文档库 最新最全的文档下载
当前位置:文档库 › 传感与检测技术实验指导书-2011新.

传感与检测技术实验指导书-2011新.

传感与检测技术实验指导书-2011新.
传感与检测技术实验指导书-2011新.

实验一 应变片测量电桥特性分析

一、实验目的

1. 掌握应变片的布片及接桥方法;

2. 了解应变片单臂、半桥、全桥的工作原理和工作特性;

3. 了解测试应变片单臂、半桥、全桥输出与输入电压之间的关系。

二、实验原理

应变片是一种将机械构件的应变转换为电阻值变化的变换元件,一般做成片状,简称 为应变片。应变片按材料的不同有金属应变片和半导体应变片。

应变片是最常用的测力敏感元件。当用应变片测力时,应变片应牢固地粘贴在测试 体表面,当测试体受力发生变形时,应变片敏感栅的结构尺寸随之变化,其电阻值将产生相应的变化。通过应变片测量电桥,将应变片电阻值的变化转换成相应的电压输出。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路相对臂电阻乘积相等,电桥输出电压为零。在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化量分别为△R 1/ R 1、△R 2/ R 2、△R 3/ R 3、△R 4/ R 4 ,桥路的输电压出与应变12341234R R R R R R R R R ε????=--+成

正比。通常应变测量电桥都采用等臂桥,此时R 1= R 2= R 3= R 4=R ,△R 1=-△R 2 =△R 3=-△R 4=

△R 。当使用一个应变片接成单臂桥时,则有R R R

ε?=;当使用二个应变片接成差动半桥时,

则有2R R R ε?=;若用四个应变片接成差动全桥时,则有4R R R

ε?=。

根据电路分析可以得出:单臂测量电桥的输出电压U O =KU i εR /4,

差动半桥输出电压U O =KU i ε

R /2,差动全桥输出电压

U O =KU i ε

R ;相应地单臂测量电桥输出电压的灵敏度

K u =U O /△R/R =U i /4,差动半桥输出电压的灵敏度K u =U O /△R/R =U i /2,差动全桥输出电压的灵敏度K u =U O /△R/R = U i 。由此可知,单臂、半桥、全桥电路的灵敏度依次增大;当U i 和电阻相对变化一定时,电桥的输出电压及其电压灵敏度与各桥臂阻值的大小无关。

三、需用器件及单元

实验台主控箱(±4V 、±15V 、电压表)、应变式传感器实验模板、托盘、砝码、4 位半数显万用表。

四、实验内容与步骤

图1-2应变式传感器单臂电桥实验接线图

(一)应变传感器实验模板电路调试及说明

1.实验模板说明

如图1-1所示,应变式传感器已装于应变传感器模块上,传感器中各应变片R1、R2、

R3、R4已接入图1—2 所示实验电路的左上方,传感器中各应变片的静态值均为350 ?。

实验时,当托盘加上法码后,应变片R1、R3为承受拉应变,其阻值增加;应变片R2、R4

承受压应变,其阻值减小;R1、R2、R3、R4应变后阻值的大小可用万用表测量。

图1—2 中R5、R6、R7为标准电阻,图中没有文字标记的5个电阻符号下面是空的,

其中4个组成电桥模型是为实验者搭接差动半桥和全桥电路提供方便,图中的黑粗线表示外

接连线。

2. 实验模板差动放大器调零

图1—2中Rw1和Rw2为电桥调零电位器,Rw3和Rw4为差动放大器调零电位器。由于测量电桥输出电压很小,实验时其输出需接高输入阻抗、高放大倍数的差动运算放大器。运算放大器投入测量放大工作之前,需要进行静态调零。调零的方法如下:(1)接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板上调零电位器Rw3 顺时针调节到大致中间位置(先逆时针旋到底,再顺时针旋转2圈)。

(2)将差放电路的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw4,使数显表显示电压值为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。

(二)应变片单臂电桥实验

1. 单臂电桥接线及调零

参考图1-2接入应变片R1,作为一个桥臂,R1与R5、R6、R7(在模块内已连接好的标准电阻)接成应变片单臂测量电桥。接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,调节Rw1 使数显表显示电压值为零。

