文档库 最新最全的文档下载
当前位置:文档库 › 幅频特性和相频特性实验报告

幅频特性和相频特性实验报告

幅频特性和相频特性实验报告
幅频特性和相频特性实验报告

HUNAN UNIVERSITY 课程实验报告

题目:幅频特性和相频特性

学生姓名:

学生学号:

专业班级:

完成日期:2014年1月6号

一.实验内容

1、测量RC串联电路频率特性曲线

元件参数:R=1K,C=,输入信号:Vpp=5V、f=100Hz~15K正弦波。测量10组不同频率下的Vpp,作幅频特性曲线。

2、测量RC串联电路的相频特性曲线

电路参数同上,测量10组不用频率下的相位,作相频特性曲线。用李莎育图像测相位差。

3、测量RC串并联(文氏电桥)电路频率特性曲线和相频特性

曲线

二.实验器材

1k?电阻一个,电容一个,函数信号发生器一台,示波器一

台,导线和探头线若干

三.实验目的

(1)研究RC串并联电路对正弦交流信号的稳态响应;

(2)熟练掌握示波器李萨如图形的测量方法,掌握相位差的测量方法;

(3)掌握RC串并联电路以及文氏电桥幅频相频特性特征。四.实验电路图

100nF

100nF

五.实验数据及波形图

电阻的幅度与峰峰值与频率:

电容的幅度与峰峰值与频率:

f/khz1315 Vpp/v

相位差/度

串并联电路频率峰峰值与相位差:

f/khz3 Vpp/v

相位差/度

f/khz57101215 Vpp/v

相位差/度

当输入电压比输出电压=(/2)时,其波形图如下:1.电阻:

2.电容

3.串并联电路:

六.曲线图

电阻的幅频特性图:

相频特性图:

电容的幅频特性图:

相频特性:

串并联电路相频特性:

幅频特性:

七.实验心得

通过该实验,我掌握了RC电路的相频与幅频特性的基本特征

一阶单容上水箱对象特性的测试实验报告

《控制工程实验》实验报告 实验题目:一阶单容上水箱对象特性的测试 课程名称:《控制工程实验》 姓名: 学号: 专业: 年级: 院、所: 日期: 2019.04.05

实验一一阶单容上水箱对象特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3. 掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1. 实验装置对象及控制柜 1套 2. 装有Step7、WinCC等软件的计算机 1台 3. CP5621专用网卡及MPI通讯线各1个 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1 所示为单容自衡水箱特性测试结构图及方框图。阀门F 1-1和F 1-6 全开,设上水箱 流入量为Q 1,改变电动调节阀V1的开度可以改变Q 1 的大小,上水箱的流出量为 Q 2,改变出水阀F 1-11 的开度可以改变Q 2 。液位h的变化反映了Q 1 与Q 2 不等而引起 水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量,h为其输出变量, 则该被控过程的数学模型就是h与Q 1 之间的数学表达式。 根据动态物料平衡关系有: (1) 变换为增量形式有: (2) 其中:,,分别为偏离某一平衡状态的增量; A为水箱截面积

图1 单容自衡水箱特性测试结构图(a)及方框图(b) 在平衡时,Q 1=Q 2 ,=0;当Q 1 发生变化时,液位h随之变化,水箱出口处的 静压也随之变化,Q 2 也发生变化。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2 与h成正比关系,与阀F 1-11 的阻力R成反比,即 或 (3) 式中: R为阀F 1-11 的阻力,称为液阻。 将式(2)、式(3)经拉氏变换并消去中间变量 Q2,即可得到单容水箱的数学模型为 (4) 式中 T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。若令 Q1(s)作阶跃扰动,即,=常数,则式(4)可改写为: (5) 对上式取拉氏反变换得 (6) 当 t—>∞时,,因而有

实验四 控制系统频率特性的测试(实验报告)

实验四 控制系统频率特性的测试 一. 实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。 二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性 相频特性 (2)实验方法 设有两个正弦信号: 若以)(t x ω为横轴,以)(y t ω为纵轴,而以t ω作为参变量,则随t ω的变化,)(t x ω和 )(y t ω所确定的点的轨迹,将在 x--y 平面上描绘出一条封闭的曲线(通常是一个椭圆)。这 就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym ,φ,

