文档库 最新最全的文档下载
当前位置:文档库 › 经典最小生成树prim与kruskal算法分析比较

经典最小生成树prim与kruskal算法分析比较

经典最小生成树prim与kruskal算法分析比较
经典最小生成树prim与kruskal算法分析比较

经典最小生成树prim与kruskal算法分析比较

例题

农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,

并连接到所有的农场。当然,他需要你的帮助。

约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。

为了用最小的消费,他想铺设最短的光纤去连接所有的农场。

你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光

纤最短的方案。

输入格式 Input Format

输入格式经常会以两中形式

(1)采用邻接矩阵存储

第一行为农场的个数,N(3<=N<=100)。

接下去为一个N*N的矩阵,表示每个农场之间的距离。(农场之间的距离小于999,

0路线表示无法直接到达)。

(2)图采用边目录方式存储。

第一行N为农场的个数,M为农场与农场之间共有M条可以搭设光纤路线。

接下去的M行为中每行有3个数A,B,C。分别表示农场A到农场B的距离为B。

输出格式 Output Format

输出连接所有农场并所用光纤最短的方案。 (输出之后要求换行)

样例输入 Sample Input

(1)采用邻接矩阵存储。 (2)采用边目录方

式存储。

6

6 7

0 3 0 0 0 2 1

2 3

3 0 5 0 2 0 2 3 5

0 5 0 1 0 0 3 4 1

0 0 1 0 4 0 4 5 4

0 2 0 4 0 1 2 5 2

2 0 0 0 1 0 6 5 1

1 6 2

样例输出 Sample Output

(1)采用邻接矩阵存储(2)采用边目录方式存储。

10 10

(1)我的prim的代码采用邻接矩阵存储

prim适合采用邻接矩阵存储代码如下

var n,i,j,w,k,t,w1,m,min,p:longint;

ch:char;

lowcost,coset:array[1..100]of longint;

bo:array[1..100]of boolean;

map:array[1..100,1..100]of longint; {邻接矩阵图}

begin

while not eof do

begin

readln(n);

if n=0 then break;

for i:=1 to n do

for j:=1 to n do //初始化

begin

read(map[i,j]);

if (i=j)or(map[i,j]=0)then

map[i,j]:=maxlongint; //把不相连的点之间设为无穷大

end;

for i:=1 to n do

begin

lowcost[i]:=map[1,i];

coset[i]:=1;

bo[i]:=false;

{初始化lowcost集合(即每个点到集合的最短距离)与bo数组和 coset(设这个点为A)到集合内于他连接的且最短距离的另一个点(这个点为b)

那么coset就是记录与点A的父亲节点B(B一定要具备上述条件)} end;

bo[1]:=true;

m:=0;

for i:=1 to n-1 do

begin

min:=maxlongint;

for j:=1 to n do

if (bo[j]=false)and(lowcost[j]

集合距离最短的点

begin

min:=lowcost[j];p:=j;

end;

writeln('(',coset[p],',',p,')'); //输出上一步得到的与集合距离啊短距离的点的父亲节点和该点(即集合新选择的最短路径);

m:=m+min; //把上一步得到的点到集合的距离不断累加

bo[p]:=true; //把以加入的集合的点设为true,防止重判.

for j:=1 to n do

if (bo[j]=false)and(map[p,j]

begin

lowcost[j]:=map[p,j]; //重判集合到那一些还每被选入集合的点的距离

coset[j]:=p; //刷新父亲节点

end;

end;

writeln(m);

end;

end.

(2)我的kruskal的代码采用边目录方式存储

kruskal适合采用边目录方式存储。

(kruskal的一般版本);

在这里说明一下感染和完全感染的区别以便于理解下面的代码的注释

[感染指一条边中只有一个点被感染了要么是起点,要么是始点,一边中的两点中只有一点被感染称为感染]

[完全感染染指一边中两点都被感染了,只有两点同时都被感染了才称为完全感染。如果该边的两点被完全感染那么这条边也就被完全感染(即false),而没有被完全感染的边或感染的边都为(true)]

