文档库 最新最全的文档下载
当前位置:文档库 › 承压-潜水非完整井计算公式

承压-潜水非完整井计算公式

承压-潜水非完整井计算公式
承压-潜水非完整井计算公式

基坑降水、土方、支护工程

降水设计计算书

一、设计计算依据

1、岩土工程勘察报告;

2、《建筑基坑支护技术规程》JGJ120-99;

3、其它相关资料。

二、计算过程

本次计算采取如下程序:

本工程采用承压-潜水非完整井计算基坑涌水量。

公式一:

)R (1lg h -M)M -2H 366.10

2r k Q +=(

式中:Q ——基坑涌水量(m 3/d)

k ——渗透系数(m/d),10

S ——水位降深(m),7.0m R ——引用影响半径(m),R=kH s 2=230m r 0——基坑半径(m),F F r 564.0/0==π=104.5m F ——基坑面积(m 2),本工程暂取34358m 2

l ——过滤器有效工作部分长度

H ——初始静止水位至井底的距离

h ——基坑底至井底的距离

M ——承压含水层厚度(m),27.0

计算得:Q=2969.9m 3/d

根据我公司多年施工经验,根据规范所计算涌水量往往比实际小很多,本工程根据经验,按两倍理论量计算涌水量,即涌水量为:2969.9×2=5940 m 3/d

公式二:

3

120q k l r s π=

式中:q ——管井的出水量(m 3/d)

s r ——过滤器半径(m )

l ——过滤器浸部分段长度(m),2.0

k ——含水层渗透系数(m/d),380

计算得:q =182.40m 3/d

公式三:

q

Q

n 1.1=

计算得井数为:n ≈36

公式四: T y Z ir c h L +++++=0

式中:L ——井深(m)

h ——基坑深度(m),5.5

c ——降水水面距基坑底的深度(m),1.0

i ——水力坡度,取0.03

Z ——降水期间地下水位变幅(m),0.5

y ——过滤器工作部分长度(m),2.0

T ——沉砂管长度(m),0.5

计算得井深为:L ≈12.6m ,取 13m

公式五:

1'-=n l a

式中:'l ——沿基坑布置井点的长度(m),约1160m 计算得井间距为:a ≈33.1m

因按规范计算降水井所需间距往往比实际需要要小很多,根据我 公司多年降水经验,结合本工程实际情况,降水井间距为7.0m ,另,由于基坑面积较大,在槽内加设疏干井,共布降水井165口。

供水水文地质知识点总结

1.自然界(地球)水的分布?自然界的水,以气态、液态、固态形式,分布于地球的大气圈、水圈、岩石圈中。 2. 地下水的补给源?大气降水。冰雪融水。地表水。沉积物夹带水。深部来源水。含水层之间补给。人工补给【回灌】。 3.地下水的排泄途径?以泉的形式排泄。向地表水的排泄。以蒸发的方式排泄。不同含水层之间的排泄。人工排泄【抽取地下水】以火山热液、喷气的形式排泄。通过植物体液循环排泄。 4.地下水的径流过程、径流成因、径流影响因素?大气降水、地表水等,通过包气带下渗,补给含水层而成为地下水;地下水,又在自重力作用下由高水位处向低水位处渗流【潜水】、或在自承压力作用下由高水压处向低水压处渗流【承压水】,并以泉的形式排出地表或直接补给地表水;如此反复循环。这就是地下水径流的根本原因。含水层的空隙性。影响因素:地下水的埋藏条件,如潜水、承压水。气候条件。地下水的补给量。地形的坡度与高度、含水层的产状,直接影响潜水的径流。地下水的承压大小,直接影响承压水的径流。地下水的化学成分与含悬浮物,影响地下水的重度和粘滞性,从而影响地下水的径流。人为因素,多种工程活动,如修建水库、农填灌溉、矿坑排水、深井注水、抽取地下水等,影响地下水的径流。 5.地下水补给、排泄、径流之间转化关系?地下水的补给、径流、排泄之间密切联系、相互转化,形成地下水循环的完整过程。当自然条件发生改变时,地下水的径流方向与流量、补给区与排泄区、补给量与排泄量等,可以发生转化,甚至补给区变成排泄区、排泄区变成补给区。自然条件改变,如河流改道与河床抬升、海进与海退、湖泊与沼泽蜕化、地壳升降与分水岭改变等,可以引起地下水的补给、径流、排泄之间转化。人类工程活动,如修建水库、开挖渠道、引水灌溉、矿区排水、人工开采、深井注水、抽取地下水等,可以引起地下水的补给、径流、排泄之间转化。 6.含水层与隔水层的基本概念?含水层:能够给出并透过相当数量地下水的地层。构成含水层的条件,一是地层中含有空隙且充满足够数量的地下水,二地下水能够在地层空隙中运移。隔水层:不能给出并透过地下水的地层,或地层给出与透过地下水的数量微不足道。 7.构成含水层的基本条件?具有容纳地下水的空隙条件。具有储存与聚集地下水的地质条件,如地形坡度、渗流通道、隔水层等。具有充足的补给水源。 8.含水层的类型?包气带水。上层滞水。饱和带水。潜水。承压水。 9.包气带水:潜水面以上且充分包气地带的地下水,水量小、含水层不饱和且直接与大气连通,包括土壤水、沼泽水、上层滞水、风化壳中季节水,主要补给源为地表径流、次之为潜水及沉积物夹带水,主要特征为易被污染、动态极不稳定,并且受控于气候条件且随季节变化大,雨季水量多、旱季水量少或干涸。 10.上层滞水:包气带中位于局部隔水层上的地下水,主要补给源为地表径流、次之为潜水及沉积物夹带水,随季节变化且易被污染。 11.潜水的基本概念、主要特征?潜水:第一隔水层之上且具有自由水面的重力水。 12.承压水的基本概念、主要特征?承压水:位于相邻两个隔水层之间且承受一定压力的地下水【非重力水】,也称为自流水。 13.承压水的形成条件(含自流盆地、自流斜地)?一是构造盆地【自流盆地】;另一是单斜构造【自流斜地】。 14.地下水的运动特点?曲折、复杂的渗流通道。迟缓的流速。一般为紊流,很少出现层流。绝大多数为非稳定流运动,极少数为稳定流运动。天然条件下,一般均呈缓变流动,有时为非缓变流动