四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。 (2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性 答:可以。在实验过程中一个频率可同时记录2Xm,2Ym,2y0。 (2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。 (3)对用频率特性测试系统数学模型方法的评测 答:用这种方法进行此次实验能够让我们更好地了解其过程,原理及方法。但本次实验的数据量很大,需要读取较多坐标,教学软件可以更智能一些,增加一些自动读取坐标的功能。 七.实验总结 通过本次实验,我加深了对线性定常系统的频率特性的认识,掌握了用频率特性法测试被控过程模型的原理和方法。使我把书本知识与实际操作联系起来,加深了对课程内容的理解。在处理数据时,需要进行一定量的计算,这要求我们要细心、耐心,作图时要注意不能用普通坐标系,而是半对数坐标系进行作图。

频率特性分析

实验三 频率特性分析 一·实验目的 1.掌握频率特性的基本概念,尤其是频率特性的几种表示方法。 2.能熟练绘制极坐标频率特性曲线(奈奎斯特曲线)和对数频率特性曲线,尤其要注意的是在非最小相位系统时曲线的绘制。 3.正确应用频率稳定判别方法,包括奈奎斯特稳定判据和对数稳定判据。 4.熟练正确计算相位裕量和幅值裕量。 5.掌握闭环频率特性的基本知识以及有关指标的近似估算方法。 二·实验内容 1增加开环传递函数零极点个数对奈奎斯特图的影响 1)改变有限极点个数n ,使n=0,1,2,3 Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -101234 -3.5-3-2.5-2-1.5-1-0.50 0.511.52n=0 n=1 n=2 n=3 2)改变原点处极点个数v ,当v=1,2,3,4, Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -1.5 -1 -0.5 00.5 1 1.5 2 -2-1.5 -1 -0.5 00.5 1 1.5 2 System: sys P hase Margin (deg): -32.9Delay Margin (sec): 4.41At frequency (rad/sec): 1.3 Closed Loop Stable? No System: sys P hase Margin (deg): -121Delay Margin (sec): 3.49At frequency (rad/sec): 1.2 Closed Loop Stable? No System: sys P hase Margin (deg): 150Delay Margin (sec): 2.28At frequency (rad/sec): 1.15Closed Loop Stable? No System: sys P hase Margin (deg): 51.8Delay Margin (sec): 0.575 At frequency (rad/sec): 1.57 Closed Loop Stable? Yes v=1 v=2 v=3 v=4

最新第一组:一阶单容上水箱对象特性测试实验

实验一、一阶单容上水箱对象特性测试实验 一.实验目的 (1)建立单容水箱阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用作图的方法分别确定它们的参数(时间常数T 、放大系数K )。 二.实验设备 CS2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: 丹麦泵 电动调节阀 V1 DCS控制系统手动输出 h V2 Q1 Q2 图1-1、 单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过DCS 控制系统监控画面——调整画面,(调节器或其他操作器),手动改变(调节阀的开度)对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 五.实验内容步骤 1)对象的连接和检查:

(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。 (2)打开以水泵、电动调节阀、孔板流量计组成的动力支路(1#)至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。 (3)打开上水箱的出水阀至适当开度。 2)实验步骤 (1)打开控制柜中水泵、电动调节阀、24V电源的电源开关。 (2)打开DCS控制柜的电源,打开电脑,启动DCS上位机监控软件,进入主画面,然后进入实验一画面“实验一、一阶单容上水箱对象特性测试实验”。 注满水箱打开出水阀打开阀门,连通电动调节阀 关闭支路阀打开上水箱打开上水箱打开电源 进水阀出水阀 打开泵的开关打开调节阀开关打开24V电源打开DCS控制柜电源

系统频率特性的测试实验报告

东南大学自动化学院课程名称:自动控制原理实验 实验名称:系统频率特性的测试 姓名:学号: 专业:实验室: 实验时间:2013年11月22日同组人员: 评定成绩:审阅教师:

