文档库 最新最全的文档下载
当前位置:文档库 › 【配套K12】中考数学 专题复习六 求最短路径问题

【配套K12】中考数学 专题复习六 求最短路径问题

【配套K12】中考数学 专题复习六 求最短路径问题
【配套K12】中考数学 专题复习六 求最短路径问题

中考数学专题复习学案六求最短路径问题

【专题思路剖析】

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.

【典型例题赏析】

类型1 利用“垂线段最短”求最短路径问题

例题1:(2015?辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.

考点:轴对称-最短路线问题;菱形的性质.

分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠

BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.

解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:

∵四边形ABCD是菱形,

∴AC⊥BD,AB=BC=CD=DA=2,

∴∠BPC=90°,

∵E为BC的中点,

∴BE=BC=1,PE=BC=1,

∴PE=BE,

∵∠DAB=60°,

∴∠ABC=120°,

∴∠PBE=60°,

∴△PBE是等边三角形,

∴PB=BE=PE=1,

∴PB+BE+PE=3;

故答案为:3.

点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.

【方法点评】

本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】

(2015?福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.

考点:翻折变换(折叠问题)..

分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.

解答:解:在Rt△ABC中,由勾股定理可知:AC===4,

由轴对称的性质可知:BC=CB′=3,

∵CB′长度固定不变,

∴当AB′+CB′有最小值时,AB′的长度有最小值.

根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,

∴AB′=AC﹣B′C=4﹣3=1.

故答案为:1.

点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.

类型2 利用“两点之间线段最短”求最短路径问题

例题2:(2015?四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.

考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..

分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.

解答:解:连接ED,如图,

∵点B的对称点是点D,

∴DP=BP,

∴ED即为EP+BP最短,

∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,

∴点D的坐标为(1,),

∴点C的坐标为(3,),

∴可得直线OC的解析式为:y=x,

∵点E的坐标为(﹣1,0),

∴可得直线ED的解析式为:y=(1+)x﹣1,

∵点P是直线OC和直线ED的交点,

∴点P的坐标为方程组的解,

解方程组得:,

所以点P的坐标为(),

故答案为:().

点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.

【方法点评】

“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.

【变式练习】

(2015?营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()

A.25° B.30° C.35° D.40°

考点:轴对称-最短路线问题.

分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,

分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:

∵点P关于OA的对称点为C,关于OB的对称点为D,

∴PM=CM,OP=OC,∠COA=∠POA;

∵点P关于OB的对称点为D,

∴PN=DN,OP=OD,∠DOB=∠POB,

∴OC=OP=OD,∠AOB=∠COD,

∵△PMN周长的最小值是5cm,

∴PM+PN+MN=5,

∴CM+DN+MN=5,

即CD=5=OP,

∴OC=OD=CD,

即△OCD是等边三角形,

∴∠COD=60°,

∴∠AOB=30°;

故选:B.

点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.

类型3、求圆上点,使这点与圆外点的距离最小的方案设计

在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

(2015·南宁,第11题3分)如图6,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N 是弧MB的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为().

(A)4 (B)5 (C)6 (D)7

考点:轴对称-最短路线问题;圆周角定理..

分析:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知

图6

MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.

解答:解:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.

∵N关于AB的对称点N′,

∴MN′与AB的交点P′即为△PMN周长的最小时的点,

∵N是弧MB的中点,

∴∠A=∠NOB=∠MON=20°,

∴∠MON′=60°,

∴△MON′为等边三角形,

∴MN′=OM=4,

∴△PMN周长的最小值为4+1=5.

故选B.

点评:本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.

类型4、点在圆柱中可将其侧面展开求出最短路程

将圆柱侧面展成长方形,圆柱体展开的底面周长是长方形的长,圆柱的高是长方形的宽.可求出最短路程

例题4:(2015?甘肃庆阳,第20题,3分)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)

考点:平面展开-最短路径问题.

分析:根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长,BC的长为圆柱的高,根据勾股定理求出即可.

解答:解:如图所示,

∵无弹性的丝带从A至C,

∴展开后AB=2πcm,BC=3cm,

由勾股定理得:AC==cm.

故答案为:.

点评:本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.

类型5、在长方体(正方体)中,求最短路程

1)将右侧面展开与下底面在同一平面内,求得其路程;2)将前表面展开与上表面在同一平面内,求得其路程;3)将上表面展开与左侧面在同一平面内,求得其路程了,然后进行比较大小,即可得到最短路程.