解析的不好不要BS我水平有限

type edge=record

x,y,c:longint;

end;

var n,m,i,j,mincost,min,p:longint;

d:array[1..100] of boolean;

e:array[1..100]of boolean;

elist:array[1..100] of edge;

begin

while not eof do

begin

read(n,m);

for i:=1 to m do read(elist[i].x,elist[i].y,elist[i].c);

fillchar(d,sizeof(d),true); //读入数据加初始化

fillchar(e,sizeof(e),true);

m:=0;

for j:=1 to n-1 do

begin

min:=maxlongint;

for i:=1 to m do

if e[i]=true then

if ((d[elist[i].x]=true) xor (d[elist[i].y]=true)) or (j=1) then //选择感染了的边这样可以完全避开够成环情况(但第一条边需要开绿灯)

if (elist[i].c)

begin

min:=elist[i].c;p:=i; //记录该边的值,以及该边的起点和始点

end;

d[elist[p].x]:=false; d[elist[p].y]:=false; //把该边完全感染(即起点和始点都被感染)

writeln('(',elist[p].x,',',elist[p].y,')'); //输出新的被完全感染的边的起点和始点(既路径)

e[p]:=false; //因为起点和始点都被感染所以该边也应被完全感染

m:=m+min; //累加被完全感染的边的值

end;

writeln(m);

end;

end.

(改进后的kruskal+快排的高效率版本);

type edge=record

x,y,c:longint;

end;

var n,m,i,j,mincost:longint;

d:array[1..100] of boolean;

e:array[1..100of boolean;

elist:array[1..100] of edge;

procedure qsort(ss,tt:longint);

var i,j,x:longint;

temp:edge;

begin

i:=ss;j:=tt;x:=elist[(i+j)div 2].c;

while i<=j do

begin

while elist[i].c

while elist[j].c>x do dec(j);

if i<=j then

begin

temp:=elist[i];

elist[i]:=elist[j];

elist[j]:=temp;

inc(i);

dec(j);

end;

end;

if ss

if i

end;

begin

while not eof do

begin

read(n,m);

for i:=1 to m do read(elist[i].x,elist[i].y,elist[i].c);

qsort(1,m);

fillchar(d,sizeof(d),true);

fillchar(e,sizeof(e),true);

mincost:=0;

for j:=1 to n-1 do

begin

for i:=1 to m do

if e[i]=true then

if ((d[elist[i].x]=true) xor (d[elist[i].y]=true)) or

(j=1) then

begin

d[elist[i].x]:=false; d[elist[i].y]:=false; {高效体现在这里,和上面的那个代码比较省去了判断

writeln('(',elist[i].x,',',elist[i].y,')');

而表面上看感觉不出如何省时,里面切暗藏玄机。

e[i]:=false;

省时在于每次选择被感染的边都是一次到位决不含糊}

mincost:=mincost+elist[i].c;

//下面进行prim,kruskal算法比较会进一步说明

break;

end;

end;

writeln('tree: ','length=',mincost);

end;

end.

个人对prim算法与kruskal算法比较和总结

1 )Prim and Kruskal 算法的空间比较

数据给的情况不同空间有所不同

当点少边多的时候如1000个点500000条边这样BT的数据用prim做就要开一个1000*1000的二维数组

而用kruskal做只须开一个500000的数组,恐怖吧500000跟1000*1000比较相差一半。

当点多边少的时候如1000000个点2000条边像这中BT数据就是为卡内存而存在的,如果用prim做你想开一个1000000*1000000的二维数组没门内存绝对爆挂你。而像这种情况用kruskal只须开一个2000的数组绝对赚到了。

2 )Prim and Kruskal and Kruskal+快排算法的时间比较

prim 在跟普通的kruskal比较空间是肯定没有普通的kruskal来的好。但时间方面的话prim就比普通kruskal来的更恐怖一些,用prim时间比普通的kruskal快20倍。在这时我就想如那数据变态的很用普通的kruskal绝对超时,用prim绝对1爆的内存那就掺了。这时惟有改进prim算法从中砍内存,怎么砍,换一个超大内存的电脑,你去那找啊。拿刀砍,开玩笑。方法一放弃。方法二在改进kruskal算法从中砍时间,经过反复的折腾最后(在老师的指导下)想到了普通的kruskal在选择感染了的边的时候还要进行搜索其所有被感染了的边中值最小的边,每一次都要在此处进行重复的搜索觉的很费时,索性事先派好序。所以改进后变为kruskal+快排,结果时间跟prim相差无几,而且有省内存。这就是王道啊。。。

最小生成树问题的算法实现及复杂度分析—天津大学计算机科学与技术学院(算法设计与分析)

