文档库 最新最全的文档下载
当前位置:文档库 › 材料物理性能总的问答题09级

材料物理性能总的问答题09级

材料物理性能总的问答题09级
材料物理性能总的问答题09级

1材料四要素?组成、结构、工艺、性能

2马基申定则及表达式?固溶体电阻率看成由金属基本电阻率ρ(T)和残余电阻率ρ残组成。不同散射机制对电阻率的贡献可以加法求和。这一导电规律称为马基申定律,

3化学缺陷物理缺陷:化学缺陷:偶然存在的杂质原子及人工加入的合金元素的原子;物理缺陷:指空位、间隙原子、位错以及它们的复合体。

4材料产生电阻的本质?当电子波在绝对零度下通过一个理想的晶体点阵时,它将不会受到散射而无阻碍地传播,这时ρ=0,而σ为无穷大,即此时的材料是一个理想的导体。

只有在晶体点阵的完整性以及由于晶体点阵离子的热振动,晶体中的异类原子、位错和点缺陷等使晶体点阵的周期性遭到破坏的地方,电子波才会受到散射,从而产生了阻碍作用,降低了导电性,这就是材料产生电阻的本质所在。

5 三种散射机制?声子散射和电子散射电子在杂质和缺陷上的散射

6 影响导电性的因素?温度:低温下“电子-电子”散射对电阻的贡献可能是显著的,但除低温以外几乎所有温度下大多数金属的电阻都取决于“电子-声子”散射。

受力情况:金属在压力的作用下,其原子间距缩小,内部缺陷的形态、电子结构、费米面和能带结构以及电子散射机制等都将发生变化,这必然会影响金属的导电性能。

冷加工:由于冷加工使晶体点阵发生畸变和缺陷,从而增加了电子散射的几率。

晶体缺陷、热处理、几何尺寸效应

7固溶体的分类?按溶质原子在晶格中的位置不同可分为置换固溶体和间隙固溶体按溶质元素在固溶体中的溶解度,可分为有限固溶体和无限固溶体。但只有置换固溶体有可能成为无限固溶体。

8。固溶体的电阻与组元浓度的关系在形成固溶体时,与纯组元相比,合金的导电性能降低了原因:纯组元间原子半径差所引起的晶体点阵畸变,增加了电子的散射,且原子半径差越大,固溶体的电阻也越大。这种合金化对电阻的影响还有如下几方面:一是杂质对理想晶体的局部破坏;二是合金化对能带结构

起了作用,移动费米面并改变了电子能态的密度和有效导电电子数;三是合金化也影响弹性常数,因此点阵振动的声子谱要改变。

9 半导体测量的四探针法测量原理?

设有一均匀的半导体试样,其尺寸与探针间距相比可视为无限大,探针引入点电流源的电流强度为I。因均匀导体内恒定电场的等位面为球面,故在半径为r处等位面的面积为2πr2,则电流密度为j=I/2πr2。电场强度E=j/σ=jρ=I ρ/2πr2,因此,距点电荷r处的电位为V=Iρ/2πr。

10半导体的分类?分为晶体半导体、非晶半导体及有机半导体。晶体半导体:又分为元素(单质)半导体、化合物半导体、固溶体半导体;

11价电子共有化运动:在半导体晶体中,由于原子之间的距离很小,使得每一个原子中的价电子除受本身原子核及内层电子的作用外,还受到其他原子的作用。在本身原子和相邻原子的共同作用下,价电子不再是属于各个原子,而成为晶体中原子所共有

12 四大量子数每一量子数表示什么?主量子数n、它可以取非零的即1,2,3…n。

它决定电子在核外空间出现概率最大的区域离核的远近,并且是决定电子能量高低的主要因素。角量子数l(也称轨道角动量量子数)轨道角动量量子数决定原子轨道的形状。

磁量子数m l磁量子数决定原子轨道在空间的伸展方向,但它与电子的能量无关。第四个量子数-自旋角动量量子数用符号s i表示。它与n、l、m无关。电子本身还有自旋运动。自旋运动有两种相反方向

13本征半导体本征半导体:纯净的无结构缺陷的半导体单晶

14 本征半导体的导电机制、迁移率?在绝对零度和无外界影响的条件下,半导体的空带中无电子,即无运动的电子,当温度升高或受光照射时,也就是半导体受到热激发时,共价键中的价电子由于从外界获得了能量,其中部分获得了足够大能量的价电子就可以挣脱束缚,离开原子而成为自由电子。在能带图中,即一部分满带中的价电子获得了大于E g的能量,跃迁到空带中去。这时空带中有了一部分能导电的电子,称为导带。而满带中由于部分价电子的迁出出现了空位置,称价带。(满带→价带,空带→导带,同时产生了自由电子和空穴)

但在外电场的作用下,电子将逆电场方向运动,空穴将顺电场方向运动,从而导电成为载流子。载流子定向漂移运动的平均速度为一个恒定值,并与电场强度成正比。这个比值即为迁移率。