例题5:(2015?浙江金华,第23题10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.

(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A'GC 和往墙面BB'C'C 爬行的最近路线A'HC ,试通过计算判断哪条路线更近?

(2)在图3中,半径为10dm 的⊙M 与D'C'相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。若PQ 与⊙M 相切,试求

PQ 的长度的范围

.

【答案】解:(1)①如答图1,连结A'B ,线段A'B 就是所求作的最近路线

.

②两种爬行路线如答图2所示, 由题意可得:

在Rt △A 'C 'C 2中, A 'HC 2

==dm );

在Rt △A 'B 'C 1中, A 'GC 1

==dm )

A 'GC 1更近.

C A′ B ′

(2)如答图,连接MQ ,

∵PQ 为⊙M 的切线,点Q 为切点, ∴MQ ⊥PQ .

∴在Rt △PQM 中,有PQ 2

=PM 2

-QM 2

= PM 2

-100, 当MP ⊥AB 时,MP 最短,PQ 取得最小值,如答图3, 此时MP =30+20=50,

∴PQ ==dm ).

当点P 与点A 重合时, MP 最长,PQ 取得最大值,如答图4,

过点M 作MN ⊥AB ,垂足为N , ∵由题意可得 PN =25,MN =50,

∴在Rt △PMN 中,22222

PM AN MN 2550=+=+.

∴在Rt △PQM 中,PQ 55

== (dm ).

综上所述, PQ 长度的取值范围是PQ 55dm ≤≤.

【考点】长方体的表面展开图;双动点问题;线段、垂直线段最短的性质;直线与圆的位置关系;勾股定理.

【分析】(1)①根据两点之间线段最短的性质作答.

②根据勾股定理,计算两种爬行路线的长,比较即可得到结论.

(2)当MP⊥AB时,MP最短,PQ取得最小值;当点P与点A重合时, MP最长,PQ取得最大值.求出这两种情况时的PQ长即可得出结论.

类型6、在圆锥中,可将其侧面展开求出最短路程

将圆锥侧面展开,根据同一平面内的问题可求出最优设计方案

例题6:如图,一直圆锥的母线长为QA=8,底面圆的半径r=2,若一只小蚂蚁从A点出发,绕圆锥的侧面爬行一周后又回到A点,则蚂蚁爬行的最短路线长是(结果保留根式)小虫爬行的最短路线的长是圆锥的展开图的扇形的弧所对的弦

长,

根据题意可得出:2πr=n.π.OA/180则,

解得:n=90°,

由勾股定理求得它的弦长AA。

类型7、问题中出现三个动点时。

在求解时应注意两点:

(1)作定点关于动点所在直线的对称点,

(2)同时要考虑点点,点线,线线之间的最短问题.

(2015,广西玉林,18,3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.

考点:轴对称-最短路线问题;正方形的性质.

专题:计算题.

分析:根据最短路径的求法,先确定点E关于BC的对称点E′,再确定点A关于DC的对称点A′,连接A′E′即可得出P,Q的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积.

解答:解:如图1所示,

作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,

∵AD=A′D=3,BE=BE′=1,

∴AA′=6,AE′=4.

∵DQ∥AE′,D是AA′的中点,

∴DQ是△AA′E′的中位线,

∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,

∵BP∥AA′,

∴△BE′P∽△AE′A′,

∴=,即=1

4

,BP=

3

2

,CP=BC﹣BP=3﹣

3

2

=

3

2

S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣1

2

AD?DQ﹣

1

2

CQ?CP﹣

1

2

BE?BP

=9﹣1

2

×3×2﹣

1

2

×1×

3

2

1

2

×1×

3

2

=

9

2

故答案为:9

2

点评:本题考查了轴对称,利用轴对称确定A′、E′,连接A′E′得出P、Q的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法.

【变式练习】

(2015?鄂州, 第16题3分)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP 平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.

考点:轴对称-最短路线问题.

分析:设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN 的周长最小,此时△COD是等边三角形,求得三角形PMN和△COD的面积,根据四边形PMON 的面积为:( S△COD+S△PMN)求得即可.

解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.

∵点P关于OA的对称点为C,关于OB的对称点为D,

∴PM=CM,OP=OC,∠COA=∠POA;

∵点P关于OB的对称点为D,

∴PN=DN,OP=OD,∠DOB=∠POB,

∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,

∴△COD是等边三角形,[w~ww.zz#s^tep%@.com]

∴CD=OC=OD=6.