2. 单臂电桥实验

在应变传感器实验托盘上放置一只砝码,读取数显表显示的电压值;依次增加砝码并读取相应的数显电压值,记入表1.1 中。

表1.1 应变片单臂电桥实验数据表

3. 实验要求

根据表1.1记录的实验数据,画出加载实验曲线,计算应变片单臂测量电桥输出电压的灵敏度S=ΔU/Δg(ΔU输出电压变化量,Δg重量变化量)和非线性误差δf1=Δm/y F..S ×100%,式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差;y F·S满量程输出量(平均值)。实验完毕,关闭电源。

(三)应变片半桥实验

1. 半桥接线及调零

参考图1-3 接线,应变片R1、R2为一对差动电阻应变片(一为拉应变、一为压应变),

两应变片接于差动半桥的两相邻边上。保持实验步骤(二)电位器Rw3 、Rw4不变,接入桥路电源±4V,调节Rw1,使数显表电压指示为零。

图1-3应变式传感器半桥实验接线图

2. 半桥实验

(1)在应变传感器托盘上放置一只砝码,读取数显表显示的电压值;依次增加砝码并读取相应的数显电压值,记入表1.2 中。

(2)依次减少砝码并读取相应的数显电压值,将实验数据记入表1.2。

表1.2 应变片半桥实验数据表

3. 实验要求

根据表1.2记录的实验数据,画出加载及减载实验曲线,计算灵敏度S ,非线性误差δ、回程误差大小。实验完毕,关闭电源。

(四)应变片全桥实验

1. 全桥接线及调零

参考图1-4接线,应变片R1、R2、R3、R4接成差动全桥(R1、R3、为拉应变,R2、R4为压应变)。保持实验步骤(三)电位器Rw3 、Rw4不变,接入桥路电源±4V,调节Rw1,

使数显表电压指示为零。

图1-4全桥性能实验接线图

2. 全桥实验

(1)在应变传感器托盘上放置一只砝码,读取数显表显示的电压值;依次增加砝码并读取相应的数显电压值,记入表1.3 中。

(2)依次减少砝码并读取相应的数显电压值,将实验数据记入表1.3。

表1.3 应变片全桥实验数据表

3.实验要求

根据表1.3记录的实验数据,画出加载及减载实验曲线,计算灵敏度S ,非线性误差δ、回程误差大小。实验完毕,关闭电源。

五、注意事项

1. 实验前应检查实验接线是否完好,连接电路时应尽量使用较短的接插线;

2. 接插线插入插孔时轻轻的做一小角度的转动,以保证接触良好,拔出时应轻轻把反方向转动一下拔出,切忌用力拉扯接插线尾部,以免造成线内导线断裂;

3. 认真检查实验接线,确认接线无误并经指导教师检查后才能启动仪器电源,仪器内部稳压电源(±2V、±4V、±6V、±8V、±10V、±15V)不能对地短路。

4. 接入半桥和全桥的应变片须注意其受力方向,使其接成差动式。

六、思考题

1. 单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

2.半桥测量时,二片不同受力状态的应变片接入电桥时应放在(1)对边、(2)邻边,为什么?

3. 全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

4. 比较单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较,阐述理由。

实验二差动变压器特性分析

一、实验目的

1.掌握差动变压器的基本结构及工作原理;

2. 掌握差动变压器测位移的原理和方法;

3.了解初级线圈激励频率对差动变压器输出性能的影响;

4. 了解差动变压器残余电压及其补偿方法。

二、实验原理

1.差动变压器工作原理

差动变压器是一种互感式传感器,是利用变压器初级线圈与次级线圈之间互感的变化,来获得与被测量成一定函数关系的输出电压,以实现非电量的测量。差动变压器有多种结构形式,但应用最多的是螺管式差动变压器(如图2-1所示)。差动变压器主要用于测直线位移,测量位移的范围1-100(mm);差动变压器亦可用于测量150HZ以下的低频振动加速度、压力、张力等可以转换为机械位移变化的非电物理量。