15 本征半导体的电学特性? (1) 本征激发成对地产生自由电子和空穴,所以自由电子浓度和空穴浓度相等,都是等于本征载流子的浓度n i。

(2)n i和E g有近似反比关系,硅(1.11 eV)比锗(0.67eV)的E g大,故硅比锗的n i小。

(3)n i与温度成近似正比,故温度升高时,n i就增大。

(4)n i与原子密度相比时极小的,所以本征半导体的导电能力很微弱。

16 N\P型半导体的导电机制及示意图?

N型在本征半导体中掺入五价元素的杂质时,它的四个价电子与周围的四个硅(或锗)原子以共价键结合后,还余下一个价电子。这个价电子能级E D( D: donor) 非常靠近导带底,(E C-E D)比E g小得多。在常温下,每个掺入的五价元素原子的多余价电子都具有大于(E C-E D)的能量,都可以进入导带成为自由电子,因而导带中的自由电子数比本征半导体显著地增多。把这种五价元素称为施主杂质(即能提供多余价电子),E D为施主能级,(E C-E D)称为施主电离能。图(书本p75)

P型在本征半导体中,掺入三价元素的杂质,就可以使晶体中空穴浓度大大增加。三价元素形成的允许价电子占有的能级E A 非常靠近价带顶,即(E A-E V)远小于E g。在常温下,处于价带中的价电子都具有大于(E A-E V)的能量,都可以进入E A能级。所以每个三价杂质元素的原子都能接受一个价电子,而在价带中产生一个空穴。这种三价元素称为受主杂质,E A称为受主能级,(E A-E V)称为受主电离能。图(书本P76)

17 N P型半导体的导电机制?

(1)掺杂浓度与原子密度相比虽很微小,但是却能使载流子浓度极大地提高,导电能力因而也显著地增强。掺杂浓度愈大,其导电能力也愈强。

(2) 掺杂只是使一种载流子的浓度增加,因此杂质半导体主要靠多子导电。当掺入五价元素(施主杂质)时,主要靠自由电子导电;当掺入三价元素(受主杂质)时,主要靠空穴导电

18 PN结阻挡层的形成过程?(1)载流子的浓度差引起载流子的扩散运动在PN结的两边,由于存在着载流子分布的浓度差,这就必然会引起载流子的扩散运动。P区中的空穴将向N区扩散,N区中的电子将向P区扩散。(2)扩散运动形成空间电荷区(阻挡层)P区中的空穴扩散到了N区,故在交界面附近的P区中就只留下了带负电荷的受主杂质离子。同样,由于N区中的电子扩散到了P 区,在交界面附近的N区就只留下了带正电荷的施主杂质离子。这些离子被束缚在晶格结构中,不能自由移动,于是在交界面处形成了一层很薄的空间电荷区。(3)内电场使扩散与漂移达动态平衡

19 PN结特性单向导电性加正向电压多子扩散正向电流较大加反向电压少子漂移电流几乎不变化

20 绝缘体的定义?对绝缘体的性能要求?电介质的四大性能和四大基本参数?

指电阻率大于109 用来限制电流使它按一定的途径流动的材料,另外还有利用其“介电”特性建立电场以贮存电能的材料。绝缘体的性能要求:(1)具有足够高的耐电强度,以经受住导体间的高电场。(2)具有足够高的绝缘电阻,以防止跨越导体的漏泄电流。

具有良好的耐电弧性,以防发生飞弧损坏。(4)必须能在环境危害的条件下(度、湿度、辐射)保持其完整性。(5)必须具有足够的机械强度,以抗振动和冲击。绝缘体主要的电性能:(电介质的四大基本常数)(1)介电常数;(电极化)(2)耐电强度;(击穿)(3)损耗因数;(介电损耗)(4)体积和表面的电阻率(电导)

21电介质的定义及基本属性?电介质和金属导体对电场的影响有何不同?电介质的分类?

电介质:在电场作用下具有极化能力并在其中长期存在电场的一种物质。基本属性:具有极化能力;其中能够长期存在电场金属以传导的方式来传递电的作用和影响。电介质以电极化方式来传递和记录电的影响。电介质按其分子中正负电荷的分布状况可分为:

中性电介质:偶极电介质:离子型电介质从电学性质看电介质的分子可分为两类:无极分子和有极分子

22电介质极化的定义?简述介质极化的四种基本形式?四种极化形式极化时间

的大小关系?电介质在电场的作用下,其内部的束缚电荷所发生的弹性位移现象和偶极子的取向(正端转向电场负极、负端转向电场正极)现象。

电子位移极化在电场作用下,构成介质原子的电子云中心与原子核发生相对位移,形成感应电矩而使介质极化的现象。离子位移极化在离子晶体中,处于晶格结点上的正负离子也要在电场作用下发生相对位移而引起极化,这就是离子式极化,又称离子位移极化固有电矩转向极化有外电场时,由于偶极子要受到转矩的作用,有沿外电场方向排列的趋势,而呈现宏观电矩,形成极化。空间电荷极化在一部分电介质中存在着可移动的离子。在外电场作用下,正离子将向负电极侧移动并积累,而负离子将向正电极侧移动被积累,这种正、负离子分离所形成的极化