算法设计与分析课程设计报告 学院计算机科学与技术 专业计算机科学与技术 年级2011 姓名XXX 学号 2013年5 月19 日

题目:最小生成树问题的算法实现及复杂度分析 摘要:该程序操作简单,具有一定的应用性。数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。而最小生成树算法是算法设计与分析中的重要算法,最小生成树也是最短路径算法。最短路径的问题在现实生活中应用非常广泛,如邮递员送信、公路造价等问题。本设计以Visual Studio 2010作为开发平台,C/C++语言作为编程语言,以邻接矩阵作为存储结构,编程实现了最小生成树算法。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM 经典算法的算法思想,最后用这种经典算法实现了最小生成树的生成。 引言:假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n(n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个,他们之间的权值之和相等。一棵生成树的代价就是树上各边的代价之和。而实现这个运算的经典算法就是普利姆算法。

Prim最小生成树算法实验报告材料

算法分析与设计之Prim 学院:软件学院学号:201421031059 :吕吕 一、问题描述 1.Prim的定义 Prim算法是贪心算法的一个实例,用于找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。 2.实验目的 选择一门编程语言,根据Prim算法实现最小生成树,并打印最小生成树权值。 二、算法分析与设计 1.Prim算法的实现过程 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U ={u0}(u0∈V)、TE={}开始。重复执行下列操作: 在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。 此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。 Prim算法的核心:始终保持TE中的边集构成一棵生成树。 2.时间复杂度 Prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,N 为顶点数,而看ruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。 三、数据结构的设计 图采用类存储,定义如下: class Graph { private: int *VerticesList; int **Edge; int numVertices; int numEdges; int maxVertices; public: Graph(); ~Graph(); bool insertVertex(const int vertex); bool insertEdge(int v1,int v2,int cost); int getVertexPos(int vertex); int getValue(int i); int getWeight(int v1,int v2); int NumberOfVertices();

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

克鲁斯卡尔算法求最小生成树

目录 1.需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程 (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (4) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (5) 3.详细设计 (7) 3.1程序 (7) 4.调试与操作说明 (10) 4.1测试结果 (10) 4.2调试分析 (11) 5.课程设计总结与体会 (11) 5.1总结 (11) 5.2体会 (11) 6. 致谢 (12) 7. 参考文献 (12)

1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计 2.1流程图

图1流程图 2.2抽象数据类型MFSet的定义: ADT MFSet { 数据对象:若设S是MFSet型的集合,则它由n(n>0)个子集Si(i = 1,2...,n)构成,每个子集的成员代表在这个子集中的城市。 数据关系:S1 U S2 U S3 U... U Sn = S, Si包含于S(i = 1,2,...n) Init (n): 初始化集合,构造n个集合,每个集合都是单成员,根是其本身。rank 数组初始化0 Find(x):查找x所在集合的代表元素。即查找根,确定x所在的集合,并路径压缩。 Merge(x, y):检查x与y是否在同一个集合,如果在同一个集合则返回假,否则按秩合并这两个集合并返回真。 }

kruskal算法求最小生成树

#include #include #include #include using namespace std; #define maxn 110 //最多点个数 int n, m; //点个数,边数 int parent[maxn]; //父亲节点,当值为-1时表示根节点 int ans; //存放最小生成树权值 struct eage //边的结构体,u、v为两端点,w为边权值

{ int u, v, w; }EG[5010]; bool cmp(eage a, eage b) //排序调用 { return a.w < b.w; } int Find(int x) //寻找根节点,判断是否在同一棵树中的依据 { if(parent[x] == -1) return x; return Find(parent[x]); } void Kruskal() //Kruskal算法,parent能够还原一棵生成树,或者森林{ memset(parent, -1, sizeof(parent)); sort(EG+1, EG+m+1, cmp); //按权值将边从小到大排序 ans = 0; for(int i = 1; i <= m; i++) //按权值从小到大选择边 { int t1 = Find(EG[i].u), t2 = Find(EG[i].v); if(t1 != t2) //若不在同一棵树种则选择该边,合并两棵树 { ans += EG[i].w; parent[t1] = t2; printf("最小生成树加入的边为:%d %d\n",EG[i].u,EG[i].v); } } } int main() { printf("输入顶点数和边数:"); while(~scanf("%d%d", &n,&m)) { for(int i = 1; i <= m; i++) scanf("%d%d%d", &EG[i].u, &EG[i].v, &EG[i].w); Kruskal(); printf("最小生成树权值之和为:%d\n", ans); } return 0; }