图2-1 差动变压器原理图

在图2-1(a)中,1表示变压器初级线圈,21和22表示变压器次级两差动线圈,3为线圈绝缘框架,4表示动铁,变量ΔX 表示动铁的位移变化量。

在图2-1(b)中,R1和L1 表示初级线圈1的电阻和自感,R21和R22表示两次级线圈的电阻,L21和L22表示两次级线圈的自感,M1和M2表示初级线圈分别与两次级线圈间的互感,e21和e22表示在初级电压u1作用下在两次线圈上产生的感应电动势,图中两次级线圈反向串联,形成差动输出电压u2。

当初级线圈L1加上一定的交流电压u1时,在次级线圈中,由于电磁感应所产生感应电压e21和e22,其大小与铁芯的轴向位移成比例。把感应电压e21和e22反极性连接,便得到差

动输出电压U2∝M2-M1 。

①当动铁处于中间位置时,磁阻Rm1= Rm2,即互感M1 = M2 ,故此时输出电压U2= 0 ;

②当动铁上移时,磁阻 Rm1< Rm2 ,则 M1> M2,此时输出电压U2<0 ;

③当动铁下移时,磁阻 Rm1> Rm2,则 M1< M2,此时输出电压U2>0 。

因而差动变压器可以用来测量动铁位移的大小和方向。

2.灵敏度

差动变压器的灵敏度是指差动变压器在单位电压激励下,动铁移动单位距离时所产生的输出电压,以mv/mm表示,一般大于50mv/mm。

三、需用器件与单元

差动变压器实验模块、差动变压器、测微头、双踪示波器、音频信号源、直流电源、万用表。

四、实验内容与步骤

(一)差动变压器测位移性能实验

1. 根据图2-2,将差动变压器装在差动变压器实验模板上。

图2-2 差动变压器安装示意图

2.测微头的安装与使用

(1)测微头在实验中是用来产生位移并指示出位移量的工具。如图2-3所示,测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。

(2)测微头的轴套上有两排刻度线,标有数字的(上排)是整毫米刻线(1mm/格),未标数字的(下排)是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

(3)测微头的读数方法是先读轴套主尺上露出的刻度数值(注意半毫米刻线);再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图2-3甲读数为3.678mm,不是3.178mm。遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的分度示值是否过零,如图2-3乙所示微分筒的分度示值已过零,此时读数为2.514mm;如图2-3丙分度示值未过零,则不应读为2mm,读数应为1.980mm。

3.设定音频信号源:音频信号源必须从主控箱上音频振荡器的L V端子输出,调节音频振荡器的频率,使得其输出频率为4~5KHz(可用主控箱的数显表的频率档f i输入来监测)。调节幅度使输出幅度峰-峰值为V p-p=2V(可用示波器监测:X轴为0.2ms/div、Y轴CH1为1V/div、CH2为20mv/div)。

一通

道示波器

插座管脚编号

图2-3 测位头组成与读数

3. 参考图2-4接线,判别初次级线圈与次级线圈同名端方法如下:确定初级线圈,设两次级线圈的任意两端为同名端,按图2-3接成差动输出形式。初级线圈加上激磁电源(Lv 端音频信号Vp-p=2V),当铁芯上、下移动时,观察示波器中显示的初级线圈波形和次级线圈波形。当次级两线圈差动输出波形幅值变化较大,过零点且正负幅值基本相等,其相位与初级线圈波形比较恰好能保持同相和反相变化,说明已连接的次级两线圈的同名端是正确的,否则改变连接再判断直到正确为止。

微分同

图2-5差动变压器测位移性能实验安装接线图

4.参考图2-5,松开测微头的安装紧固螺钉,移动测微头使示波器第二通道显示的波形峰-峰值Vp-p为较小值(即使差动变压器铁芯大约处在中间位置),拧紧紧固螺钉。仔细调节测微头的微分筒使示波器第二通道显示的波形Vp-p为最小值(零点残余电压)并定为位移的相对零点。实验时,以位移相对零点为起点,向左或右移动测微头时请注意两点:①测微头只能按所定方向向前位移,中途不允许回调;否则,由于测微头存在的机械回差可能引起位移误差。所以,实验时每一次的位移量须仔细调节,绝对不能调节过量;如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。②当一个方向行程实验结束,做另一方向时,测微头回到位移相对零点(Vp-p最小值)处时它的位移读数(与向的前位移读数)有变化是正常的,只要中途测微头不回调就不会引起位移误差。