23什么是电介质的击穿?与气体和液体电介质相比,固体电介质击穿的特点?固体电介质击穿的类型?简述多孔陶瓷材料的局部放电击穿过程。

固体电介质的击穿就是在电场作用下伴随着热、化学、力等等的作用而丧失其绝缘性能的现象。与气体和液体电介质相比,固体电介质击穿有以下几个特点:

(1) 固体介质的击穿强度比气体和液体介质高,约比气体高两个数量级,比液体高一个数量级左右;(2)固体通常总是在气体或液体环境媒质中,因此对固体进行击穿试验时,击穿往往发生在击穿强度比较低的气体或液体媒质中,这种现象称为边缘效应。(试验时必须尽可能排除)(3)固体电介质的击穿一般是破坏性的,击穿后在试样中留下贯穿的孔道、裂纹等不可恢复的伤痕。固体电介质击穿的类型:电击穿、热击穿、局部放电击穿、其他击穿机制(树枝化击穿、电-机械击穿、沿面击穿等)大部分陶瓷材料中存在着相当大的气孔,其直径可达几个微米。这些气孔在电场作用下,特别是高频电场作用下,将发生强烈的游离,而且气孔的直径愈大,游离电压愈低。在高频电压下,由于气孔中的强烈游离,产生大量的热量,使得气孔附近局部区域过热,在材料中产生相当高的内应力。当热应力超过一定限度时,材料因丧失机械强度发生破坏,以致失去抗电能力,造成“击穿”。

24什么是介电损耗?引起电介质介电损耗的两大因素是?

电介质在外电场作用下,其内部会有发热现象,这说明有部分电能已转化为热能

损耗掉,这种介质内的能量损耗称为介质损耗。这种损耗是由电导作用和极化作用引起的。

25超导电性、超导体、超导态的定义?超导体的分类?请简单描述两类超导体的性质?

超导电性:在一定条件下(温度、磁场、压力)材料的电阻突然消失的现象。材料失去电阻的状态称为超导态,具有超导态的材料称为超导体。

超导体分为两类:第一类超导体的超导临界温度随着磁场强度的增加而下降。当磁场强度超过某一临界值H c时,磁力线就会穿过这类材料,使其不再呈现超导性。只有温度和磁场都在由T c和H c组成的二维区域内,第一类超导体才会呈现超导性。图(书89)

大多数超导体都属于第二类超导体(又称London超导体或硬超导体)。当磁场强度增加时,这类超导体从完全超导体先转变为混合状态导体,最后转变为普通导体。在某一磁场强度下,有可能材料表面是超导体,而材料内部却是普通导体。第二类超导体的Tc和Hc通常都大于第一类超导体。(图书89)

26名词解释:完全的导电性、完全的抗磁性、逸出功、热电势率、玻尔帖效应、汤姆逊效应、热电子效应?单位温差产生的热电势即热电势率α自由电子逃逸出金属表面所需要的这个最小能量或说需要对电子所做的最小的功称为逸出功。

27 三种热电效应?第一热点效应产生原理(示意图,设前提)。

1.书P99玻尔帖效应、汤姆逊效应、热电子效应

28叙述第一热电效应(塞贝克效应)产生的原理(请在说明过程中作示意图以表示接触电位差和温差电位差的方向,并自行假设前提)P99

29 简述塞贝克效应的应用?

温度测量温差发电

30简述压电效应的定义及分类?表征压电陶瓷压电性能的三大参数的定义?

在某些晶体的一定方向上施加压力或拉力,则在晶体的一些对应的表面上分别出现正、负电荷,其电荷密度与施加的外力的大小成正比

正压电效应:由于机械力的作用而使介质发生极化的现象。(力致形变而产生电极化)

逆压电效应:外电场加在(不存在对称中心的)晶体上,改变其极化状态,晶体的形状也将发生变化。(电场引起形变)纵向压电效应:电位差的方向与压力和拉力的方位一致。

横向压电效应:电位差的方位与施力的方位垂直。

压电系数d33 σ3=d33T3 d33为压电系数,它反映了材料的压电性质。机械品质因数Qm表示在振动转换时,材料内部能量损耗的程度。机电耦合系数K

机电耦合系数是综合反映压电陶瓷材料性能的参数,是衡量材料压电性能好坏的一个重要物理量。

31什么是热释电效应?请解释热释电体通常对外不显示电性的原因?产生热释电效应的必要条件?