最小生成树经典算法

最小生成树的两种经典算法的分析及实现 摘要:数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM和KRUSKAL的两种经典算法的算法思想,对两者进行了详细的比较,最后用这两种经典算法实现了最小生成树的生成。 关键词:连通图,赋权图,最小生成树,算法,实现 1 前言 假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n (n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。一棵生成树的代价就是树上各边的代价之和。 2图的概念 2.1 定义 无序积 在无序积中, 无向图,其中为顶点(结点)集,为边集,,中元素为无向边,简称边。 有向图,其中为顶点(结点)集,为边集,,中元素为有向边,简称边。 有时,泛指有向图或无向图。 2.2 图的表示法

有向图,无向图的顶点都用小圆圈表示。 无向边——连接顶点的线段。 有向边——以为始点,以为终点的有向线段。 2.3 概念 (1)有限图——都是有限集的图。 阶图——的图。 零图——的图。特别,若又有,称平凡图。 (2)关联 (边与点关系)——设边(或),则称与(或)关联。 无环 孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所对应的边叫悬挂边。 (3)平行边——关联于同一对顶点的若干条边称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。 简单图——不含平行边和环的图。 2.4 完全图 设为阶无向简单图,若中每个顶点都与其余个顶点相邻,则 称为阶无向完全图,记作。 若有向图的任一对顶点,既有有向边,又有有向边,则 称为有向完全图。 例如:

最小生成树(Prim、Kruskal算法)整理版

一、树及生成树的基本概念 树是无向图的特殊情况,即对于一个N个节点的无向图,其中只有N-1条边,且图中任意两点间有且仅有一条路径,即图中不存在环,这样的图称为树,一般记为T。树定义有以下几种表述: (1)、T连通、无圈、有n个结点,连通有n-1条边;(2)、T无回路,但不相邻的两个结点间联以一边,恰得一个圈;(3)、T连通,但去掉任意一边,T就不连通了(即在点集合相同的图中,树是含边数最少的连通图);(4)、T的任意两个结点之间恰有一条初等链。 例如:已知有六个城市,它们之间要架设电话线,要求任 意两个城市均可以互相通话,并且电话线的总长度最短。若用 六个点v1…v6代表这六个城市,在任意两个城市之间架设电话 线,即在相应的两个点之间连一条边。这样,六个城市的一个 电话网就作成一个图。任意两个城市之间均可以通话,这个图 必须是连通图,且这个图必须是无圈的。否则,从圈上任意去 掉一条边,剩下的图仍然是六个城市的一个电话网。图5-6是 一个不含圈的连通图,代表了一个电话线网。 生成树(支撑树) 定义:如果图G’是一棵包含G的所有顶点的树,则称G’是G的一个支撑树或生成树。例如,图5-7b是图5-7a的一个支撑树。 定理:一个图G有生成树的条件是G是连通图。 证明:必要性显然; 充分性:设图G是连通的,若G不含圈,则按照定义,G是一个树,从而G是自身的一个生成树。若G含圈,则任取G的一个圈,从该圈中任意去掉一条边,得到图G的一生成子图G1。若G1不含圈,则G1是G的一个生成树。若G1仍然含圈,则任取G1的一个圈,再从圈中任意去掉一条边,得到图G的一生成子图G2。依此类推,可以得到图G的一个生成子 图G K,且不含圈,从而G K是一个生成树。 寻找连通图生成树的方法: 破圈法:从图中任取一个圈,去掉一条边。再对剩下的图 重复以上步骤,直到不含圈时为止,这样就得到一个生成树。 取一个圈(v1,v2,v3,v1),在一个圈中去掉边e3。在剩下的图 中,再取一个圈(v1,v2,v4,v3,v1),去掉边e4。再从圈(v3,v4,v5,v3) 中去掉边e6。再从圈(v1,v2,v5,v4,v3,v1)中去掉边e7, 这样,剩下的图不含圈,于是得到一个支撑树,如图所示。 避圈法:也称为生长法,从图中某一点开始生长边,逐步扩展成长为一棵树,每步选取与已入树的边不构成圈的那些边。