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

实验1 二阶双容中水箱对象特性测试实验

实验1 二阶双容中水箱对象特性测试实验 一、实验目的 1、熟悉双容水箱的数学模型及其阶跃响应曲线; 2、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。 二、实验设备 AE2000B 型过程控制实验装置、实验连接线 图1 双容水箱系统结构图 三、原理说明 如图1所示:这是由两个一阶非周期惯性环节串联起来,被调量是第二水槽的水位h 2。当输入量有一个阶跃增加?Q 1时,被调量变化的反应曲线如图2所示的?h 2曲线。它不再是简单的指数曲线,而是呈S 形的一条曲线。由于多了一个容器,就使调节对象的飞升特性在时间上更加落后一步。在图中S 形曲线的拐点P 上作切线,它在时间轴上截出一段时间OA 。 这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此称容量滞后,通常以τ C 代表之。 设流量Q 1为双容水箱的输入量,下水箱的液位高度h 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为: 2112()()* ()(*1)(*1) s H S K G S Q S T S T S e τ-==++

图2 变化曲线 式中K=R3,T1=R2C1,T2=R3C2,R2、R3分别为阀V2和V3的液阻,C1和C2分别为上水箱和下水箱的容量系数。由式中的K、T1和T2须从由实验求得的阶跃响应曲线上求出。具体的做法是在图3所示的阶跃响应曲线上取: 1)h2(t)稳态值的渐近线h2(∞); 2)h2(t)|t=t1=0.4 h2(∞)时曲线上的点A和对应 的时间t1; 3)h2(t)|t=t2=0.8 h2(∞)时曲线上的点B和对应 的时间t2。 然后,利用下面的近似公式计算式2-1中的参数 K、T1和T2。其中:2 () K O h R ∞ == 输入稳态值 阶跃输入量 图3 阶跃响应曲线 4)12 12 t t T T 2.16 + +≈ 对于式(2-1)所示的二阶过程,0.32〈t1/t2〈0.46。当t1/t2=0.32时,为一阶环节;当t1/t2=0.46 h 0.4 0.8 2 h h 1 h 2 2 2

自动控制原理控制系统的频率特性实验报告

肇庆学院 工程学院 自动控制原理实验报告 12 年级 电气一班 组员:王园园、李俊杰 实验日期 2014/6/9 姓名:李奕顺 学号:201224122130老师评定 ________________ 实验四:控制系统的频率特性 一、实验原理 1.被测系统的方块图:见图4-1 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化, 并施加于 被测系统的输人端[r(t)],然后分别测量相应的反馈信号 [b(t)]和误差信号[e(t)]的对数幅 值和 相位。频率特性测试仪测试数据经相关运算器后在显示器中显示。 根据式(4 — 3)和式(4 — 4)分别计算出各个频率下的开环对数幅值和相位, 在半对数座标 纸上作出实验曲线:开环对数幅频曲线和相频曲线。 系统(或环节)的频率特性 幅值和相角: G (j 3)是一个复变量,可以表示成以角频率 3为参数的 G(j 3)= G(j 3)|/G(j 3) (4 — 1) 本实验应用频率特性测试仪测量系统或环节的频率特牲。 图4-1所示系统的开环频率特性为: G 1(j 3)G 2(j 3) B(j 3) 」 B(j 3) E(j 3) E(j 3) E(j 3) (4—2) 采用对数幅频特性和相频特性表示,则式( 20lgG1(j 3) G2(j 3)H(j 3)= 2 叫鵲 = 20lgB(j 3) -20lg E(j 3) (4— 3) G 1(j 3)G 2(j 3)H(j 3) 二 B(j 3)- . E(j 3) (4—4) 图4-1 被测系统方块图 4— 2 )表示 为:

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转 角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特牲(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频 (相 对于转角频率)时不等于-90 ° (q —p)[式中p和q分别表示传递函数分子和分母的阶次], 那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 2.被测系统的模拟电路图:见图4-2 图4-2被测系统 二、实验内容 (1)将U21 DAC单元的OUT端接到对象的输入端。 ⑵将测量单元的CH1 (必须拨为乘I档)接至对象的输出端。 ⑶将Ul SG单元的ST和S端断开,用排线将ST端接至U26控制信号单元中的PB0。(由于在每次测量前,应对对象进行一次回零操作,ST即为对象锁零控制端,在这里,我们用8255的PB0 口对ST进行程序控制) ⑷在PC机上分别输入角频率为1, 10,100,300,并使用“ +”、“―”键选择合适的幅值,按ENTER键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得到相应的幅值和相位,得到的实验波形图如图4-3到图4-10所示: 图4-3输入频率为1的波形图1

伏安特性曲线实验报告

《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。 3。拆除电路,整理桌面,将器材整齐地放回原位。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。