在某些绝缘物中,由于温度变化而引起电极化状态改变的现象即为热释电效应。

因为自发极化所建立的电场吸引了晶体内部和外部空间的异号自由电荷,在试样的表面形成一个表面电荷层。结果自发极化建立的表面束缚电荷被外来的表面自由电荷(即吸附电荷,吸附电荷是一层自由电荷,其来源有两种:一是晶体的微弱导电性所导致一些自由电子堆积在表面,二是从大气中吸附的异号离子)所屏蔽,束缚电荷建立的电场被抵消。因此对外不显示电性。产生热释电效应的必要条件:晶体具有单极轴或自发极化

32 简述压电体、热释电体、铁电体的特征及关系?

压电体:无对称中心,不具有自发极化在电场作用下不能够转向

热释电体:无对称中心,具有自发极化在电场作用下不能够自发转向

铁电体;无对称中心,具有自发极化在电场作用下能够转向

关系图(书109)

33电畴的定义及分类?什么是驻极?铁电体的特征?

铁电体中偶极子有序排列、自发极化方向一致的区域。

根据晶粒中电畴的数量,可分为单畴和多畴两种。根据电畴之间的夹角大小,铁电材料中的电畴可分为180?畴、90?畴、60?畴、120?畴、71?畴、109?畴等。

驻极,即把适当电介质高温加热并置于强电场,而后冷却

铁电体的特征:具有居里点,其自发极化能因外电场而重新取向,铁电体只有在极化之后才能表现出热释电效应。具有电畴结构和电滞回线

34磁化强度和磁极化强度的定义?什么是基本磁化曲线?

单位体积的总磁矩定义为磁化强度单位体积的磁偶极矩的矢量和定义为磁极化强度:

对原先不存在宏观磁性的材料施加一个由零逐渐增大的磁场,则对不同的材料都得一不同的M-H曲线(基本磁化曲线)。

35物质磁性的分类?

按照物质对磁场反应的类型和大小分为下述几类:

(1)发生强烈吸引的物质:铁磁体(2)在弱磁场下发生轻微吸引,在强磁场下变为铁磁体:亚铁磁体(3)发生轻微吸引的物质:顺磁性体反铁磁体(4)轻微排斥的物质:抗磁性体(5)强烈排斥的物质:完全抗磁性体

36.感应强度B和磁化强度M的关系?铁磁材料磁化过程中B和M与H的关系?

37.技术磁化的定义?磁滞回线中可以获得表征铁磁体磁性能的哪些重要的物理量?

从退磁状态直到饱和之前的磁化过程(完全退磁:H=0时M=0)

M r称为剩余磁化强度μ、M r和H c都是对材料组织敏感的磁参数

38磁和硬磁各自的特征?

具有小H c、高μ的瘦长形磁滞回线的材料,适宜作软磁材料;

具有大的M r和H c、低μ的短粗形磁滞回线的材料适宜作硬磁(永磁)材料;39原子磁性的组成包括哪几部分?请计算Cu+离子的电子总磁矩?

原子的磁矩主要由电子的磁矩组成,而电子的磁矩又是其轨道磁矩和自旋磁矩的矢量和。

40.抗磁性的来源?物质的抗磁性和抗磁体的区别?

原子的磁矩取决于未填满壳层电子的轨道磁矩和自旋磁矩。,当有外磁场作用时,即使对于那种总磁矩为零的原子也会显示出磁矩来。这是由于电子的循轨运动在外磁场的作用下产生了抗磁磁矩ΔP的缘故。物质的抗磁性不是由电子的轨道磁矩和自旋磁矩本身所产生的,而是由外磁场作用下电子循轨运动产生的附

加磁矩所造成的

任何物质在外磁场作用下都要产生抗磁性。但应注意,这并不能说任何物质都是抗磁体,这是因为原子除了产生抗磁磁矩外,还有轨道磁矩和自旋磁矩产生的顺磁磁矩。在此情况下只有那些抗磁性大于顺磁性的物质才能称为抗磁体。凡是电子壳层被填满了的物质都属抗磁体

41物质顺磁性的来源?顺磁体的分类?

顺磁体的原子或离子是有磁矩的(称为原子固有磁矩,它是电子的轨道磁矩和自旋磁矩的矢量和),其源于原子内未填满的电子壳层,或源于具有奇数个电子的原子

根据顺磁磁化率与温度的关系,可以把顺磁体大致分为三类,即正常顺磁体、磁化率与温度无关的顺磁体和存在反铁磁体转变的顺磁体。

42简述磁化率测量的原理?

抗、顺磁磁化率的测量一般是采用磁秤法,即通过试样在非均匀磁场中的受力情况来确定它的磁化率。将试样4放入磁极的间隙中,在不均匀的磁场中当试样被磁化以后将沿χ方向受到一个力F(若试样为顺磁则产生抗力、抗磁则相反),且(书131页)式中,χ为试样的磁化率,V为试样的体积,H是磁场强度,dH/dχ是沿χ方向的磁场梯度。

43铁磁质的磁化与抗、顺磁质磁化的区别?铁磁性产生的充要条件?简述铁磁性、反铁磁性、亚铁磁性的区别?