最小生成树的Kruskal算法实现

#include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *);//函数申明 void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G)//构件图 { int i, j,n, m; printf("请输入边数和顶点数:\n"); scanf("%d %d",&G->arcnum,&G->vexnum); for (i = 1; i <= G->vexnum; i++)//初始化图{ for ( j = 1; j <= G->vexnum; j++) { G->arc[i][j].adj = G->arc[j][i].adj = 0; } } for ( i = 1; i <= G->arcnum; i++)//输入边和权值

{ printf("请输入有边的2个顶点\n"); scanf("%d %d",&n,&m); while(n < 0 || n > G->vexnum || m < 0 || n > G->vexnum) { printf("输入的数字不符合要求请重新输入:\n"); scanf("%d%d",&n,&m); } G->arc[n][m].adj = G->arc[m][n].adj = 1; getchar(); printf("请输入%d与%d之间的权值:\n", n, m); scanf("%d",&G->arc[n][m].weight); } printf("邻接矩阵为:\n"); for ( i = 1; i <= G->vexnum; i++) { for ( j = 1; j <= G->vexnum; j++) { printf("%d ",G->arc[i][j].adj); } printf("\n"); } } void sort(edge edges[],MGraph *G)//对权值进行排序{ int i, j; for ( i = 1; i < G->arcnum; i++) { for ( j = i + 1; j <= G->arcnum; j++) { if (edges[i].weight > edges[j].weight) { Swapn(edges, i, j); } } } printf("权排序之后的为:\n"); for (i = 1; i < G->arcnum; i++) {

(完整word版)实验5 最小生成树算法的设计与实现(报告)

实验5 最小生成树算法的设计与实现 一、实验目的 1、根据算法设计需要, 掌握连通图的灵活表示方法; 2、掌握最小生成树算法,如Prim、Kruskal算法; 3、基本掌握贪心算法的一般设计方法; 4、进一步掌握集合的表示与操作算法的应用。 二、实验内容 1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法; 2、设计Kruskal算法实验程序。 有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。 设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。 三、Kruskal算法的原理方法 边权排序: 1 3 1 4 6 2 3 6 4 1 4 5 2 3 5 3 4 5 2 5 6 1 2 6 3 5 6 5 6 6 1. 初始化时:属于最小生成树的顶点U={}

不属于最小生成树的顶点V={1,2,3,4,5,6} 2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树 的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}

3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5} 4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}

5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5} 6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成

PRIM算法求最小生成树

xx学院 《数据结构与算法》课程设计 报告书 课程设计题目 PRIM算法求最小生成树 院系名称计算机科学与技术系 专业(班级) 姓名(学号) 指导教师 完成时间

一、问题分析和任务定义 在该部分中主要包括两个方面:问题分析和任务定义; 1 问题分析 本次课程设计是通过PRIM(普里姆)算法,实现通过任意给定网和起点,将该网所对应的所有生成树求解出来。 在实现该本设计功能之前,必须弄清以下三个问题: 1.1 关于图、网的一些基本概念 1.1.1 图图G由两个集合V和E组成,记为G=(V,E),其中V是顶点的有穷非空集合,E是V中顶点偶对的有穷集,这些顶点偶对称为边。通常,V(G)和E(G)分别表示图G的顶点集合和边集合。E(G)也可以为空集。则图G只有顶点而没有边。1.1.2 无向图对于一个图G,若边集E(G)为无向边的集合,则称该图为无向图。1.1.3 子图设有两个图G=(V,E)G’=(V’,),若V’是V的子集,即V’?V ,且E’是E的子集,即E’?E,称G’是G的子图。 1.1.4 连通图若图G中任意两个顶点都连通,则称G为连通图。 1.1.5 权和网在一个图中,每条边可以标上具有某种含义的数值,该数值称为该边的权。把边上带权的图称为网。如图1所示。 1.2 理解生成树和最小生成树之间的区别和联系 1.2.1 生成树在一个连通图G中,如果取它的全部顶点和一部分边构成一个子图G’,即:V(G’)= V(G)和E(G’)?E(G),若边集E(G’)中的边既将图中的所有顶点连通又不形成回路,则称子图G’是原图G的一棵生成树。 1.2.2 最小生成树图的生成树不是唯一的,把具有权最小的生成树称为图G的最小生成树,即生成树中每条边上的权值之和达到最小。如图1所示。 图1.网转化为最小生成树 1.3 理解PRIM(普里姆)算法的基本思想 1.3.1 PRIM算法(普里姆算法)的基本思想假设G =(V,E)是一个具有n个顶点的连通网,T=(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,U和TE的初值均为空集。算法开始时,首先从V中任取一个顶点(假定取V0),将它并入U中,此时U={V0},然后只要U是V的真子集,就从那些其一个端点已在T中,另一个端点仍在T外的所有边中,找一条最短(即权值最小)边,假定为(i,j),其中V i∈U,V j∈(V-U),并把该边(i,j)和顶点j分别并入T的边集TE和顶点集U,如此进行下去,每次往生成树里并入一个顶点和一条边,直到n-1次后就把所有n个顶点都并入到生成树T的顶点集中,此时U=V,TE中含有n-1条边,T就是最后得到的最小生成树。可以看出,在普利姆算法中,是采用逐步增加U中的顶点,常称为“加点法”。为了实现这个算法在本设计中需要设置一个辅助数组