5.位移性能实验

(1)测微头调到位移相对零点,旋动测微头的微分筒,使测微头向左移动;每位移0.2mm(可取8—10点)从示波器上读出一个输出电压Vp-p值,填入下表2-1中。

表2-1 差动变压器铁芯左移时实测数据表

(2)测微头调到位移相对零点,旋动测微头的微分筒,使测微头向右移动;每位移0.2mm(可取8—10点)从示波器上读出一个输出电压Vp-p 值,填入下表2-2中。实验完毕,关闭电源。

表2-2 差动变压器铁芯右移时实测数据表

6. 实验要求

(1)根据表2-1、表2-2所测数据画出Vp-p —X 曲线,指出线性工作范围。 (2)计算量程X 为±1mm 、±3mm 时Vp-p/X 灵敏度S(mv/ mm )。

(3)分析差动变压器中的磁芯位置由右向左移动时,输出电压波形相位会怎样的变化? (二)激励频率对差动变压器特性的影响

1.实验原理

差动变压器输出电压的有效值可以近似用关系式:2

1

22112)(L R U M M U i O ωω+-=表示,式中L 1、

R 1为初级线圈电感和损耗电阻,U i 、ω为激励电压和频率,M 1、M 2为初级与两次级间互感系

数,由上式可见:当初级线圈激励频率太低时,若2

1221L R ω>>,则有i U M M R U )(121

-=O ω

即适当增加激励频率,可提高输出电压的灵敏度。只有当2

1212R L >>ω时,输出电压U o 与ω无关,即高频下输出电压的稳定性较好;但过高的频率会使线圈寄生电容增大,对性能不利。

2. 实验步骤

(1)保持差动变压器安装和实验接线同图2-2和图2-4所示。

(2)从主控箱上音频振荡器的L V 端选择1KHz 音频信号(可用主控箱的数显表频率档显示频率),移动铁芯至中间位置(即输出电压Vp-p 为最小时的位置)。

(3)旋动测微头,每间隔0.2mm 在示波器上读取一个Vp-p 数据。

(4)分别改变激励频率为3KHz 、5KHz 、7KHz 、9KHz ,重复实验步骤(3)将测试结果记入表2-2。实验完毕,关闭电源。

表2-2 不同激励频率时输出电压Vp-p 与位移X 的关系

3. 实验要求

作出每一频率下的Vp-p -X 曲线,并计算其灵敏度S ,作出灵敏度与激励频率的关系曲线。

*(三)差动变压器零点残余电压的补偿

差动变压器零点残余电压中主要包含两种信号成分:基波分量和谐波分量。 1.零点残余电压的形成

(1)基波分量:主要是由于差动变压器两个次级绕组材料或工艺差异造成等效参数(M 、L 、R )不同,线圈中的铜损电阻及导磁材料的铁损,线圈中线间电容的存在,都使得激励电流与所产生的磁通不相同。

(2)谐波分量:主要是由导磁材料磁化曲线非线性引起,由于磁滞损耗和铁磁饱和的影响,使激励电流与磁通波形不一致,产生了非正弦波(主要是三次谐波)磁通,从而在二次绕组中感应出非正弦波的电动势。

2.零点残余电压消除或减小的方法

目前零点残余电压消除或减小的方法主要是①从设计和工艺制作上尽量提高差动变压器的组成结构及电磁特性的对称性;②引入相敏整流电路,对差动变压器输出电压进行处理;③采用外电路补偿。

3.外电路补偿实验 (1) 按图2-6接线,音频信号源从L V 插口输出,实验模块中R 1、C 1、Rw 1、Rw 2为电桥单元

中调平衡网络。IC 为差分放大器,

图2-6差动变压器零点残余电压补偿电路接线图

将差动变压器传感器的双端输出转换为单端输出。

(2)用示波器调整音频振荡器输出为2V峰-峰值

(3)调整测微头,使差动放大器输出电压最小。

(4)依次调整Rw1、Rw2,使输出电压降至最小。

(5)将第二通道的灵敏度提高,观察零点残余电压的波形,注意与激励电压比较。

(6)从示波器上观察,差动变压器的零点残余电压值Vp-p。(注:这时的零点残余电压是经放大后的零点残余电压,实际零点残余电压应为Vp-p/K,K为差分放大器的放大倍数。(实验模快中的K≈5)。实验完毕,关闭电源。

五、思考题

1. 差动变压器与一般电源变压器有什么异同?