六、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,R U应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。 七、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。 2。读数时没有读准确,在估读的时候出现误差。 3。描绘图像时没有描绘准确造成误差。

描绘小灯泡的伏安特性曲线 《测量小灯泡伏安特性曲线》实验课题任务是:电学知识告诉我们当电压一定时电流I与电阻R成反比,但小灯炮的电阻会随温度的改变而变化,小灯泡(6。3V、0。15A)在一定电流范围内其电压 与电流的关系为UKIn,K和n是与灯泡有关的系数。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《测量小灯泡伏安特性曲线》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方 法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出测量小灯泡伏安曲线的电路和实验步骤,要具有可操作性。 ⑶验证公式UKIn; ⑷求系数K和n;(建议用最小二乘法处理数据)

使用Multisim进行电路频率特性分析

使用Multisim进行电路频率响应分析 作者:XChuda Multisim的AC Analysis功能用于对电路中一个或多个节点的电压/电流频响特性进行分析,画出伯德图。本文基于Multisim 11.0。 1、实验电路 本例使用如图的运放电路进行试验。该放大电路采用同相输入,具有(1+100/20=)6倍的放大倍数,带300欧负载。方框部分象征信号源,以理想电压源串联电阻构成。 请不要纠结于我把120Vrms的电压源输入双15V供电的运放这样的举动是否犯二,电压源在AC Analyses中仅仅是作为一个信号入口的标识,其信号类型、幅值和频率对分析是没有贡献的,但是它的存在必不可少,否则无法得到仿真结果! 2、操作步骤 搭好上述电路后,就可以进行交流分析了。

一般设置Frequency parameters和Output两页即可,没有特殊要求的话其他选项保持默认,然后点Simulate开始仿真。切记是点Simulate,点OK的话啥都不会发生。

按照上述步骤仿真结果如下: 分析结果是一份伯德图。在上下两个图表各自区域上按右键弹出列表有若干选项,各位可自己动手试试。右键菜单中的Properties可打开属性对话框,对图表进行更为详细的设置。 3、加个电容试试 从上面伯德图分析结果看出,该电路具有高通特性,是由输入耦合电容C3造成的。现在在输入端加入一个退耦电容试试。电路如下:

在输入端加入220pF退耦电容后C1与后面的放大电路输入电阻构成低通滤波器,可滤除高频干扰。加入C1后,放大电路的输出应该具有带通特性。用AC Analysis分析加入C1后的电路频响特性: 奇怪,为什么高通不见了?一阵疑惑,我甚至动笔算了同相输入端的阻容网络复频域的特性,无论C1是否加入,从同相输入端向左看出去的阻容电路都有一个横轴为0的零点,所以幅度特性应该是从0Hz处开始上升的!对,从0Hz开始!回头看看电路加入C1前仿真的伯德图,发现竖轴范围是13dB~13.3dB! 我们尝试放大来看看。现在重新进行AC分析,将频率范围设置为0.1~10Hz,结果如下图。OK,没问题,果然是高通的,只是截止频率非常低(0.3Hz左右),刚才的仿真频率范围从1Hz开始,自然是看不到的。从中也看出,图表中数字后加小写m,是毫赫兹(mHz)的意思,而不是兆赫兹(MHz)。

第一节 单容自衡水箱液位特性测试实验

第一节 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI 通讯电缆一根。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图 。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2 Q ??h (2-3)

频域分析实验报告

频域分析实验报告 班级: 学号: 姓名:

一、实验内容: 1利用计算机作出开环系统的波特图; 2、观察记录控制系统的开环频率特性; 3、控制系统的开环频率特性分析。 二、仿真原理: 对数频率特性图(波特图): 对数频率特性图包括了对数幅频特性图和对数相频特性图。横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表示。MATLAB提供了函数bode()来绘制系统的波特图,其用法如下: (1)bode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。 (2)当带输出变量[mag,pha,w]或[mag,pha]引用函数时,可得到系统波特图相应的幅值mag、相角pha及角频率点w矢量或只是返回幅值与相角。相角以度为单位,幅值可转换为分贝单位:magdb=20×log10(mag) 二、实验验证 1、用Matlab作Bode图。要求:画出对应Bode图。 (1)G(S)=25/S2+4s+25 (7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9);

