间的连线,则哥尼斯堡七桥问题就变成了:从A,B,C,D任一点出发,通过每边一次且仅一次返回原出发点的路线(回路)是否存在?Euler证明这样的回路是不存在的。 第二阶段是从19世纪中叶到1936年。图论主要研究一些游戏问题:迷宫问题、博弈问题、棋盘上马的行走线路问题。一些图论中的著名问题如四色问题(1852年)和Hamilton环游世界问题(1856年)也大量出现。同时出现了以图为工具去解决其它领域中一些问题的成果。1847年德国的克希霍夫(G.R.Kirchoff)将树

数学竞赛中的图论问题

数学竞赛中的图论问题

分类号密级 U D C 编号 本科毕业论文(设计) 题目数学竞赛中的图论问题 所在院系数学与数量经济学院 专业名称数学与应用数学 年级 08级 学生姓名李曼 学号 0850410013 指导教师孙静

二 0一二年三月 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在孙静老师的指导下独立进行研究所取得的研究成果. 除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者:

日期:2012年3月29日 文献综述 一综述 在18世纪30年代,一个非常有趣的问题引起了欧洲数学家的浓厚兴趣,这个问题就是著名的哥尼斯堡七桥问题,即要求遍历哥尼斯堡七桥中的每一座桥恰好一次后回到出发点. 欧拉证明这是不可能完成的. 此后,欧拉发表了著名的论文《依据集合位置的阶梯方法》,这是图论领域的第一篇论文,标志着图论的诞生. 图论的真正发展始于20世纪五六十年代之间,是一门既古老又年轻的学科. 图论极有趣味性,严格来讲,它是组合数学的一个重要分支. 虽然图论只是研究点和线的学科,但是它的应用领域十分广泛,不仅局限于数学和计算机学科,还涵盖了社会学、交通管理等. 总的来说,图论这门科学具有以下特点:(1)图论蕴含了丰富的思想、漂亮的图形和巧妙的证明; (2)涉及的问题多且广泛,问题表明上简单朴素,本质上却十分深刻复杂; (3)解决问题的方法千变万化,非常灵活,常常是一种问题一种解法. 由以上三个特点可以看出,图论与其他的数学分支不同,它不像群论、拓扑等学科那样有一套完整的体系和解决问题的系统. 而且图论所研究的内容非常广泛,如图的连通性、遍历性、图的着色、图的可平面性等等. 二内容 由于图论具有蕴含了丰富的思想、漂亮的图形和巧妙的证明,涉及的问题多且广泛,问题表面上简单朴素,本质上却十分深刻复杂,解决问题的方法千变万化,非常灵活,常常是一种问题一种解法的特点. 随着数学竞赛越来越规范化,并且越来越考察考生的灵活运用知识的能力. 因此近年来,图论问题频繁的出现在数学竞赛中,如典型的一笔画问题、中国邮递员问题、旅游推销员问题、排课表问题等.

离散数学图论部分经典精彩试题及问题详解

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ο ο ο ο ο c a b e d ο f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ο ο ο ο c a b f

相关文档
相关文档 最新文档