2. 差动变压器测量频率的上限受什么影响?

3. 图2-7是零点残余电压补偿电路接线图之二,试分析其补偿原理。

图2-7 零点残余电压补偿电路接线图之二

实验三热电阻、热电偶测温特性分析

一、实验目的

1. 掌握热电阻、热电偶测温原理和方法;

2. 了解热电阻、热电偶测温特性及应用。

二、实验原理

1. 热电阻测温原理

电阻温度传感器测温原理都是利用金属或半导体材料的电阻对温度敏感的特性,常用于-200~500℃范围内温度的测量和控制。在低温区,采用电阻温度传感器测温,不但比热电偶测温简单,而且有较高的测量精度。电阻温度传感器用于测温时,要求其体电阻率高、稳定性好,电阻温度系数大、线性关系好。

电阻温度传感器分金属和半导体两大类,分别简称为金属热电阻和半导体热敏电阻。目前常用的金属热电阻有铜热电阻和铂热电阻,其分度号分别为Cu50、Cu100,P t10、P t100。本实验采用P t100铂热电阻,在0-850℃以内,电阻R t与温度t的关系为:

R t = R0(1+At+Bt2)

R0是温度为0℃时的铂热电阻的电阻值,A和B是实验常数,本实验中R0=100;A=3.90802×10-3 oC-1,,B=-5.080195×10-7 oC-2。

2. 热电偶测温原理

当两种不同热电特性的导体组成闭合回路时,如两个接点的温度不同,闭合回路中就会产生热电势,这就是热电效应。温度高的接点称工作端(亦称热端),将其置于被测温度场;温度低的接点称为自由端(也称冷端),冷端可以是室温值或经补偿后的0oC或25oC。

三、需用器件及单元

P t100热电阻(用于热电阻测温实验)、E型热电偶(用于热电偶测温实验)、加热源、温度控制仪、K型热电偶(用于监测温度控制仪上加热源的温度)、温度传感器、万用表,热电阻和热电偶分度表见附录一。

四、实验内容与步骤

(一)热电阻测温

1.选用温度控制仪,仔细阅读附录二温度控制仪操作说明,将温度控制仪上的220V 电源插头插入主控箱两侧配备的220V控制电源插座上。

2.选择内控方式,将K 型热电偶的测温端(热端)插入加热源顶端的一个插孔中,将其自由端(冷端)引线插入温度控制仪正面的传感器插孔中,红线为正极。

3.用P t 100铂电阻代替图4-1中热电阻R t ,用万用表欧姆档测出P t 100铂电阻三根引线中短接的两根线接R t 的b 端,另一根线(红线)接R t 的a 端,于是P t 100与R 1、R 3、R 4、Rw 1、组成直流单臂测量电桥。Rw 1中心活动点与R 6相接,如图4-1所示。输出端b 和中心活动点之间在室温下输出电压为零,用万用表测量。

4.在端点a 与地之间加直流源2V ,调Rw 1使电桥平衡,即桥路输出端b 和中心活动点之间在室温下输出电压为零,用万用表测量。

5.图4-1实验电路接入±15V 工作电源,将V o2与数显电压表相接,拨至2V 电压显示档,调Rw 3使室温下数显电压为零。

6.设定温度值50oC ,将P t 100探头插入插入加热源的另一个插孔。,开启加热开关,待温度控制在50oC 时记录下数显电压表读数值。重新设定温度值为50oC+n ·Δt ,建议Δt=5oC ,n=1……10,每隔1n 读出一数显表的电压值,记录入表4-1中。实验完毕,关闭电源。

表4-1 P t 100测温数据表

7.根据表4-1测温数据计算其非线性误差。

接主控箱电源输出

主控箱数显表

V i

2V

图4-1 热电阻测温特性实验电路接线图

(二)热电偶测温

1.保持(一)热电阻测温实验步骤1和2不变,取下图4-1中P t100铂电阻

2. 将E型热电偶的测温端(热端)插入加热源顶端的另一个插孔中,其自由端接入图4-1实验电路中标有热电偶符号的a、b孔上,热电偶自由端连线中带红色套管或红色斜线的一条为正端。