课程设计---克鲁斯卡尔算法求最小生成树

课程设计报告 课程名称:数据结构课程设计 设计题目:克鲁斯卡尔算法求最小生成树 系别:计算机系 专业:软件技术 学生姓名:陈浩学号:2011304040133 日期: 2013年1月5日-2013年1月11日

目录 1. 需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程: (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (3) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (6) 3. 详细设计 (8) 3.1程序 (8) 4.调试与操作说明 (11) 4.1测试结果 (11) 4.2调试分析 (12)

5.课程设计总结与体会 (12) 5.1总结 (12) 5.2体会 (12) 6. 致谢 (13) 7. 参考文献 (13) 1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计

Kruskal算法求最小生成树(java)

Kruskal算法求最小生成树(JA V A) 代码: package homework; import java.util.Scanner; import java.util.Arrays; import java.util.ArrayList; class Edge { public int start;//始边 public int end;//终边 public double cost;//权重 } public class MinSpanningTree_Kruskal{ private static int MAX = 100; private ArrayList edge = new ArrayList();//整个图的边 private ArrayList target = new ArrayList();//目标边,最小生成树private int[] parent = new int[MAX];//标志所在的集合 private static double INFINITY = 99999999.99;//定义无穷大 private double mincost = 0.0;//最小成本 private int n;//结点个数 public MinSpanningTree_Kruskal(){} public static void main(String args[]){ MinSpanningTree_Kruskal sp = new MinSpanningTree_Kruskal(); sp.init(); sp.kruskal(); sp.print(); }//初始化 public void init(){ Scanner scan = new Scanner(System.in); int p,q; double w; System.out.println("请输入结点个数:"); n = scan.nextInt(); System.out.println("请输入各条边及权值(每次输入一组数据按回车确认," + "最后输入-1 -1 -1 结束输入过程)"); while(true){ p = scan.nextInt(); q = scan.nextInt(); w = scan.nextDouble();

最小生成树的应用

武 夷 学 院 课程设计报告 课程名称: 数据结构(C 言语版本) 设计题目: 最小生成树的应用 学生班级: 10计科1班 学生姓名: 陈娟,谢贤根,黄伟伟,陈开槟 指导教师: 林丽惠 完成日期: 2012-01-05

课程设计项目研究报告 目录 一、问题描述及基本要求....................................................................................... - 1 - 二、实现本程序需要解决的问题如下................................................................. - 1 - 三、测试数据......................................................................................................... - 2 - 四、算法思想......................................................................................................... - 3 - 五、模块划分............................................................................ 错误!未定义书签。 六、算法设计与分析............................................................................................. - 7 - 七、源程序........................................................................................................... - 11 - 八、测试数据....................................................................................................... - 14 - 九、课程设计项目进度表及任务分配表及任务分配表................................... - 15 - 十、设计心得....................................................................................................... - 16 -十一参考文献....................................................................................................... - 17 -