铁磁物质的磁化,不像抗、顺磁那样与磁场成正比,而是一种很复杂的曲线关系,并且存在磁饱和与磁滞现象。抗、顺磁质磁化是可逆的,而铁磁质是不可逆的,交变磁化时形成磁滞回线。抗、顺磁质磁化较困难,而铁磁质则非常容易。铁磁性产生的充要条件是:原子内部要有未填满的电子壳层,Rab/r>3使A>0。前者指的是原子的本征磁矩(固有磁矩)不能为零,后者指的是要有一定的晶体点阵结构。

43磁晶各向异性的定义?磁化功的概念?

在单晶体的不同晶向上,磁性能不同的性质,称为磁性的各向异性。

为使铁磁体磁化需消耗一定的能量,在这过程中所做的功,称为磁化功。

44.致伸缩的定义?磁弹性能的概念?

铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化,这种现象称为磁致伸缩效应。材料在磁化时要发生磁致伸缩,一旦这种形变受到限制,则在材料内部将产生拉(或压)应力,因而存在一种弹性能,称磁弹性能。

44磁畴的定义?简述铁磁体形成磁畴结构的原因

未加磁场时铁磁体内部已经磁化到饱和状态的小区域。

磁畴的形状、尺寸、畴壁的类型与厚度总称为磁畴结构。

磁畴的形成是能量最小原则的必然结果。形成磁畴是为了降低系统的能量(主要是降低退磁能和磁弹性能)。因磁畴结构受交换能、磁晶能、磁弹性能、畴壁能和退磁能的影响,平衡状态时的磁畴结构,应使这些能量之和为最小值。

材料物理性能期末复习题

期末复习题 一、填空(20) 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 .当磁化强度M为负值时,固体表现为抗磁性。8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。 9.无机非金属材料中的载流子主要是电子和离子。 10.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 12.对于中心穿透裂纹的大而薄的板,其几何形状因子。 13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 17.当温度不太高时,固体材料中的热导形式主要是声子热导。 18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 19.电滞回线的存在是判定晶体为铁电体的重要根据。 20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 23.晶体发生塑性变形的方式主要有滑移和孪生。 24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 25.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释(20) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。

无机材料物理性能习题解答

这有答案,大家尽量出有答案的题材料物理性能 习题与解答 吴其胜 盐城工学院材料工程学院 2007,3

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) (0114.010 5.310101401000940000cm E A l F l E l l =?????=??= ?=?=?-σ ε0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100=-=?=A A l l ε名义应变) (99510 524.44500 6 MPa A F T =?= = -σ真应力

1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(210 5.3) 1(28 8 MPa Pa E G ≈?=+?= += μ剪切模量) (390)(109.3) 7.01(310 5.3) 21(38 8 MPa Pa E B ≈?=-?= -=μ体积模量. ,. ,112 1 2 1 2 1 2 1 2 1 2 1 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝=== = ∝= = = =??? ? ? ?亦即做功或者:亦即面积εε εε εε εσεσεσ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(11 2211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-= e e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

无机材料物理性能试题

无机材料物理性能试题及答案

无机材料物理性能试题及答案 一、填空题(每题2分,共36分) 1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。 2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的 热容-温度曲线基本一致。 3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征 电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。 4、固体材料质点间结合力越强,热膨胀系数越小。 5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因 电子迁移率很高,所以不存在空间电荷和吸收电流现象。 6、导电材料中载流子是离子、电子和空位。 7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料 中载流子的类型。 8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的 小。在高温下,二者的导热率比较接近。 9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增 大。 10. 电导率的一般表达式为 ∑ = ∑ = i i i i i q nμ σ σ 。其各参数n i、q i和μi的含义分别 是载流子的浓度、载流子的电荷量、载流子的迁移率。 11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的 散射大,因此声子的平均自由程小,热导率低。 12、波矢和频率之间的关系为色散关系。 13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。 14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。 15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。 16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。 用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。 17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