3. 将R5、R6端接地,重新接通实验电路电源±15V,调Rw2使V o1 为零;将V o2与数显电压表相接,调Rw3使数显电压表显示零位。设定温控模块仪表控制温度值T=50oC。

4. 去掉R5、R6接地线,将E型热电偶两自由端a和b分别与放大器R5、R6相接,并把

b端与地相接。

5.保持温控仪指示的加热温度为50oC,记录下V o2的数显电压值;重新设定温度值为50oC+n·Δt,建议Δt=5oC,n=1……10,每隔1n读出数显表输出电压与温度值,并记入表4-2。实验完毕,关闭电源。

表4-2 热电偶测温数据表

6.根据表4-2测温数据计算其非线性误差。

五、思考题

1. 为什么低温下热电偶测温比热电阻测温精度还低?

2. 如何根据测温范围和精度要求选用热电阻或热电偶?

3.能否用Pt100设计一个直接显示摄氏温度-50oC-50oC的数字式温度计,并利用本实

验台进行实验?

附录(一)热电阻和热电偶分度表

附录(二)温度控制仪操作说明

一、面板说明

1.PV (上窗口)测量值显示窗(红)

2.SV (下窗口)给定值显示值(绿)

3.A-M 手动指示灯(绿)

4.ALM1 AL1动作时点亮对应的灯(红)

5.ALM2 AL2动作时点亮对应的灯(红)

6.OUT 调节输出指示灯(绿)

7.SET 功能键

数据移位(兼手动/自动切换)

数据减少键

数据增加键

仪表上电后,上显示窗口显示测量值(PV),下显示窗口显示给定值(SV)。在基本状态下,SV窗口能用交替显示的字符来表示系统的某些状态。按SET键可以切换不同的显示状态:按SET键并保持约2秒钟,即进入参数设置状态。在参数设置状态下按SET键,仪表将依次显示各参数。

二、主要参数功能一览表

实验四 霍尔传感器特性分析

一、实验目的

1.掌握霍尔传感器的工作原理;

2.了解直流激励与交流激励时霍尔式传感器的应用; 3.了解霍尔传感器在转速测量中的实际应用。

二、实验原理

霍尔传感器的理论基础是霍尔效应,霍尔效应是指在半导体薄片上垂直施加磁场B ,在薄片两短边b 方向通入控制电流I ,则在薄片两长边L 方向产生电动势的这种现象。具有霍

尔效应的元件称为霍尔元件。霍尔电压U H =K H IB ,式中 称为霍尔元件的灵敏度,R H —— 霍尔常数,d —— 霍尔元件厚度; 称为霍尔元件形状系数,L —— 霍尔元件长度,b —— 霍尔元件宽度。

三、需要器件及单元

霍尔传感器、霍尔传感器实验模块、直流稳压电源±4V 和±15V 、数字电压表、音频信号源、螺旋测微仪、移相器、相敏检波器、低通滤波器、霍尔转速传感器、转速显示仪、示波器。

四、实验内容与步骤

(一)直流激励特性测试

1.将霍尔传感器、引线电缆与测微头按图6-1分别装在霍尔传感器的实验模块上。

6-1 霍尔传感器安装示意图

???

??=b L f d R K H H

H ??

? ??b L f H

2.旋动测微头,将其调整到10mm 处,并与霍尔传感器磁场连杆接触(即吸合),前后移动测微头,使霍尔元件置于梯度磁场中间,并将此定为座标轴“0”点,再将测微头用螺丝固定。

图6-2霍尔传感器直流激励实验电路连接图

3.按图6-2连接霍尔传感器直流激励实验电路,差动放大器增益旋钮(RW3)打到中间位置,数字电压表置2V 档,直流激励电源置±4V 档。

4.检查电路无误后,接通实验电路电源±15V ,调节电桥直流电位器RW1,使输出为零。 5.从座标轴“0”点开始,调节螺旋测微仪,使霍尔元件在梯度磁场中左右移动各5 mm ,每位移0.5 mm 读取相应的电压值,并记入表6-1中。