四种常规压井方法

四种常规压井方法 四种常规压井方法 1、边加重钻井液边循环压井法。这种处置方法可以在最短的时间防喷制住溢流,使井控装置承受的压力最小、承压时间最短,可以减少钻具粘卡等井下事故,因此是最安全的,但这种处置方法计算较复杂,需要进行许多的计算。 2、继续关井,先加重钻井液,再循环压井(等待加重法或工程师法)法。该处置可以在一个循环周完成,所需时间最短,井口压力较小,也较安全,压井多采用这种方法,但是关井时间长,对循环不利,因此该方法效果的好坏关键取决于是

否能迅速加重钻井液。以不变的泵速循环注入加重钻井液;在加重钻井液到达钻头的过程中,调节节流阀使立压由初始循环值下降到终了循环值(加重钻井液低泵冲泵压),使套压值保持不变;当加重钻井液到达钻头后向环空上返过程中,立压值保持不变,套压值逐渐下降,当加重钻井液到达井口时,套压降为零,重建起地层——井眼压力平衡,压井结束。 3、先循环排出受侵污的钻井液,关井、加重钻井液,再循环压井(两步控制法或司钻法)法。这种处置相对来说是安全的,技术上也比较容易掌握,但需要最长的时间和最大程度的应用井口装置。钻井液在第一个循环周内未加重,因此立

压不变(或初始与终了循环压力相等),同时第一循环周结束,关闭节流阀时,套压应该等于立压。 4、先循环排出受侵污的 4、先循环排出受侵污的钻井液,然后边加重钻井液边循环压井法。这种处置方法既复杂又需要时间更长。

附件1-13 井压井施工单年月日 井号井队 填表 人井 深 H0 M 垂深 H1M 原浆密 度γMg/m3 钻进 排量Q L/S 低泵冲泵 压P Ci MPa 漏失压 力 梯度Gf MPa/M 压井 排量Q k L/S 套管鞋 深度h M 钻柱内 容 积系数 V A L/M 钻头位 置 斜深H M 压井附加 密度γ e g/cm3 环空容 积 系数V B L/M 钻头位 置 垂深H2

第三章 地下水向完整井的稳定运动

第三章地下水向完整井的稳定运动 一、填空题 1.根据揭露含水层的厚度和进水条件,抽水井可分为_____和_____两类。 2.承压水井和潜水井是根据___________________来划分的。 3.从井中抽水时,水位降深在_______处最大,而在________处最小。 4.对于潜水井,抽出的水量主要等于_________。而对于承压水井,抽出的水量则等于_____________________。 5.填砾的承压完整抽水井,其井管外面的测压水头要______井管里面的测压水头。 6.在承压含水层中进行稳定流抽水时,通过距井轴不同距离的过水断面上流量_____,且都等于______。 7.影响半径R是指________________;而引用影响半径R0是指。 8.对有侧向补给的含水层,引用影响半径是_____________;而对无限含水层,引用影响半径则是______________。 9.在应用Q~S w的经验公式时,必须有足够的数据,至少要有____次不同降深的抽水试验。 10.常见的Q~S w曲线类型有______、______、_______和______四种。 11.确定Q~S w关系式中待定系数的常用方法是______和______。 12.最小二乘法的原理是要使直线拟合得最好,应使________最小。 13.在均质各向同性含水层中,如果抽水前地下水面水平,抽水后形成______的降落漏斗;如果地下水面有一定的坡度, 抽水后则形成_______的降落漏斗。 14.对均匀流中的完整抽水井来说,当抽水稳定后,水井的抽水量等于。 15.驻点是指______________。 16.在均匀流中单井抽水时,驻点位于____________,而注水时,驻点位于____________。 17.通常假定井径的大小对抽水井的降深影响不大,这主要是对_________而言的,而对井损常数C来说_________。 18.确定井损和有效井半径的抽水试验方法,主要有_______和_______。 19.在承压水井中抽水,当___________时,井损可以忽略;而当_______