图 1 图 2 (1)G(S)=25/S2+4s+25 可以看成是一个比例环节和一个振荡环节组成,所以k=1,T1=0.04,因为v=0,所以在转折频率之前都为20lgk,因为k=1所以斜率为0,经过转折频率,分段直线斜率的变化量为-40db/dec。

(7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9); 可以看成是一个二阶微分环节和一个积分环节和一个振荡环节组成,化常数为1后,v=1,t1=1,t2=1/3,所以我们可以看到,在起始阶段是-20*vdb/dec,所以一开始斜率为-20db/dec。当经过1/3的转折频率之后分段直线的改变量为40db/dec,当经过1的转折频率之后分段直线的改变量为-40db/dec。故图像如图所示。 第二题: 典型二阶系统Gs=Wn2/s2+2ζWns+Wn2,试绘制取不同值时的Bode图。取Wn=8,ζ=0.1,0.2,0.3,,0.5,0.6; 图 3 如图所示。

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验 _______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。分两种情形来讨论。 (1) 从图(a)来看,Uce =0,即c、e间短路。此时Ib 与Ube 间的关系就是两个正向二极 管并联的伏安特性。每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。 专业:___ _________ 姓名:___ _________ 学号: ______ 日期:_____ ______ 地点:_____ ___

控制系统的频率特性分析

实验六 控制系统的频率特性分析 1.已知系统传递函数为:1 2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输 出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即 可得到系统的幅相频率特性。 F=10时 输入: 输出:

F=50时 输入:输出: (2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。 提示:a)函数bode()用来绘制系统的bode图,调用格式为: bode(sys) 其中sys为系统开环传递函数模型。 参考程序: s=tf(‘s’); %用符号表示法表示s G=1/(0.2*s+1); %定义系统开环传递函数 bode(G) %绘制系统开环对数频率特性曲线(bode图)

实验七连续系统串联校正 一.实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。二.实验内容 1.串联超前校正 系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间 num=10; 1)figure(1) 2)hold on

3)figure(1) 4)den1=[1 1 0]; 5)Gs1=tf(num,den1); 6)G1=feedback(Gs1,1,-1); 7)Step(G1) 8) 9)k=10; 10)figure(2) 11)GO=tf([10],[1,1,0]); 12)Gc=tf([0.456,1],[1,00114]); 13)G=series(G0,Gc); 14)G1=feedback(G,1); 15)step(G1);grid

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试 一.实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性 (2)实验方法 设有两个正弦信号: 若以) (y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以) (t 化,) (y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和) (t 曲线(通常是一个椭圆)。这就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym,φ, 四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。(2)首先确定被测对象模型的传递函数, 预先设置好参数

T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。 (三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性

电路实验__电路频率特性的研究要点说明

东南大学电工电子实验中心 实验报告 课程名称:电路实验 第二次实验 实验名称:电路频率特性的研究 院(系):仪器科学与工程学院专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师:

电路频率特性的研究 一、 实验目的 1. 掌握低通、带通电路的频率特性; 2. 应用Multisim 软件测试低通、带通电路频率特性及有关参数; 3. 应用Multisim 软件中的波特仪测试电路的频率特性。 二、 实验原理 研究电路的频率特性,即是分析研究不同频率的信号作用于电路所产生的响应函数与激励函数的比值关系。通常情况下,研究具体电路的频率特性,并不需要测试构成电路所有元件上的响应与激励之间的关系,只需要研究由工作目的所决定的某个元件或支路的响应与激励之间的关系。本实验主要研究一阶RC 低通电路,二阶RLC 低通、带通电路的频率特性。 (一):网络频率特性的定义 电路在一个正弦电源激励下稳定时,各部分的响应都是同频率的正弦量,通过正弦量的相量,网络函数|()|H jw 定义为:. ().|()||()|j w Y H w H jw e X ?== 其中Y 为输出端口的响应,X 为输入端口的激励。由上式可知,网络函数是频率的函数,其中网络函数的模|()|H jw 与频率的关系称为幅频特性,网络函数的相角()w ?与频率的关系称为相频特性,后者表示了响应与激励的相位差与频率的关系。 (二):网络频率特性曲线 1. 一阶RC 低通网络 网络函数: 其模为: 辐角为: 显然,随着频率的增高,|H(j ω)|将减小, 即响应与激励的比值减小,这说明低频信 4590 (a) RC低通网络(b) 幅频特性 (c) 相频特性 ()H j ω()) RC ?ω=().0.1/1 1/1i U j c H j R j C j RC U ωωωω=== ++