6-1 直流激励位移-电压实验数据表

6. 根据测量数据,作出V-X 曲线,求得灵敏度)/(,X V S S ??=和线性工作范围。如出现非线性情况,请查找原因。实验完毕,关闭电源。 (二)交流激励特性测试

1. 保持直流激励实验步骤“1和2”不变。

2. 调音频振荡器“LV ”端口输出频率2KH Z ,幅值4Vp-p 信号(严格限定在5V 以下,以免损坏霍尔元件)。

3.按图6-3连接霍尔传感器交流激励实验电路,差动放大器增益旋钮(RW3置最大(顺时针到底),交流激励电源接频率2KH Z 、幅值4Vp-p 信号。

图6-3 霍尔传感器交流激励实验电路连接图

4. 检查电路无误后,接通实验电路电源±15V,调整电位器RW1和RW2,使系统输出电压为0(或为最小)。

5. 从座标轴“0”点开始,旋动测微头,给传感器产生一个大位移5mm,仔细调节移相器和相敏检波器的旋钮,使示波器显示的波形为一个接近全波整流波形。然后,再旋动测微头使之回到座标轴“0”点,整流波形消失,变为一条接近零点线(否则再调节RW1和RW2),使系统输出电压为0。

6. 从座标轴“0”点开始,旋动测微头左右分别移动5mm,每移动0.5mm 记录相应的电压值,填入表6-2 中:

表6-2 交流激励位移-电压实验数据表

7. 根据测量数据,作出V-X曲线,求得灵敏度S,(S=△V/△X)和线性工作范围。并与直流激励测试系统进行比较。实验完毕,关闭电源。

(三)霍尔传感器转速测量

1. 霍尔传感器转速测量原理是基于霍尔效应表达式U H=K H IB ,当作用于霍尔元件上的控制电流I一定时,霍尔元件输出电压U H与磁场B成正比。

图6-4是霍尔传感器转速测量安装示意图,将霍尔转速传感器装于转动源模块的支架上,霍尔传感器探头对准转动源电机转速圆盘上的磁钢。被测转速圆盘上装有N对磁钢,圆盘每转一周磁场就变化N次,即有N个磁脉冲作用在霍尔元件上,相应地使霍尔元件输出N个电脉冲;此电脉冲经过放大、整形和计数电路变成计数脉冲,每分钟测得的计数脉冲个数正比与被测旋转体电机的转速。

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

测试技术试验指导书

《机械工程测试技术》实验指导书 编者:郑华文刘畅 昆明理工大学机电学院实验中心 2014年5月

说明和评分 1学生按照实验预约表进行实验;在实验前,需对理论教学中相关内容做做复习并对实验指导书进行预习,熟悉实验内容和要求后才能进入实验室进行实验。在实验中,不允许大声喧哗和进行与实验不相关的事情。 2进入实验室后,应遵守实验室守则,学生自己应发挥主动性和独立性,按小组进行实验,在操作时应对实验仪器和设备的使用方法有所了解,避免盲目操作引起设备损坏,在动手操作时,应注意观察和记录。 3根据内容和要求进行试验,应掌握开关及的顺序和步骤:1)不允许带负荷开机。输出设备不允许有短路,输入设备量程处于最大,输出设备衰减应处于较小。2)在实验系统上电以后,实验模块和实验箱,接入或拔出元件,不允许带电操作,在插拔前要确认不带电,插接完成后,才对实验模块和试验箱上电。3)试验箱上元件的插拔所用连线,在插拔式用手拿住插头插拔,不允许直接拉线插拔。4)实验中,按组进行试验,实验元件也需按组取用,不允许几组混用元件和设备。 4在实验过程中,在计算机上,按组建立相关实验文件,实验中的过程、数据、图表和实验结果,按组记录后,各位同学拷贝实验相关数据文件等,在实验报告中应有反应。对实验中的现象和数据进行观察和记录。 实验评分标准: 1)实验成绩评分按实验实作和实验报告综合评分:实验实作以学生在实验室中完成实验表现和实验结果记录文件评定,评定为合格和不合格;实验报告成绩:按照学生完成实验报告的要求,对实验现象的观察、思考和实验结果的分析等情况评定成绩。初评百分制评定。 2)综合实验成绩评定按百分制。