基坑降水的非完整井流计算

基坑降水的非完整井流计算 【摘要】用三维边界单元法解决基坑施工中非完整井降水的渗流计算问题,为降水方案设计提供依据,并对降水过程作出预测。 【关键词】基坑降水基坑施工非完整井流计算 【Abstract】The seepage calculation for partly penetrated well dewatering is solved in foundation pit construction by the three dimensional boundary elements method.This provides the basis for the scheme design of dewatering,and can make a prediction for dewatering process. 【key words】foundation dewatering foundation pit construction calculation for partially penetrated well flow. 0前言 在建筑工程的深基坑施工过程中,往往要求将地下水位降到一定的深度之下,目的是使基坑的坑底面不积水,便于施工。另一方面,降低水位是为了减小基坑的水压力,防止坑底土层破坏或防止发生流砂、管涌等现象。同时基坑降水还能减小基坑侧壁的渗透压力,有助增加基坑侧壁的稳定性。因此基坑降水在深基坑工程中占有重要位置。在南方软土地区,由于地下水位浅,土质软弱,基坑降水的作用更加突出。 基坑降水的方案设计必须既科学又经济。降水方案首先要确保降水效果能够达到预期的目的,降水过程能够按预定计划有控制地实行;其次,应考虑降水工程的经济性,做到以尽量少的工程费用实现降水的目的。 节约降水费用的关键是设计最经济的井数、井深及降水井的合理布置。降水井的个数主要取决于单井的降水深度和单井的有效降深范围。由于上海地区浅部土层的渗透性较小,因此降水井附近的降落曲线较陡,使得降水影响范围较小。由于渗透缓慢,一味地增加井的深度并不能明显地增大降水影响范围。因此实际工程中的降水井往往是浅井,没有打穿含水层,使得降水井变成了非完整井。非完整井的渗流情况相当复杂,给计算增加了困难。 在经典理论中,对于非完整井的稳定流,通过作出简化假设,得出了些近似解,如半无限承压含水层中非完整井的В.П.Бабушкин巴布什金公式、含水层厚度有限时承压含水层中的非完整井的Muskat马斯克特公式。而对潜水非完整井,则通过将渗流区分为上下两区,将上段看作潜水完整井,将下段看作承压非完整井的方法来解决。经典

地下水动力学

1,地下水动力学:研究地下水在孔隙岩石,裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学 第一章渗流理论基础 2,多孔介质:在地下水动力学中,把具有孔隙的岩石称为多孔介质 3有效空隙:互相连通的,不为结合水所占据的那一部分空隙 4,有效孔隙度:有效孔隙体积与多孔介质总体积之比 5,贮水率:又称释水率面积为一个单位,厚度为一个单位,当水头降低一个单位时所能释放出的水量 贮水系数(释水系数)=贮水率乘以含水层厚度 表示面积为一个单位,厚度为含水层全厚度的含水层主体中,当水头改变一个单位时弹性释放或贮存的水量 贮水率与贮水系数相互关系:1,都是表示含水层弹性释水能力的参数 2,对于承压含水层,只要水头不降低到隔水底板以下,水头降低只会引起弹性释水,可用贮水系数表示这种释水能力 3,对于潜水含水层,当水头下降时可引起两部分水的排出(1,在上部潜水面下降引起重力排水,用给水度表示重力排水的能力2,在下部饱水部则引起弹性释水,用贮水率表示这一部分的释水能力) 弹性释水和重力排水的不同点:1,影响范围不同(弹性释水影响整个承压含水层,重力释水影响潜水含水层和包气带)2,和时间有关(1弹性释水瞬时完成不随时时间变化2重力释水存在滞后效应是时间的函数)3两只大小不同(弹性释水系数多在0.001-0.00005之间重力排水参数在0.1-0.01之间) 7渗流:假设这种假想水流运动时,在任意岩石体积内所受的阻力等于真是水流所受的阻力,通过任意断面的流量及任一点的压力或水头均和实际水流相同,这种假想水流称为渗流渗流与实际水流相比相同点:阻力相同水头相同流量相同 8渗流速度:代表渗流在过水断面上的平均流速,时一种假想流速 实际平均流速:在空隙中的不同地点,地下水运动的方向和速度可能不同平均速度称为实际平均速度测压管水头:H_z=z+p/r 水位:一般用在野外,基准面相同(黄海水位标高) 水头:基准面可任意选定水位是一种特殊的水头 9地下水头:书十页 10,水力坡度:把大小等于坡度值,方向沿着等水头面的法线指向水头降低方向的矢量称为水力坡度p11 11,地下水运动特征的分类p11 运动要素:表征渗流运动的物理量,主要有渗流量Q,渗流速度V,压强P,水头H等 按运动要素和时间的关系分为:(1)稳定流:运动要素不随时间变化;(2)非稳定流:运动要素随时间变化 按地下水运动方向和空间坐标的关系:一维运动,二维运动,三维运动 12,层流:流速较小时,液体质点做有条不紊的线性运动,彼此不相掺混紊流:流速较大时,液体质点的运动轨迹曲折混乱,互相掺混 13,Dacry在此处键入公式。的表达式和运用范围p14 Q=KA(H1-H2)/l V=Q/A=KJ

承压-潜水非完整井计算公式

基坑降水、土方、支护工程 降水设计计算书 一、设计计算依据 1、岩土工程勘察报告; 2、《建筑基坑支护技术规程》JGJ120-99; 3、其它相关资料。 二、计算过程 本次计算采取如下程序: 本工程采用承压-潜水非完整井计算基坑涌水量。

公式一: )R (1lg h -M)M -2H 366.10 2r k Q +=( 式中:Q ——基坑涌水量(m 3/d) k ——渗透系数(m/d),10 S ——水位降深(m),7.0m R ——引用影响半径(m),R=kH s 2=230m r 0——基坑半径(m),F F r 564.0/0==π=104.5m F ——基坑面积(m 2),本工程暂取34358m 2 l ——过滤器有效工作部分长度 H ——初始静止水位至井底的距离 h ——基坑底至井底的距离 M ——承压含水层厚度(m),27.0 计算得:Q=2969.9m 3/d 根据我公司多年施工经验,根据规范所计算涌水量往往比实际小很多,本工程根据经验,按两倍理论量计算涌水量,即涌水量为:2969.9×2=5940 m 3/d

公式二: 3 120q k l r s π= 式中:q ——管井的出水量(m 3/d) s r ——过滤器半径(m ) l ——过滤器浸部分段长度(m),2.0 k ——含水层渗透系数(m/d),380 计算得:q =182.40m 3/d 公式三: q Q n 1.1= 计算得井数为:n ≈36 公式四: T y Z ir c h L +++++=0 式中:L ——井深(m) h ——基坑深度(m),5.5 c ——降水水面距基坑底的深度(m),1.0 i ——水力坡度,取0.03 Z ——降水期间地下水位变幅(m),0.5 y ——过滤器工作部分长度(m),2.0