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

一阶RC电路频率特性的研究实验报告

北京交通大学电子信息工程学院2011~2012 实验报告 实验题目:一阶RC电路频率特性的研究。 实验内容及结果: 1.低通电路的研究 实验电路: 实验数据: 低通电路数据 频率电平频率 a b 相位差100 -0.1 100 0.6 4.8 7.1808 300 -0.9 200 1.2 4.4 15.8266 475 -2 300 1.9 4.2 26.8965 560 -2.5 400 2.2 4 33.367 641 -3 500 2.4 3.6 41.8103 704 -3.5 600 2.4 3.2 51.3752 788 -4 700 2.4 3 53.1301 849 -4.5 800 2.4 2.8 58.9973 926 -5 1000 2 2.4 56.4427 1000 -5.5 2000 3.2 3.4 70.2501 1072 -6 3000 2.1 2.2 72.6586 1149 -6.5 5000 1.2 1.2 90 1240 -7 1340 -7.5 1430 -8 1520 -8.5 1600 -9 1660 -9.5 1860 -10 2400 -12 3040 -14 3780 -16 4700 -18 5000 -19

电平图: 相位差图:

2.高通电路研究 实验数据: 高通电路数据 频率电平频率 a b 相位差5000 0 5000 0.6 4.6 7.4947 1500 -0.4 4000 0.8 4.6 10.0154 1200 -0.8 3000 1 4.5 12.8396 1030 -1 2000 1.4 4.5 18.1262 899 -1.4 1000 2 4 30 740 -2 600 2.4 3.2 48.5904 663 -2.4 500 2.4 3.1 50.732 588 -3 400 2.1 2.4 61.045 532 -3.5 300 2 2.1 72.2472 481 -4 100 0.8 0.8 90 440 -4.5 400 -5 372 -5.5 344 -6 339 -6.5 325 -7 261 -8 227 -9 200 -10 165 -11 100 -16

实验一 单容自衡水箱液位特性测试实验

计算机控制技术实验报告 实验一单容自衡水箱液位特性测试实验 班级: 姓名: 学号:

实验一 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (1-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (1-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 口处的静压也随之变化,Q 2也发生变化。 由流体力学可知,流体在紊流情况下, 液位h 与流量之间为非线性关系。但为 了简化起见,经线性化处理后,可近似 认为Q 2与h 成正比关系,而与阀F1-11 的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2Q ??h (1-3) 图1-1 单容自衡水箱特性测试结构图及方框图 式中:R ——阀F1-11的阻力,称为液阻。 将式(1-2)、式(1-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为

信号与系统实验报告实验三 连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3

由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。在研究系统的频率响应时,更多的是把它表示成极坐标形式: ) ()()(ω?ωωj e j H j H = 3.4 上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ω?称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。)(ωj H 和)(ω?都是频率ω的函数。 对于一个系统,其频率响应为H(j ω),其幅度响应和相位响应分别为)(ωj H 和)(ω?,如果作用于系统的信号为t j e t x 0)(ω=,则其响应信号为 t j e j H t y 0)()(0ωω= t j j e e j H 00)(0)(ωω?ω=))((000)(ω?ωω+=t j e j H 3.5 若输入信号为正弦信号,即x(t) = sin(ω0t ),则系统响应为 ))(sin(|)(|)sin()()(00000ω?ωωωω+==t j H t j H t y 3.6 可见,系统对某一频率分量的影响表现为两个方面,一是信号的幅度要被)(ωj H 加权,二是信号的相位要被)(ω?移相。 由于)(ωj H 和)(ω?都是频率ω的函数,所以,系统对不同频率的频率分量造成的幅度和相位上的影响是不同的。 2 LTI 系统的群延时 从信号频谱的观点看,信号是由无穷多个不同频率的正弦信号的加权和(Weighted sum )所组成。正如刚才所述,信号经过LTI 系统传输与处理时,系统将会对信号中的所有频率分量造成幅度和相位上的不同影响。从相位上来看,系统对各个频率分量造成一定的相位移(Phase shifting ),相位移实际上就是延时(Time delay )。群延时(Group delay )的概念能够较好地反

相关文档
相关文档 最新文档