ii.用krusal算法(避圈法)求最小生成树

II . 用Krusal算法(避圈法)求最小生成树 i.算法分析及需求分析,程序设计 Kruskal算法的基本思想是:设无向连通网为G=(V,E),令G的最小生成树为T=(U,TE),其初始状态为U=V,TE={},这样T中各顶点各自构成一个连通分量。然后按照边的权值由小到大的顺序,依次考察边集E中的各条边。若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边加入到TE中去,同时把两个连通分量连接成一个连通分量;若被考察边的两个结点属于同一个连通分量,则舍去此边,以免造成回路,如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。 显然,Kruskal算法实现起来要比prim算法复杂些。选择合适的存储结构存储图,采用合适的排序算法对程序执行效率的提高非常重要,采用简单而明了的方法判断边的两个端点是否在一个连通分支上更是尤为重要。 一般来说,涉及Kruskal算法多采取边集数组做为图的存储结构,但考虑到matlab不像C语言那样可以方便地动态的生成数组和释放内存,仍采取了邻接矩阵的形式保存图,用于测试的两幅图,分别保存为,.(注:邻接矩阵的对角线元素设定为100)这样既方便对边进行操作,又方便对边的顶点进行操作。 使用邻接矩阵容易引起的问题是: 由于邻接矩阵是对称矩阵,比如graph_adjacent(1,2)和graph_adjacent(2,1)代表的是同一条边,所以当有一条边被选入最小生成树后,要对它的两个结点分别进行更新。整个程序是以顶点为基本单位处理的。由于一条边对应两个结点,取标号较小的顶点做为主要处理对象,并用它来寻址该边所对应的另一个结点。这样规格化的好处在于:程序流程的每一步都会在自己的预测中,出现了错误易于查找。 下面介绍一下一个matlab的built_in排序函数sort这个函数的功能非常强,也正因为采用了这个函数才使我的程序简洁高效。 [Y,I]=sort(A);其中A为矩阵。 则Y为将A中各列按从小到大排序后的结果,I为Y中的元素在原矩阵A中所在的行号。举例如下

【开题报告】最小生成树算法及其应用

开题报告 信息与计算科学 最小生成树算法及其应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 最小生成树(minimum spanning tree,MST)是计算机学科中一重要内容, 其算法也是重要的计算方法, 是现代科学中比较热门的研究方向. 一个有个结点的连通图的生成树是原图的极小连通子图, 且包含原图中的所有个n n 结点, 并且有保持图联通的最少的边. 许多应用问题都是一个求五项连通图的最小生成树问题. 例如: 要在个城市之间铺设n 光缆, 主要目标是要使这个城市的任意两个之间都可以通信, 但铺设光缆的费用很高, n 且各个城市之间铺设光缆的费用不同; 另一个目标是要使铺设光缆的总费用最低. 这就需要找到带权的最小生成树. MST 性质: 最小生成树性质: 设是一个连通网络, 是顶点集的一个真(,)G V E =U V 子集. 若是中一条“一个端点在中(例如: ), 另一个端点不在中”的边(,)n u v G U u U ∈U (例如:), 且具有最小权值, 则一定存在的一棵最小生成树包括此边v V U ∈-(,)u v G . (,)u v 求MST 的一般算法可描述为: 针对图, 从空树开始, 往集合中逐条选择并G T T 加入条安全边, 最终生成一棵含条边的MST. 1n -(,)u v 1n -当一条边加入时, 必须保证仍是MST 的子集, 我们将这样的边称(,)u v T {}(,)T u v 为的安全边. 其中主要有两种算法: Prim 算法和Kruskal 算法. T Prim 算法: 该算法由Prim 提出, 但事实上Jarnik 于1930年更早提出. 用于求无向图的最小生成树. 设图 . (),G V E =步骤1: 取一个顶点, 则, . 1v {}1V v ={}E =

数据结构课程设计报告最小生成树Kruskal算法[1]4545

课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:最小生成树Kruskal算法 院(系): 专业: 班级: 学号: 姓名: 指导教师:

目录 1 课程设计介绍 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 2 课程设计原理 (2) 2.1课设题目粗略分析 (2) 2.2原理图介绍 (4) 2.2.1 功能模块图 (4) 2.2.2 流程图分析 (5) 3 数据结构分析 (11) 3.1存储结构 (11) 3.2算法描述 (11) 4 调试与分析 (13) 4.1调试过程 (13) 4.2程序执行过程 (13) 参考文献 (16) 附录(关键部分程序清单) (17)

1 课程设计介绍 1.1 课程设计内容 编写算法能够建立带权图,并能够用Kruskal算法求该图的最小生成树。最小生成树能够选择图上的任意一点做根结点。最小生成树输出采用顶点集合和边的集合的形式。 1.2 课程设计要求 1.顶点信息用字符串,数据可自行设定。 2.参考相应的资料,独立完成课程设计任务。 3.交规范课程设计报告和软件代码。