钻井各种计算公式

钻头水利参数计算公式: 1、 钻头压降:d c Q P e b 42 2 827ρ= (MPa ) 2、 冲击力:V F Q j 02.1ρ= (N) 3、 喷射速度:d V e Q 201273= (m/s) 4、 钻头水功率:d c Q N e b 42 3 05.809ρ= (KW ) 5、 比水功率:D N N b 21273井 比 = (W/mm 2) 6、 上返速度:D D V Q 2 2 1273杆 井 返= - (m/s ) 式中:ρ-钻井液密度 g/cm 3 Q -排量 l/s c -流量系数,无因次,取0.95~0.98 d e -喷嘴当量直径 mm d d d d e 2 n 2 22 1+?++= d n :每个喷嘴直径 mm D 井、D 杆 -井眼直径、钻杆直径 mm 全角变化率计算公式: ()()?? ? ???+?+ ?= -?-?225sin 2 2 2 b a b a b a L K ab ab ?? 式中:a ? b ? -A 、B 两点井斜角;a ? b ? -A 、B 两点方位角

套管强度校核: 抗拉:安全系数 m =1.80(油层);1.60~1.80(技套) 抗拉安全系数=套管最小抗拉强度/下部套管重量 ≥1.80 抗挤:安全系数:1.125 10 ν泥挤 H P = 查套管抗挤强度P c ' P c '/P 挤 ≥1.125 按双轴应力校核: H n P cc ρ10= 式中:P cc -拉力为T b 时的抗拉强度(kg/cm 2) ρ -钻井液密度(g/cm 3) H -计算点深度(m ) 其中:?? ? ? ?--= T T K P P b b c cc K 2 2 3 T b :套管轴向拉力(即悬挂套管重量) kg P c :无轴向拉力时套管抗挤强度 kg/cm 2 K :计算系数 kg σs A K 2= A :套管截面积 mm 2 σs :套管平均屈服极限 kg/mm 2 不同套管σs 如下: J 55:45.7 N 80:63.5 P 110:87.9

地下水动力学知识点总结

基本问题

趋于等速下降。 ⑴含水层为均质、各向同性,产状水平、厚度不变(等厚)、,分布面积很大,可视为无限延伸;或呈圆岛状分布,岛外有定水头补给; (2)抽水前地下水面是水平的,并视为稳定的;含水层中的水流服从 Darcy' s Law,并在水头下降的瞬间将水释放出来,可忽略弱透水层 的弹性释水; (3)完整井,定流量抽水,在距井一定距离上有圆形补给边界,水位降落漏斗为圆域,半径为影响半径;经过较长时间抽水,地下水运动出现稳定状态; (4)水流为平面径向流,流线为指向井轴的径向直线,等水头面为以井为共轴的圆柱面,并和过水断面一致;通过各过水断面的流量处处相 等,并等于抽水井的流量。 In— 12 承压水井的Dupuit 公式的表达式及符号 含义 式中,S w—井中水位降深,m; Q —抽水井流量,m3/d ; M —含水层厚度,m; K —渗透系数,m/d; r w—井半径,m; R—影响半径(圆岛半径),m 13 3 Theim公式的表达式若存在两个观测孔,距离井中心的距离分别为 H2,在r1到r2区间积分得: 门,「2,水位分别为H1, 承压水井的Dupuit 公式的水文地质概念 模型 11

规律 得到贮存量的补给。 (2)由于沿途含水层的释放作用,使得渗流速度小于稳定状态的渗 流速度。但随着时间的增加,又接近稳定渗流速度。 在无越流补给且侧向无限延伸的承压含水层中抽水时, 虽然理论上不 可能出现稳定状态,但随着抽水时间的增加,降落漏斗范围不断向外 扩展,自含水层四周向水井汇流的面积不断增大,水井附 近地下水测 压水头的变化渐渐趋于缓慢,在一定的范围内,接近稳定状态(似稳 定 流),和稳定流的降落曲线形状相同。 但是,这不能说明地下水头降落以达稳定。 由Theis 公式两端取对数,得到 二式右端的第二项在同一次抽水试验中都是常数。因此,在双对数坐 标系内,对于定流量抽水 " 和 --标准曲线在形状上是 相同的,只是纵横坐标平移了 4池 心 距离而已。只要将二曲 线重合,任选一匹配点,记下对应的坐标值,代入 (4-10)式(4-11 )式 即可确定有关参数。此法称为降深-时间距离配线法。 同理,由实际资料绘制的s-t 曲线和与s-厂 曲线,分别与 ir (u )一 丄 ::和W (u )-u 标准曲线有相似的形状。因此,可以利用一 个观测孔不同时刻的降深值,在双对数纸上绘出s-t 曲线和 曲线,进行拟合,此法称为降深 -时间配线法。 如果有三个以上的观测孔,可以取 t 为定值,利用所有观测孔的降深 值,在双对数纸上绘出 s# 实际资料曲线与 W ( u ) - u 标准曲线拟 合,称为降深-距离配线法。 20 Theis 公式反应的影 响半径 21 Theis 配线法的原理