∵∠POC=∠POD,

∴OP⊥CD,

∴OQ=6×=3,

∴PQ=6﹣3,

设MQ=x,则PM=CM=3﹣x,

∴(3﹣x)2﹣x2=(6﹣3)2,解得x=6﹣9,

∴S△PMN=MN×PQ=MQ?PQ=(6﹣9)?(6﹣3)=63﹣108,

∵S△COD=×3×6=9,

∴四边形PMON的面积为:( S△COD+S△PMN)=×(72﹣108)=36﹣54.

故答案为36﹣54.

点评:此题主要考查轴对称﹣﹣最短路线问题,熟知两点之间线段最短是解答此题的关键.

【归纳总结】

总之,在这一类动点最值问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或动点关于动点所在直线的对称点。这对于我们解决此类问题有事半功倍的作用。

1、运用轴对称解决距离最短问题

运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.

注意:利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.

2、利用平移确定最短路径选址

选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.

解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.

【拓展演练】

1.(2015?黔南州)(第11题)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()

A.转化思想

B.三角形的两边之和大于第三边

C.两点之间,线段最短

D.三角形的一个外角大于与它不相邻的任意一个内角

2. (2015?辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E 为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.

3. (2015?四川凉山州第26题5分)菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB=60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP+BP 最短时,点P 的坐标为 .

4. (2015?四川攀枝花第15题4分)如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为 .

5. (2015年重庆B 第26题12分)如图,抛物线2

23y x x =-++与x 轴交与A ,B 两点(点A 在点B 的左侧),与y 轴交于点C. 点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E.

(1)求直线AD 的解析式;

(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x

轴交直线AD 于点H ,求△FGH 的周长的最大值;

(3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是AM 为边的矩形,若点T 和点Q 关于AM 所在直线对称,求点T 的坐标.

x

x

x

26题备用图2

26题备用图1

26题图

1

6. (2015?天津,第18题3分)(2015?天津)在每个小正方形的边长为1的网格中.点A ,B ,D 均在格点上,点E 、F 分别为线段BC 、DB 上的动点,且BE=DF .

(Ⅰ)如图①,当BE=时,计算AE+AF 的值等于

(Ⅱ)当AE+AF 取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE ,AF ,并简要说明点E 和点F 的位置如何找到的(不要求证明) 取格点H ,K ,连接BH ,CK ,相交于点P ,连接AP ,与BC 相交,得点E ,取格点M ,N 连接DM ,CN ,相交于点G ,连接AG ,与BD 相交,得点F ,线段AE ,AF 即为所求. .

【拓展演练】参考答案

1.(2015?黔南州)(第11题)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l 相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()

A.转化思想

B.三角形的两边之和大于第三边

C.两点之间,线段最短

D.三角形的一个外角大于与它不相邻的任意一个内角

考点:轴对称-最短路线问题.

分析:利用两点之间线段最短分析并验证即可即可.

解答:解:∵点B和点B′关于直线l对称,且点C在l上,

∴CB=CB′,

又∵AB′交l与C,且两条直线相交只有一个交点,

∴CB′+CA最短,

即CA+CB的值最小,

将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.

故选D.

点评:此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.

2. (2015?辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E 为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.

考点:轴对称-最短路线问题;菱形的性质.

分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.

解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:

∵四边形ABCD是菱形,

∴AC⊥BD,AB=BC=CD=DA=2,

∴∠BPC=90°,

∵E为BC的中点,

∴BE=BC=1,PE=BC=1,

∴PE=BE,

∵∠DAB=60°,

∴∠ABC=120°,

∴∠PBE=60°,

∴△PBE是等边三角形,

∴PB=BE=PE=1,

∴PB+BE+PE=3;

故答案为:3.

点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.

2. (2015?四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.

考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..

分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.

解答:解:连接ED,如图,

∵点B的对称点是点D,

∴DP=BP,

∴ED即为EP+BP最短,

∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,

∴点D的坐标为(1,),

∴点C的坐标为(3,),

∴可得直线OC的解析式为:y=x,

∵点E的坐标为(﹣1,0),

∴可得直线ED的解析式为:y=(1+)x﹣1,

∵点P是直线OC和直线ED的交点,

∴点P的坐标为方程组的解,

解方程组得:,

所以点P的坐标为(),

故答案为:().