无机材料物理性能题库(2)综述

名词解释 1.应变:用来描述物体内部各质点之间的相对位移。 2.弹性模量:表征材料抵抗变形的能力。 3.剪切应变:物体内部一体积元上的二个面元之间的夹角变化。 4.滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动,就叫滑移. 5.屈服应力:当外力超过物理弹性极限,达到某一点后,在外力几乎不增加的情况下,变形骤然加快,此点为屈服点,达到屈服点的应力叫屈服应力。 6.塑性:使固体产生变形的力,在超过该固体的屈服应力后,出现能使该固体长期保持其变形后的形状或尺寸,即非可逆性。 7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。 8.粘弹性:一些非晶体和多晶体在比较小的应力时,可以同时变现出弹性和粘性,称为粘弹性. 9.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。 10.弛豫:施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。 11.蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。 12.应力场强度因子:反映裂纹尖端弹性应力场强弱的物理量称为应力强度因子。它和裂纹尺寸、构件几何特征以及载荷有关。 13.断裂韧性:反映材料抗断性能的参数。 14.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。 15.亚临界裂纹扩展:在低于材料断裂韧性的外加应力场强度作用下所发生的裂纹缓慢扩展称为亚临界裂纹扩展。 16.裂纹偏转增韧:在扩展裂纹剪短应力场中的增强体会导致裂纹发生偏转,从而干扰应力场,导致机体的应力强度降低,起到阻碍裂纹扩展的作用。 17.弥散增韧:在基体中渗入具有一定颗粒尺寸的微细粉料达到增韧的效果,称为弥散增韧。 18.相变增韧:利用多晶多相陶瓷中某些相成份在不同温度的相变,从而达到增韧的效果,称为相变增韧。 19.热容:分子热运动的能量随着温度而变化的一个物理量,定义为物体温度升高1K所需要的能量。 20.比热容:将1g质量的物体温度升高1K所需要增加的热量,简称比热。 21.热膨胀:物体的体积或长度随温度升高而增大的现象。 热传导:当固体材料一端的温度笔另一端高时,热量会从热端自动地传向冷端。22.热导率:在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行平面,若两个平面的温度相差1K,则在1秒内从一个平面传导至另一个平面的热量就规定为该物质的热导率。 23.热稳定性:指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。 24.抗热冲击断裂性:材料抵抗温度急剧变化时瞬时断裂的性能。 25.抗热冲击损伤性:材料抵抗热冲击循环作用下缓慢破坏的性能。 26.热应力:材料热膨胀或收缩引起的内应力。 27.声频支振动:振动的质点中包含频率甚低的格波时,质点彼此间的位相差不

无机材料物理性能课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。则有 当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度 τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

材料物理性能-复习资料

第二章材料的热学性能 热容:热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。 不同温度下,物体的热容不一定相同,所以在温度T时物体的热容为: 物理意义:吸收的热量用来使点阵振动能量升高,改变点阵运动状态,或者还有可能产生对外做功;或加剧电子运动。 晶态固体热容的经验定律: 一是元素的热容定律—杜隆-珀替定律:恒压下元素的原子热容为25J/(K?mol); 二是化合物的热容定律—奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 热差分析:是在程序控制温度下,将被测材料与参比物在相同条件下加热或冷却,测量试样与参比物之间温差(ΔT)随温度(T)时间(t)的变化关系。 参比物要求:应为热惰性物质,即在整个测试的温度范围内它本身不发生分解、相变、破坏,也不与被测物质产生化学反应同时参比物的比热容,热传导系数等应尽量与试样接近。 第三章材料的光学性能 四、选择吸收:同一物质对各种波长的光吸收程度不一样,有的波长的光吸收系数可以非常大,而对另一波长 的吸收系数又可以非常小。 均匀吸收:介质在可见光范围对各种波长的吸收程度相同。 金属材料、半导体、电介质产生吸收峰的原因 (1)金属对光能吸收很强烈,这是因为金属的价电子 处于未满带,吸收光子后即呈激发态,用不着跃迁到导 带即能发生碰撞而发热。(2)半导体的禁带比较窄, 吸收可见光的能量就足以跃迁。(3)电介质的禁带宽, 可见光的能量不足以使它跃迁,所以可见光区没有吸收 峰。紫外光区能量高于禁带宽度,可以使电介质发生跃 迁,从而出现吸收峰。电介质在红外区也有一个吸收峰, 这是因为离子的弹性振动与光子辐射发生谐振消耗能量所致。 第六章材料的磁学性能 一、固有磁矩产生的原因 原子固有磁矩由电子的轨道磁矩和电子的自旋磁矩构成,电子绕原子核运动,产生轨道磁矩;电子的自旋也产生自旋磁矩。当电子层的各个轨道电子都排满时,其电子磁矩相互抵消,这个电子层的磁矩总和为零。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消(方向相反的电子自旋磁矩可以互相抵消),原子就具有“永久磁矩”。 二、抗磁性与顺磁性 抗磁性:轨道运动的电子在外磁场作用下产生附加的且与外磁场反向的磁矩。 产生原因:外加磁场作用下电子绕核运动所感应的附加磁矩造成的。 顺磁性:材科的顺磁性来源于原子的固有磁矩。 产生原因:因为存在未填满的电子层,原子存在固有磁矩,当加上外磁场 时,为了降低静磁能,原子磁矩要转向外磁场方向,结果使总磁矩不为零而表 现出磁性。 三、强顺磁性:过渡族金属在高温都属于顺磁体,这些金属的顺磁性主要是由 于3d, 4d, 5d电子壳层未填满,而d和f态电子未抵消的磁矩形成晶体离子 构架的固有磁矩,因此产生强烈的顺磁性。 四、磁化曲线、磁滞回线