最常用钻井液计算公式

钻井液有关计算公式 一、加重:W= Y(Y-Y)/Y)-谡 W :需要加重1方泥浆的数量(吨) Y:加重料密度 Y:泥浆加重前密度 Y:泥浆加重后密度 二、降比重:V= (丫原-丫稀)丫水/ 丫稀-丫水 V:水量(方) 丫原:泥浆原比重 丫稀:稀释后比重 丫水:水的比重 三、配1方泥浆所需土量:W= 丫土(丫泥-丫水)/丫土-丫水 丫水:水的比重 丫泥:泥浆的比重 丫土:土的比重 四、配1方泥浆所需水量:V=1-W 土/丫土 丫土:土的比重 W 土:土的用量 五、井眼容积:V=1/4 U D2H D :井眼直径(m) H :井深(m) 六、环空上返速度:V 返= 1 2.7Q/D 2-d2 Q: 排量(l/S ) D: 井眼直径(cm) d: 钻具直径(cm) 七、循环周时间:T=V/60Q=T井内+T地面 T: 循环一周时间(分钟) V: 泥浆循环体积(升) Q: 排量(升/秒)

八、岩屑产出量:W= T D2* Z/4

W:产出量(立方米/小时) Z:钻时(机械钻速)(米 /小时) D:井眼直径(米) 九、粒度范围 粗 中粗 中细 细 超细 胶体 粘土级颗粒 砂粒级颗粒 粒度》2000卩 粒度2000- 250卩 粒度250-74卩 粒度74-44卩 粒度44- 2 粒度W 2 1 粒度w 2 1 粒度》74 1 十、API 筛网规格: 目数 20 30 40 50 60 80 100 120 十一、除砂器有关数据 除砂器:尺寸(6-12 〃) 处理量( 除砂器:尺寸(2-5 〃) 处理量( 28-115立方米/小时) 范围(除74 1以上) 6-17立方米/小时) 范围(除44 1以上) O I ” O n -=1.195 *(‘600 - -00) T c =1.512*( ... 6可00 -「600 ) 2 孔径 (1 ) 838 541 381 279 234 178 140 十二、极限剪切粘度 十三、卡森动切力:

压井计算公式

井控公式 1.静液压力:P=0.00981ρ H MPa ρ-密度g/cm3;H-井深 m。 例:井深3000米,钻井液密度1.3 g/cm3,求:井底静液压力。 解:P=0.00981*1.3*3000=38.26 MPa 2,压力梯度: G=P/H=9.81ρ kPa/m =0.0098ρMPa; 例:井深3600米处,密度1.5 g/cm3,计算井静液压力梯度。 解:G=0.0098*1.5=0.0147MPa=14.7kPa/m 3.最大允许关井套压 Pamax =(ρ破密度-ρm)0.0098H MPa H—地层破裂压力试验层(套管鞋)垂深,m。 Ρm—井密度 g/cm3 例;已知密度1.27 g/cm3,套管鞋深度1067米,压力当量密度1.71 g/cm3,求:最大允许关井套压 解; Pamax =(1.71-1.27)0.0098*1067=4.6 MPa 4.压井时(极限)关井套压 Pamax =(ρ破密度-ρ压)0.0098H MPa Ρ压—压井密度 g/cm3 (例题略) 5.溢流在环空中占据的高度 hw=ΔV/Va m ΔV—钻井液增量(溢流),m3; Va—溢流所在位置井眼环空容积,m3/m。 6.计算溢流物种类的密度ρw=ρm- (Pa-Pd)/0.0098 hw g/cm3; ρm—当前井泥浆密度,g/cm3; Pa —关井套压,MPa; Pd —关井立压,MPa。

如果ρw在0.12~0.36g/cm3之间,则为天然气溢流。 如果ρw在0.36~1.07g/cm3之间,则为油溢流或混合流体溢流。 如果ρw在1.07~1.20g/cm3之间,则为盐水溢流。 7.地层压力 Pp =Pd+ρm gH Pd —关井立压,MPa。 ρm—钻具钻井液密度,g/cm3 8.压井密度ρ压=ρm+Pd/gH 9、(1)初始循环压力 =低泵速泵压+关井立压 注:在知道关井套压,不清楚低泵速泵压和关井立压情况下,求初始循环压力方法:(1)缓慢开节流阀开泵,控制套压=关井套压(2)排量达到压井排量时,保持套压=关井套压,此时立管压力=初始循环压力。 (2)求低泵速泵压:(Q/Q L)2=P/P L 例:已知正常排量=60冲/分,正常泵压=16.548MPa,求:30冲/分时小泵压为多少? 解:低泵速泵压P L=16.548/(60/30)2=4.137 MPa 10.终了循环压力= (压井密度/原密度)X低泵速泵压 (一)注:不知低泵速泵压,求终了循环压力方法:(1)用压井排量计算出重浆到达钻头的时间,此时立管压力=终了循环压力。边循环边加重压井法

地下水动力学习知识重点情况总结

基本问题 潜水含水层的贮水能力可表示为Q=HF; 承压含水层的贮水能力可表示为Q=HF; 式中Q——含水层水位变化时H的贮水能力, H——水位变化幅度; F——地下水位受人工回灌影响的范围。 从中可以看出,因为承压含水层的弹性释水系数远远小于潜水含 水层的给水度,因此在相同条件下进行人工回灌时,潜水含水层的 贮水能力远远大于承压含水层的贮水能力。

水跃:抽水井中的水位与井壁外的水位之间存在差值的现象(seepage face)。井损(well loss)是由于抽水井管所造成的水头损失。 ①井损的存在:渗透水流由井壁外通过过滤器或缝隙进入抽水井时要克服阻力,产生一部分水头损失h1。 ②水进入抽水井后,井内水流井水向水泵及水笼头流动过程中要克服一定阻力,产生一部分水头差h2。 ③井壁附近的三维流也产生水头差h3。通常将(h1+h2+h3)统称为水跃值.