点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.

3. (2015?四川攀枝花第15题4分)如图,在边长为2的等边△ABC中,D为BC的中点,E 是AC边上一点,则BE+DE的最小值为.

考点:轴对称-最短路线问题;等边三角形的性质..

分析:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E即为所求的点.

解答:解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时

BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,

∵B、B′关于AC的对称,

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考专题复习——最短路径问题

B C D A L 图(3) C 中考专题复习——路径最短问题 一、具体内容包括: 蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理: 两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化) 三、例题: 例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 ②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。请在图中找出点P 的位置,并计算PA+PB 的最小值。 ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。 四、练习题(巩固提高) (一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。 3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。 4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值 第2题 张村 李庄 A B B 第1题 第3题

中考数学专题复习

中考数学专题复习 【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数 2、按实数的正负分类: 实数 【名师提醒:1、正确理解实数的分类。如:2π是 数,不是 数,2 π 是 数,不是 数。 2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质 1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。 2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、 b 互为相反数2π 3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数2π 4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。 2π = 因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。 【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】 三、科学记数法、近似数和有效数字。 1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。其中a 的取值范围是 。 无限不循环小数 (a >0) (a <0) 0 (a=0)

2、近似数和有效数字: 一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。 【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。2、近似数3.05万是精确到 位,而不是百分位】 四、数的开方。 1、若x 2=a(a 0),则x 叫做a 的 ,记做±2π ,其中正数a 的 平方根叫做a 的算术平方根,记做 ,正数有 个平方根,它们互为 ,0的平方根是 ,负数 平方根。 2、若x 3=a,则x 叫做a 的 ,记做2π ,正数有一个 的立方根,0的立方根是 ,负数 立方根。 【名师提醒:平方根等于本身的数有 个,算术平方根等于本身的数有 ,立方根等于本身的数有 。】 【重点考点例析】 考点一:无理数的识别。 例1 (2012?六盘水)实数2 π 中是无理数的个数有( )个. A . 1 B . 2 C . 3 D . 4 解:2π,所以数字2 π 中无理数的有:2π ,共3个. 故选C . 点评:此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数。 对应训练 1.(2012?盐城)下面四个实数中,是无理数的为( B ) A .0 B .2π C .﹣2 D . 2 π 考点二、实数的有关概念。 例2 (2012?乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( ) A .﹣500元 B . ﹣237元 C . 237元 D . 500元 解:根据题意,支出237元应记作﹣237元. 故选B . 点评: 此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 例3 (2012?遵义)﹣(﹣2)的值是( ) A .﹣2 B . 2 C . ±2 D . 4 解:∵﹣(﹣2)是﹣2的相反数,﹣2<0,∴﹣(﹣2)=2. 故选B . 点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 例4 (2012?扬州)﹣3的绝对值是( ) A .3 B . ﹣3 C . ﹣3 D . 2 π 解:﹣3的绝对值是3. 故选:A . 点评: 此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

中考数学重难点突破专题二:作图问题

中考数学重难点突破专题二:作图问题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

专题二作图问题 类型1尺规作图 1.(2017·兰州)在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l和l外一点P. 求作:直线l的垂线,使它经过点P. 作法:如图:(1)在直线l上任取两点A、B; (2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q; (3)作直线PQ. 参考以上材料作图的方法,解决以下问题: (1)以上材料作图的依据是:______________________________________________ (2)已知:直线l和l外一点P. 求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑) 解:(1)到线段两端点距离相等的点在这条线段的垂直平分线上

(2)如图⊙P 即为所求. 2.(2017·六盘水)如图,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN =30°,B 为AN ︵的中点,P 是直径MN 上一动点. (1)利用尺规作图,确定当PA +PB 最小时P 点的位置(不写作法,但要保留作图痕迹). (2)求PA +PB 的最小值. 解:(1)如图1所示,点P 即为所求; (2)由(1)可知,PA +PB 的最小值即为A′B 的长,连接OA′、OB 、OA ,∵A′点为点A 关直 线MN 的对称点,∠AMN =30°,∴∠AON =∠A′ON =2∠AMN =2×30°=60°,又∵B 为AN ︵的中点,∴AB ︵=BN ︵,∴∠BON =∠AOB =12∠AON =30°,∴∠A′OB =60°+30°=90°,又 ∵MN =4,∴OA′=OB =12MN =12×4=2.∴在Rt △A′OB 中,A′B =22,∴PA +PB 的最小值 为2 2. 3.(2017·舟山)如图,已知△ABC ,∠B =40°. (1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法); (2)连接EF ,DF ,求∠EFD 的度数. 解:(1)如图1,⊙O 即为所求.