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0816.04.25.2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.44500 6 MPa A F T =?= =-σ真应力

材料物理性能考试重点、复习题电子教案

材料物理性能考试重点、复习题

精品资料 1.格波:在晶格中存在着角频率为ω的平面波,是晶格中的所有原子以相同频率振动而 形成的波,或某一个原子在平衡附近的振动以波的形式在晶体中传播形成的波 2.色散关系:频率和波矢的关系 3.声子:晶格振动中的独立简谐振子的能量量子 4.热容:是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K 所需要增加的能量。 5.两个关于晶体热容的经验定律:一是元素的热容定律----杜隆-珀替定律:恒压下元素的 原子热容为25J/(K*mol);另一个是化合物的热容定律-----奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 6.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀 7.固体材料热膨胀机理:材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶 格结点上原子振动的平衡位置间的距离。材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀;而温度升高时,会导致原子间距增大。 8.温度对热导率的影响:在温度不太高时,材料中主要以声子热导为主,决定热导率的因 素有材料的热容C、声子的平均速度V和声子的平均自由程L,其中v通常可以看作常数,只有在温度较高时,介质的弹性模量下降导致V减小。材料声子热容C在低温下与温度T3成正比。声子平均自由程V随温度的变化类似于气体分子运动中的情况,随温度升高而降低。实验表明在低温下L值的变化不大,其上限为晶粒的线度,下限为晶格间距。在极低温度时,声子平均自由程接近或达到其上限值—晶粒的直径;声子的热容C则与T3成正比;在此范围内光子热导可以忽略不计,因此晶体的热导率与温度的三次方成正比例关系。在较低温度时,声子的平均自由程L随温度升高而减小,声子的热容C仍与T3成正比,光子热导仍然极小,可以忽略不计,此时与L相比C对声子热导率的影响更大,因此在此范围内热导率仍然随温度升高而增大,但变化率减小。 在较高温度下,声子的平均自由程L随温度升高继续减小,而声子热容C趋近于常数,材料的热导率由L随温度升高而减小决定。随着温度升高,声子的平均自由程逐渐趋近于其最小值,声子热容为常数,光子平均自由程有所增大,故此光子热导逐步提高,因此高温下热导率随温度升高而增大。一般来说,对于晶体材料,在常用温度范围内,热导率随温度的上升为下降。 9.影响热导率的因素:1)温度的影响,一般来说,晶体材料在常用温度范围内,热导率随 温度的上升而下降。2)显微结构的影响。3)化学组成的影响。4)复合材料的热导率 10.热稳定性:是指材料承受温度的急剧变化而不致破坏的能力,所以又称为抗热震性。 11.常用热分析方法:1)普通热分析法2)差热分析3)差示扫描量热法4)热重法 12.光折射:当光依次通过两种不同介质时,光的行进方向要发生改变,这种现象称为折 射 13.光的散射:材料中如果有光学性能不均匀的结构,例如含有透明小粒子、光性能不同 的晶界相、气孔或其他夹杂物,都会引起一部分光束偏离原来的传播方向而向四面八方散开来,这种现象称为光的散射。 14.吸收:光通过物质传播时,会引起物质的价电子跃迁或使原子振动,从而使光能的一 部分转变为热能,导致光能的衰减的现象 15.弹性散射:光的波长(或光子能量)在散射前后不发生变化的,称为弹性散射 16.按照瑞利定律,微小粒子对波长的散射不如短波有效,在可见光的短波侧λ=400nm 处,紫光的散射强度要比长波侧λ=720nm出红光的散射强度大约大10倍 17.色散:材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质,称为材仅供学习与交流,如有侵权请联系网站删除谢谢2