趋于等速下降。 113 承压水井的Dupuit 公式的水文地质概念 模型 (1)含水层为均质、各向同性,产状水平、厚度不变(等厚)、,分布面 积很大,可视为无限延伸;或呈圆岛状分布,岛外有定水头补给; (2)抽水前地下水面是水平的,并视为稳定的;含水层中的水流服从 Darcy’s Law,并在水头下降的瞬间将水释放出来,可忽略弱透水层 的弹性释水; (3)完整井,定流量抽水,在距井一定距离上有圆形补给边界,水 位降落漏斗为圆域,半径为影响半径;经过较长时间抽水,地下水运 动出现稳定状态; (4)水流为平面径向流,流线为指向井轴的径向直线,等水头面为以井 为共轴的圆柱面,并和过水断面一致;通过各过水断面的流量处处相 等,并等于抽水井的流量。 123 承压水井的Dupuit 公式的表达式及符号 含义 或 式中,s w—井中水位降深,m; Q—抽水井流量,m3/d; M—含水层厚度,m; K—渗透系数,m/d; r w—井半径,m; R—影响半径(圆岛半径),m。 133Theim公式的表达式 若存在两个观测孔,距离井中心的距离分别为r1,r2,水位分别为H1, H2,在r1到r2区间积分得:

测井解释计算常用公式

测井解释计算常用公式目录 1. 地层泥质含量(Vsh)计算公式................................................ .. (1) 2. 地层孔隙度(υ)计算公式....................................... (4) 3. 地层含水饱和度(Sw)计算.......................................................... (7) 4. 钻井液电阻率的计算公式...................................................... . (12) 5. 地层水电阻率计算方法 (13) 6. 确定a、b、m、n参数 (21) 7. 确定烃参数 (24) 8. 声波测井孔隙度压实校正系数Cp的确定方法 (25) 9. 束缚水饱和度(Swb)计算 (26) 10.粒度中值(Md)的计算方法 (28) 11.渗透率的计算方法 (29) 12. 相对渗透率计算方法 (35) 13. 产水率(Fw) (35) 14. 驱油效率(DOF) (36) 15. 计算每米产油指数(PI) (36) 16. 中子寿命测井的计算公式 (36) 17. 碳氧比(C/O)测井计算公式 (38) 18.油层物理计算公式 (44) 19.地层水的苏林分类法 (48) 20. 毛管压力曲线的换算 (48) 21. 地层压力 (50) 22. 气测录井的图解法 (51) 附录:石油行业单位换算 (53)

测井解释计算常用公式 1. 地层泥质含量(Vsh )计算公式 1.1 利用自然伽马(GR )测井资料 1.1.1 常用公式 min max min GR GR GR GR SH --= (1) 式中,SH -自然伽马相对值; GR -目的层自然伽马测井值; GRmin -纯岩性地层的自然伽马测井值; GRmax -纯泥岩地层的自然伽马测井值。 1 2 12--= ?GCUR SH GCUR sh V (2) 式中,Vsh -泥质含量,小数; GCUR -与地层年代有关的经验系数,新地层取3.7,老地层取2。 1.1.2 自然伽马进行地层密度和泥质密度校正的公式 o sh o b sh B GR B GR V -?-?= max ρρ (3) 式中,ρb 、ρsh -分别为储层密度值、泥质密度值; Bo -纯地层自然伽马本底数; GR -目的层自然伽马测井值; GRmax -纯泥岩的自然伽马值。 1.1.3 对自然伽马考虑了泥质的粉砂成分的统计方法 C SI SI B A GR V b sh +-?-?= 1ρ (4) 式中,SI -泥质的粉砂指数; SI =(ΦNclay -ΦNsh )/ΦNclay (5) (ΦNclay 、ΦNsh 分别为ΦN -ΦD 交会图上粘土点、泥岩点的中子孔隙度) A 、B 、C -经验系数。 1.2 利用自然电位(SP )测井资料

钻井计算公式精典

钻井计算公式(精典) 1.卡点深度: L=eEF/105P=K×e/P 式中:L-----卡点深度米 e------钻杆连续提升时平均伸长厘米 E------钢材弹性系数=2.1×106公斤/厘米2 F------管体截面积。厘米2 P------钻杆连续提升时平均拉力吨 K------计算系数 K=EF/105=21F 钻具被卡长度l: l=H-L 式中H-----转盘面以下的钻具总长米 注:K值系数5"=715(9.19) 例:某井在井深2000米时发生卡钻,井内使用钻具为壁厚11毫米的59/16"钻杆,上提平均拉力16吨,钻柱平均伸长32厘米,求卡点深度和被卡钻具长度。 解:L=Ke/P 由表查出壁厚11毫米的59/16"钻杆的K=957 则:L=957×32/16=1914米 钻具被卡长度: L=H-L=2000-1914=86米 2、井内泥浆量的计算 V=D2H/2或V=0.785D2H 3、总泥浆量计算 Q=q井+q管+q池+q备 4、加重剂用量计算: W加=r加V原(r重-r原)/r加-r重 式中:W加----所需加重剂的重量,吨 r原----加重前的泥浆比重, r重----加重后的泥浆比重 r加---加重料的比重 V原---加重前的泥浆体积米3 例:欲将比重为1.25的泥浆200米3,用比重为4.0的重晶石粉加重至1.40,需重晶石若干?解:根据公式将数据代入: 4×200(1.40-1.25)/4.0-1.40=46吨 5.降低泥浆比重时加水量的计算 q=V原(r原-r稀)/r稀-r水 式中:q----所需水量米3 V原---原泥浆体积米3 r稀---稀释后泥浆比重 r水----水的比重(淡水为1)

管井降水计算(潜水非完整井)