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

2018中考数学专题03 求阴影部分的面积(选填题重难点题型)(解析版)

1 中考指导:在初中数学中,求阴影部分的面积问题是一个重要内容,在近年来的各地中考试题中屡见不鲜.这 类试题大多数都是求不规则图形的面积,具有一定的难度,因此,正确把握求阴影部分面积问题的解题方法,显得尤为重要.解决这类问题的常见方法有:规则图形直接利用公式计算、不规则图形利用图形的面积的和差计算、通过分割,割补转化为规则图形计算. 典型例题解析: 【例1】(浙江省鄞州区2017届九年级下学期教学质量检测一)如图,点A 、B 、C 在⊙O 上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( ) A. π﹣2 B. 2 13π- C. π﹣4 D. 223 π- 【答案】A 【例2】(2017年浙江省金华市金东区中考数学模拟)在矩形ABCD 中,2BC=2,以A 为圆心,AD 为半径画弧交线段BC 于E ,连接DE ,则阴影部分的面积为( )

2 A. 22 π - B. 22 2π - C. 2π- D. 22 π- 【答案】A 点睛:本题考查了矩形的性质、等腰直角三角形的判定与性质、勾股定理、扇形面积公式等知识;熟练掌握矩形的性质,证明三角形是等腰直角三角形是解决问题的关键. 【例3】(2018年河北邢台市宁晋县换马店镇初级中学中考模拟)AB 是⊙O 的直径,弦CD 垂直于AB 交于点E ,∠COB=60°,CD=23,则阴影部分的面积为( )

实用文档 用心整理 3 A. 3π B. 23 π C. π D. 2π 【答案】B 【解析】连接OD . ∵CD ⊥AB , ∴CE=DE= 1 2 3, 故S △OCE =S △ODE , 即可得阴影部分的面积等于扇形OBD 的面积, 又∵∠COB=60°(圆周角定理), ∴OC=2, 故S 扇形OBD =2602360?=23π,即阴影部分的面积为23 π. 故选B . 强化训练 1.(山东省青岛市2018年中考数学试卷样题二)如图,正方形ABCD 的边AB=1, BD u u u r 和AC u u u r 都是以1为半径的圆 弧,则无阴影两部分的面积之差是( )

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据: 两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于 点C,则点C就是所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于 点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何 A·M 处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥 N E

要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在 河边什么地方,?可使所修的渠道最短,试在图中确定该点。 作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。 证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD, ∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB 所以抽水站应建在河边的点D 处, 例:某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C 关于直线 OA 的对称点点D, 2. 作点C 关于直线 OB 的对称点点E, 3.连接DE 分别交直线OA.OB 于点M.N , 则CM+MN+CN 最短 例:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮 · · C D A B E a

中考数学重难点专题讲座

中考数学重难点专题讲座 第九讲几何图形的归纳,猜想,证明问题 【前言】实行新课标以来,中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。08年的中考填空压轴是一道代数归纳题,已经展现出了这种趋势。09年的一模,二模也只是较少的区县出了这种归纳题,然而中考的时候就出了一道几何方面的n等分点总结问题。于是今年的一模二模,这种有关几何的归纳,猜想问题铺天盖地而来,这就是一个重要的风向标。而且根据学生反映,这种问题一般较难,得分率很低,经常有同学选择+填空就只错了这一道。对于这类归纳总结问题来说,思考的方法是最重要的,所以一下我们通过今年的一二模真题来看看如何应对这种新题型。 第一部分真题精讲 【例1】2010,海淀,一模 如图,n+1个边长为2的等边三角形有一条边在同一直线上,设?B D C的面积为S, 2111 ?B D C的面积为S,…,?B D C的面积为S,则S=;S=____(用3222n+1n n n2n 含n的式子表示). B1B2B3B4B5 D1D 2 D3D4…… A C 1C2C 3 C4C5 【思路分析】拿到这种题型,第一步就是认清所求的图形到底是什么样的。本题还好,将阴影部分标出,不至于看错。但是如果不标就会有同学误以为所求的面积是 ?B AC,?B AC这种的,第二步就是看这些图形之间有什么共性和联系.首先S所代表的三22332