2 课程设计原理 2.1 课设题目粗略分析 根据课设题目要求,拟将整体程序分为三大模块。以下是三个模块的大体分析: 1.要确定图的存储形式,通过对题目要求的具体分析。发现该题的主要操作是路径的输出,因此采用边集数组(每个元素是一个结构体,包括起点、终点和权值)和邻接矩阵比较方便以后的编程。 2.Kruskal算法。该算法设置了集合A,该集合一直是某最小生成树的子集。在每步决定是否把边(u,v)添加到集合A中,其添加条件是A∪{(u,v)}仍然是最小生成树的子集。我们称这样的边为A的安全边,因为可以安全地把它添加到A中而不会破坏上述条件。 3.Dijkstra算法。算法的基本思路是:假设每个点都有一对标号(d j,p j),其中d是从起源点到点j的最短路径的长度(从顶点到其本身的最短路径是零路(没有弧的路),其长度等于零);p j则是从s到j 的最短路径中j点的前一点。求解从起源点s到点j的最短路径算法的基本过程如下: 1)初始化。起源点设置为:①d s=0,p s为空;②所有其它点:d i=∞,p i=?; ③标记起源点s,记k=s,其他所有点设为未标记的。 2)k到其直接连接的未标记的点j的距离,并设置: d j=min[d j, d k+l kj]

最小生成树的算法

最小生成树的算法 王洁 引言: 求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。下面将介绍几种最小生成树的算法。 一,用“破圈法”求全部最小生成树的算法 1 理论根据 1.1 约化原则 给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ? E ,使生成树所有边权最小,此生成树称为最小生成树. (1) 基本回路 将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。 基本回路是由 T 中的树枝和一条连枝构成的回路. (2) 基本割集 设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。 基本割集是集合中的元素只有一条是树枝,其他的为连枝. (3) 等长变换 设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ? H,当且仅当'e ∈()cf e ,也就是说 e ∈()S e ,则'T =T ⊕{e, ' e }也是一棵生成树。当()e ω='()e ω时,这棵生成树叫做等长变换。 等长变换就是从基本回路中选取与树枝等权边,并与此树枝对换后形成的生成树. 根据以上定理得出2个结论:①若在某个回路C 中有一条唯一的最长边,则任何一棵最小生成树都不含这条边;②若在某个边 e 的割集中有一条唯一最短边,则每棵生成树中都必须含这条边.由上面结论可以得到唯一性:若图 G 中的生成树T = (V ,H )是唯一的一棵最小生成树,当且仅当任意一连枝e ∈ H, ' e ∈ E 都是其基本回路中唯一最长边,任意一条树边 e 都是其基本割集()S e 中的唯一最短边.

一种新的最小生成树算法

一种新的最小生成树算法 姓名:金鸿轩 班级:软件13-6 学号:13200106 2015-01-18

一种新的最小生成树算法 作者:金鸿轩 辽宁工程技术大学软件学院,辽宁省葫芦岛市,125105 摘要:本文提出一种新的算法以完成加权连通图的最小生成树(minimum spanning tree, MST)。该算法具有以下优点:1,由于主要以排序为主,因此比较简单。2,算法复杂度与 Boruvka 和Prim(PFS,堆)算法是同一个数量级,在图的密度小于1 的情况下,提出的算 法比Boruvka 和Prim(PFS,堆)算法性能优越。3,即使在大型图中,内存不能一次读入 全部数据,提出的算法在Step2 中只需扫描一次数据库就能完成,对系统要求较低。 关键词:最小生成树;边顺生长;边逆生长;算法复杂度 A new minimum spanning tree algorithm This paper presents a new algorithm to complete the weighted minimum spanning tree of connected graph ,The algorithm has the following advantages :1,Because mainly the sorting, so simple 2The algorithm complexity and Boruvka and Prim (PFS, heap) algorithm is the same order of magnitude, the density of the diagram under the condition of less than 1, put forward to calculate Method than Boruvka and Prim algorithm (PFS, heap) superior performance.3Even in a large figure, memory cannot be read at a time All the data, the algorithm in Step2 scan a database, will be finished on the system requirements is low Closing date of draft :2015.1.19 Author's brief introduction :jinhongxuan Communication contacts :985441540@https://www.wendangku.net/doc/7c18009800.html,

相关文档
相关文档 最新文档