一、场地岩土工程情况 本工程位于包头市友谊大街以南,劳动路以东,万青路以西,在地貌上属于大青山山前冲洪积地貌。本场地地层结构和岩性如下: 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在0.3~3.2m之间,层底标高在1052.62~1057.02m之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在0.3~4.2m之间,层底标高在1052.02~1054.06m之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在3.4~6.6m之间,渗透系数为K=1.66×10-2cm/s。 第③1层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在0.4~2.2m之间,层底标高在1047.91~1050.61m之间,渗透系数为K=5.64×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在4.3~9.4m之间,层底标高1039.21~1041.58m之间,渗透系数为K=2.24×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为1.3~6.1%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在31.2~33.4m之间,层底标高在1006.57~1009.65m 之间,渗透系数为K=3.89×10-6cm/s。 地下水埋藏于自然地表下5.2~6.5m,标高在1049.64~1050.73m之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在1.0~1.5M之间。

承压-潜水非完整井计算公式

承压-潜水非完整井计 算公式 -CAL-FENGHAI.-(YICAI)-Company One1

基坑降水、土方、支护工程 降水设计计算书 一、设计计算依据 1、岩土工程勘察报告; 2、《建筑基坑支护技术规程》JGJ120-99; 3、其它相关资料。 二、计算过程 本次计算采取如下程序: 本工程采用承压-潜水非完整井计算基坑涌水量。

公式一: ) R (1lg h -M)M -2H 366.10 2 r k Q +=( 式中:Q ——基坑涌水量(m 3/d) k ——渗透系数(m/d),10 S ——水位降深(m), R ——引用影响半径(m),R=kH s 2=230m r 0——基坑半径(m),F F r 564.0/0==π= F ——基坑面积(m 2),本工程暂取34358m 2 l ——过滤器有效工作部分长度 H ——初始静止水位至井底的距离 h ——基坑底至井底的距离 M ——承压含水层厚度(m), 计算得:Q=d 根据我公司多年施工经验,根据规范所计算涌水量往往比实际小很多,本工程根据经验,按两倍理论量计算涌水量,即涌水量为:×2=5940 m 3/d

公式二: 3 120q k l r s π= 式中:q ——管井的出水量(m 3/d) s r ——过滤器半径(m ) l ——过滤器浸部分段长度(m), k ——含水层渗透系数(m/d),380 计算得:q =182.40m 3/d 公式三: q Q n 1.1= 计算得井数为:n ≈36 公式四: T y Z ir c h L +++++=0 式中:L ——井深(m) h ——基坑深度(m), c ——降水水面距基坑底的深度(m), i ——水力坡度,取 Z ——降水期间地下水位变幅(m),

压井计算公式

1. 压井基本数据计算 1) 溢流种类的判别 根据关井钻杆压力和关井套管压力、钻柱内钻井液流体密度等参数,先计算出溢流流体的压力梯度,再按此压力梯度的数据范围判断出溢流种类。 溢流压力梯度计算公式: …………………………………………(8-6) 式中:Gw――溢流流体压力梯度,MPa/m Gh――钻柱内钻井液柱压力梯度,MPa/m Gw=0.01w W――钻柱内钻井液密度,g/cm3 P a――关井套压,MPa Pd――关井钻杆压力,MPa hw――溢流在井底的高度,m ………………………………………(8-7) 式中:Vb――溢流后循环池钻井液增量,升(L) Va――环空单位容积,升/米(L/m) θ――井斜角 表8-1 流体压力梯度与流体种类对照表 序号流体压力梯度MPa/m 流体种类 l 0.00118~0.00353 气体 2 0.0068~0.0089 油 3 0.0098 淡水 4 0.0101 海水 5 0 .0105~0.0118 地层水(盐水) 注:如流体压力梯度数据在上表的两者之间,则为这两者的混合物。 2) 关井钻杆压力的确定(即关井立压) 压井作业中,关井钻杆压力和套管压力是两个十分重要的参数。关井钻杆压力用于确定溢流种类,计算地层压力和压井液密度。关井套管压力用于提供回压和确定溢流种类参数。 发生溢流关井后,井内钻柱、环空和地层压力系统之间存在以下关系(见图8-5):Pp=Pd+Pmd………………………………………(8-8) Pp=Pa+Pmd +Pw…………………………………(8-9) 式中:Pp――地层压力,MPa Pd――关井钻杆压力,Mpa Pa――关井套管压力,MPa Pmd――钻柱内钻井液柱压力,Mpa Pma――环空钻井液柱压力,MPa Pw――溢流柱静水压力,MPa 如果井底压力是稳定的,则可以根据关井钻杆压力和钻柱内钻井液柱压力求得地层压力。确定正确的关井钻杆压力有两种情况: (1) 钻柱中未装回压阀时的关井钻杆压力 关井10~15分钟后的立管压力为关井钻杆压力。因为一般情况下,关井后10~15分钟井眼周围的地层压力才能恢复到原始地层压力。恢复时间的长短与地层流体种类、地层渗透率和欠平衡压差等因素有关。 (2) 钻柱中装有回压阀时测定关井钻杆压力的方法:

3 地下水向完整井的稳定运动

3 地下水向完整井的稳定运动 要点:本章是全书的重点之一,主要介绍地下水向完整井的稳定运动理论及相应计算公式,包括裘布依(Dupuit)公式、蒂姆(Thiem)公式、非线性层流井流公式、井流量与降深间的随机关系式以及均匀流中的井流公式。 通过本章习题的练习,要求学生在掌握稳定井流理论的基础上,能熟练利用计算公式确定相应条件下的水井涌水量(或水头)和含水层的渗透系数(或导水系数),提高分析和解决实际问题的能力。 表3—1给出了用稳定流抽水试验资料求渗透系数的公式。 3.1 井流 习题3-l 一、填空题 1.根据揭露含水层的程度和进水条件,抽水井可分为和两类。 2.承压水井和潜水井是根据来划分的。 3.从井中抽水时,水位降深在处最大,而在处最小。 4.对于潜水井,抽出的水量主要来自含水层的疏干,它等于。而对于承压水井,抽出的水量则主要来自含水层的弹性释水,它等于。 5.对承压完整井来说,水位降深s是的函数。而对承压不完整井,井流附近的水位降深s是的函数。 6.对潜水井来说,测压管进水口处的水头测压管所在位置的潜水位。 7.填砾的承压完整抽水井,其井管外面的测压水头要井管里面的测压水头。 8. 有效井半径是指。 二、判断题 9.在下有过滤器的承压含水层中抽水时,井壁内外水位不同的主要原因是由于存在井损的缘故。() 10.凡是存在井损的抽水井也就必定存在水跃。() 11.在无限含水层中,当含水层的导水系数相同时,开采同样多的水在承压含水层中形成的降落漏斗体积要比潜水含水层大。() 12.抽水井附近渗透性的增大会导致井中及其附近的水位降深也随之增大。()13.在过滤器周围填砾的抽水井中,其水位降深要小于相同条件下未填砾抽水井的水位降深。() 三、分析题 14.在潜水流中某一断面的不同深度设置三根测压管(图3-1)。管a的进水口位于潜水面附近,管b的进水口位于含水层中部,管c则位于隔水底板附近。试问各测压管水位是否

裘布衣公式

抽水试验公式 裘布衣(Dupuit)公式(承压水): Q=r R ln KSM 2π 式中: K----含水层渗透系数(m/d ) Q----抽水井流量(m 3/d ) S----抽水井中水位降深(m ) M---承压含水层厚度(m ) R----影响半径(m ) r-----抽水井半径(m) 裘布衣(Dupuit)公式(潜水): Q=r R ln S)S -K(2H π或q=1.366r R ln 1)-K(2H 式中: K----含水层渗透系数(m/d ) Q----抽水井流量(m 3/d ) S----抽水井中水位降深(m ) H---潜水含水层厚度(m ) R----影响半径(m ) r-----单位涌水量 r-----抽水井半径(m)

单孔试验(稳定流) 1. 承压水完整井Dupuit 公 式 K=r R SM Q lg R=10S K 式中: K----含水层渗透系数(m/d ) Q----抽水井流量(m 3/d ) S----抽水井中水位降深(m ) M---承压水含水层厚度(m ) R----影响半径(m ) r-----单位涌水量 2. 潜水完整井 A .一般完整井 K=r R S S H Q lg )2(372.0 R=KH S 2 式中: K----含水层渗透系数(m/d ) Q----抽水井流量(m 3/d ) S----抽水井中水位降深(m ) H---潜水含水层厚度(m ) R----影响半径(m ) r-----抽水井半径(m)

B.靠近河流完整井 K=r b S S H Q 2lg )2(372.0- 适用条件:靠近河流,即b <2~3H b :抽水井与河流的距离 一般非完整井 K=r b ls αlg 366.0- α=1.6 吉林斯基 α=1.32 巴布什金 适用条件: A 承压水,潜水 B 过滤器紧接含水层顶板或低板 C l <o,3H; l <o,3M(l-过滤器长) 潜水非完整井 承压水非完整井

第7章 压井工艺

第七章 压井工艺 压井是向失去压力平衡的井内泵入高密度的钻井液,并始终控制井底压力略大于地层压力,以重建和恢复压力平衡的作业。压井过程中,控制井底压力略大于地层压力是借助节流管汇,控制一定的井口回压来实现的。 一 压井基本数据计算 1 判断溢流类型 1)首先计算溢流物在环空中占据的高度 h w = ΔV/ V a 式中h w — 溢流物在环空中占据的高度,m ; ΔV — 钻井液罐增量,m 3 ; V a — 溢流物所在位置井眼单位环空容积,m 3/m 2)计算溢流物的密度 ρw =ρm -hw Pd Pa 0098.0 式中ρw — 溢流物的密度,g/cm 3; ρm — 当前井内泥浆密度,g/cm 3; P a — 关井套压,MPa ; P d —关井立压,MPa 。 如果ρ w 在0.12~0.36 g/cm 3之间,则为天然气溢流。 如果ρ w 在0.36~1.07 g/cm 3之间,则为油溢流或混合流体溢流。 如果ρw 在1.07~1.20 g/cm 3之间,则为盐水溢流。 2 地层压力P p

P p = P d+ρm g H 式中ρm—钻具内钻井液密度,g/cm3 3 压井钻井液密度 ρk=ρm+P d/gH 压井钻井液密度的最后确定要考虑安全附加值,同时其计算结果要适当取大。 4 初始循环压力 压井钻井液刚开始泵入钻柱时的立管压力称为初始循环压力。 P Ti = P d+P L 式中P i—初始循环压力,MPa; P L—低泵速泵压,即压井排量下的泵压,MPa。 P L可用三种方法求得。 第一种方法:实测法。一般在即将钻开目的层时开始,每只钻头入井开始钻进前以及每日白班开始钻进前,要求井队用选定的压井排量循环,并记录下泵冲数、排量和循环压力,即低泵速泵压。当钻井液性能或钻具组合发生较大变化时应补测。 压井排量一般取钻进时排量的1/3~1/2。这是因为: 1)正常循环压力加上关井立压可能超过泵的额定工作压力; 2)大排量高泵压所需的功率,也许要超过泵的输入功率; 3)大量流体流经节流阀可能引起过高的套管压力,如果压井循环时,节流阀阻塞,可能导致地层破裂。 采用较低排量时,由于降低了泵等钻井设备负荷,也就提高了钻

相关文档
相关文档 最新文档