2 3 3 = 2 3 .接下来通过总结 ,我们发现所求的 S = 1 n + 1 角形的底边 C D 是三角形 AC D 的底边,而这个三角形和△ AC B 是相似的.所以边长 2 2 2 2 3 3 的比例就是 AC 与 AC 的比值.于是 2 3 2 3 2 2 三角形有一个最大的共性就是高相等,为 3(连接上面所有的 B 点,将阴影部分放在反过来 的等边三角形中看)。那么既然是求面积,高相等,剩下的自然就是底边的问题了。我们发 现所有的 B,C 点连线的边都是平行的,于是自然可以得出 D 自然是所在边上的 n+1 等分 n 点.例如 D 就是 B C 的一个三等分点.于是 2 2 2 D C = n + 1 - 1 n n ? 2 (n+1-1 是什么意思?为什么要 减 1?) S ?B n +1D n C n = 1 1 2n 3n D C ? 3 = 3 = 2 n n 2 n + 1 n + 1 【例 2】2010,西城,一模 在平面直角坐标系中,我们称边长为 1 且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形 ABCD 的四个顶点坐标分别是 (-8 ,0) , (0 ,4) , (8 ,0) , (0 ,- 4) , 则菱形 ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形 A B C D 的四个顶点坐 n n n n 标分别为 (-2n ,0) , (0 ,n ) , (2n ,0) , (0 ,- n ) ( n 为正整数),则菱形 A B C D 能覆盖的 n n n n 单位格点正方形的个数为_________(用含有 n 的式子表示). y 4 B A -8 O -4 D C 8 x 【思路分析】此题方法比较多,例如第一空直接数格子都可以数出是 48(笑)。这里笔

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学三轮易错复习:最短路径问题(含解析)

中考数学三轮易错复习:专题15最短路径问题 【例1】(2019·河南南阳一模)如图,已知一次函数y=1 2 x+2的图象与x轴、y轴交于点A、C,与反比 例函数y=k x 的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9. (1)点A的坐标为,点C的坐标为,点P的坐标为; (2)已知点Q在反比例函数y=k x 的图象上,其横坐标为6,在x轴上确定一点M,是的△PQM的周 长最小,求出点M的坐标. 【变式1-1】(2017·新野一模)已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+ 1 2 交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N. (1)求抛物线的解析式; (2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标; (3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【变式1-2】(2019·三门峡二模)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA =6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,

连接DE,设OD=m. (1)问题发现 如图1,△CDE的形状是三角形. (2)探究证明 如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由. 图1 图2 强化精炼: 1.(2018·焦作一模)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为,点C的坐标; (2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标; (3)如图2,当点P位于抛物线的对称轴的右侧,若将△APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标. 图1 图2 2.(2019·中原名校大联考)如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c 与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3) (1)求抛物线的解析式; (2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

2017中考数学专题复习圆(最新整理)

【基础知识回顾】 第六章圆 第二十三讲圆的有关概念及性质 一、圆的定义及性质: 1、圆的定义: ⑴形成性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转形成的图形叫做圆,固定的端点叫线段OA 叫做 ⑵描述性定义:圆是到定点的距离等于的点的集合 2、弦与弧: 弦:连接圆上任意两点的叫做弦 弧:圆上任意两点间的叫做弧,弧可分为、、三类 3、圆的对称性: ⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的 对称轴 ⑵中心对称性:圆是中心对称图形,对称中心是 【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的 2、直径是圆中的弦,弦不一定是直径; 3、圆不仅是中心对称图形,而且具有旋 转性,即绕圆心旋转任意角度都被与原来的图形重合】 二、垂径定理及推论: 1、垂径定理:垂直于弦的直径,并且平分弦所对的。 2、推论:平分弦()的直径,并且平分弦所对的。 【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分 弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注 意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。3、垂径定理常用作计算,在半径r、弦a、弦心d 和弓高h 中已知其中两个量可求另外两个量。】 三、圆心角、弧、弦之间的关系: 1、圆心角定义:顶点在的角叫做圆心角 2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对 应的其余各组量也分别 【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】 四、圆周角定理及其推论: 1、圆周角定义:顶点在并且两边都和圆的角叫圆周角 2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的 圆心角的 推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧 推论2、半圆(或直弦)所对的圆周角是,900 的圆周角所对的弦是 【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角 有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的 辅助线】 五、圆内接四边形: 定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

相关文档
相关文档 最新文档