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

材料物理性能期末复习重点-田莳

1.微观粒子的波粒二象性 在量子力学里,微观粒子在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性。 2.波函数及其物理意义 微观粒子具有波动性,是一种具有统计规律的几率波,它决定电子在空间某处出现的几率,在t 时刻,几率波应是空间位置(x,y,z,t)的函数。此函数 称波函数。其模的平方代表粒子在该处出现的概率。 表示t 时刻、 (x 、y 、z )处、单位体积内发现粒子的几率。 3.自由电子的能级密度 能级密度即状态密度。 dN 为E 到E+dE 范围内总的状态数。代表单位能量范围内所能容纳的电子数。 4.费米能级 在0K 时,能量小于或等于费米能的能级全部被电子占满,能量大于费米能级的全部为空。故费米能是0K 时金属基态系统电子所占有的能级最高的能量。 5.晶体能带理论 假定固体中原子核不动,并设想每个电子是在固定的原子核的势场及其他电子的平均势场中运动,称单电子近似。用单电子近似法处理晶体中电子能谱的理论,称能带理论。 6.导体,绝缘体,半导体的能带结构 根据能带理论,晶体中并非所有电子,也并非所有的价电子都参与导电,只有导带中的电子或价带顶部的空穴才能参与导电。从下图可以看出,导体中导带和价带之间没有禁区,电子进入导带不需要能量,因而导电电子的浓度很 大。在绝缘体中价带和导期隔着一个宽的禁带E g ,电子由价带到导带需要外界供给能量,使电子激发,实现电子由价带到导带的跃迁,因而通常导带中导电电子浓度很小。半导体和绝缘体有相类似的能带结构,只是半导体的禁带较窄(E g 小) ,电子跃迁比较容易 1.电导率 是表示物质传输电流能力强弱的一种测量值。当施加电压于导体的两 端 时,其电荷载子会呈现朝某方向流动的行为,因而产生电流。电导率 是以欧姆定律定义为电流密度 和电场强度 的比率: κ=1/ρ 2.金属—电阻率与温度的关系 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,当电子波通过一个理想品体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子被才受到散射(不相干散射),这就是金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原于、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 金属电阻率在不同温度范围与温度变化关系不同。一般认为纯金属在整个温度区间产生电阻机制是电子-声子(离子)散射。在极低温度下,电子-电子散射构成了电阻产生的主要机制。金属融化,金属原子规则阵列被破坏,从而增强了对电子的散射,电阻增加。 3.离子电导理论 离子电导是带有电荷的离子载流子在电场作用下的定向移动。一类是晶体点阵的基本离子,因热振动而离开晶格,形成热缺陷,离子或空位在电场作用下成为导电载流子,参加导电,即本征导电。另一类参加导电的载流子主要是杂质。 离子尺寸,质量都远大于电子,其运动方式是从一个平衡位置跳跃到另一个平衡位置。离子导电是离子在电场作用下的扩散。其扩散路径畅通,离子扩散系数就高,故导电率高。 4.快离子导体(最佳离子导体,超离子导体) 具有离子导电的固体物质称固体电解质。有些

东南大学-材料物理性能复习题(2008)

材料物理性能复习题 第一章 1、C v 、C p 和c 的定义。C pm 和C vm 的关系,实际测量得到的是何种量?Cvm 与温度(包括ΘD )的关系。自由电子对金属热容的贡献。合金热容的计算。 2、哪些相变属于一级相变和二级相变?其热容等的变化有何特点? 3、撒克斯法测量热容的原理。何谓DTA 和DSC ?DTA 测量对标样有何要求?如何根据DTA 曲线及热容变化曲线判断相变的发生及热效应(吸热或放热)? 4、线膨胀系数和体膨胀系数的表达式及两者的关系。证明c b a v αααα++=(采用与教材不同的方法) 5、金属热膨胀的物理本质。热膨胀和热容与温度(包括ΘD )的关系有何类似之处?为何金属熔点越高其膨胀系数越小?为何化合物和有序固溶体的膨胀系数比固溶体低?奥氏体转变为铁素体时体积的变化及机理。膨胀测量时对标样有何要求? 6、比容的定义(单位重量的体积,为密度的倒数)。奥氏体、珠光体、马氏体和渗碳体的比容相对大小。 7、钢在共析转变时热膨胀曲线的特点及机理。如何根据冷却膨胀曲线计算转变产物的相对量? 8、傅里叶定律和热导率、热量迁移率。导温系数的表达式及物理意义。 9、金属、半导体和绝缘体导热的物理机制。魏德曼-弗兰兹定律。 10、何谓抗热冲击断裂性和抗热冲击损伤性?热应力是如何产生的,与哪些因素有关?提高材料的抗热冲击断裂性可采取哪些措施? 第二章 1、电阻、电阻率、电导率及电阻温度系数的定义及相互关系。 2、电阻的物理意义。为何温度升高、冷塑性变形和形成固溶体使金属的电阻率增加,形成有序固溶体使电阻率下降?马基申定律的表达式及各项意义。为何纯金属的电阻温度系数较其合金大?如何获得电阻温度系数很低的精密电阻合金? 3、对层片状组织,证明教材中的关系式(2.25)和(2.26)。 4、双电桥较单电桥有何优点?用电位差计测量电阻的原理。用电阻分析法测定铝铜合金时效和固溶体的溶解度的原理。 5、何谓本征半导体?其载流子为何?证明关系式J=qnv 和ρ=E/J (J 和E 分别为电流密度和电场强度)。 6、为何掺杂后半导体的导电性大大增强?为何有电子型和空穴型两种半导体。N 型和P 型半导体中的多子和少子。为何PN 结有单向导电性? 7、温差电势和接触电势的物理本质,热电偶的原理。 8、何谓压电效应?电偶极矩的概念。压电性产生的机理。 9、何谓霍尔效应和霍尔系数?推导出教材中的关系式(2.83)~(2.85)。如何根据霍尔效应判断半导体中载流子是电子还是空穴? 第三章 1、M 、P m 的关系。M 、H 的关系。μ0,μ,χ的概念。B 、H 的关系。磁化曲线

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

相关文档
相关文档 最新文档