传感器实验指导书11

实验平台介绍 传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。 图1 nextboard实验平台 nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。 实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。 图2 模拟插槽和数字插槽

特别需要注意的是: (1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。如果插错插槽,会导致模块工作不正常,甚至损坏模块。 (2)插拔实验模块前关闭nextboard电源。 (3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 Nextboard的连线: (1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。 (2)数据采集卡,将数据采集卡的插头与实验台可靠连接。

软件测试技术实验指导书2016版

《软件测试技术》实验指导书 吴鸿韬

河北工业大学计算机科学与软件学院 2016年9月 目录

第一章实验要求 (1) 第二章白盒测试实践 (3) 第三章黑盒测试实践 (6) 第四章自动化单元测试实践 (7) 第五章自动化功能测试实践 (35) 第六章自动化性能测试实践 (56) 附录1实验报告封皮参考模版 (71) 附录2小组实验报告封皮参考模版 (72) 附录3软件测试计划参考模版 (73) 附录4 测试用例参考模版 (77) 附录5单元测试检查表参考模版 (81) 附录6测试报告参考模版 (82) 附录7软件测试分析报告参考模版 (87)

第一章实验要求 一、实验意义和目的 软件测试是软件工程专业的一门重要的专业课,本课程教学目的是通过实际的测试实验,使学生系统地理解软件测试的基本概念和基本理论,掌握软件测试和软件测试过程的基本方法和基本工具,熟练掌握软件测试的流程、会设计测试用例、书写测试报告,为学生将来从事实际软件测试工作和进一步深入研究打下坚实的理论基础和实践基础。 本实验指导书共设计了2个设计型、3个验证型实验和一个综合型实验,如表1所示。设计型实验包括白盒测试实践和黑盒测试实践,验证型实验包括自动化单元测试实践、自动化功能测试和自动化性能测试实践,主要目标是注重培养学生软件测试的实际动手能力,增强软件工程项目的质量管理意识。通过实践教学,使学生掌握软件测试的方法和技术,并能运用测试工具软件进行自动化测试。综合型实验以《软件设计与编程实践》课程相关实验题目为原型、在开发过程中进行测试设计与分析,实现软件开发过程中的测试管理,完成应用软件的测试工作,提高软件测试技能,进一步培养综合分析问题和解决问题的能力。 表1 实验内容安排 实验内容学时实验性质实验要求 实验一白盒测试实践 4 设计必做 实验二黑盒测试实践 4 设计必做 实验三自动化单元测试实践 4 验证必做 实验四自动化功能测试实践 4 验证必做 实验五自动化性能测试实践 4 验证必做 实验六、综合测试实践课外综合选做 二、实验环境 NUnit、JUnit、LoadRunner、Quick Test Professional、VC6.0、Visual

传感器与检测实验指导书2013.

传感器与检测技术实验指导书电气工程学院自动化专业 专业名称 班级 学生姓名 学号 实验成绩 辽宁工业大学 2013年9月

目录 实验一电阻应变式传感器特性实验 (1) 实验二电容传感器特性实验 (5) 实验三电涡流式传感器特性实验 (8) 实验四压电式传感器特性实验 (12) 实验五光电式传感器特性实验 (15) 实验六热电式传感器特性实验 (20) 附录一CSY2000系列传感器实验台说明书 (26) 附录二CSY-V8.1软件操作说明书 (27)

实验一电阻应变式传感器特性实验 一、实验目的 1.熟悉电阻应变式传感器的结构。 2.了解单臂、半桥和全桥测量电路工作原理和性能。 3.比较单臂与半桥、全桥的不同性能,了解各自特点及全桥测量电路的优点。二、基本原理 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态,对单臂电桥输出电压U O1= EKε/4。 2.对半桥测量电路而言,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 3.全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U O3=EKε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、实验仪器及材料 1.应变式传感器实验模板(应变式传感器-电子秤)、砝码盘、砝码;

物联网实验指导书

物联网 实验指导书 四川理工学院通信教研室 2014年11月

目录 前言 (1) 实验一走马灯IAR工程建立实验 (5) 实验二串口通信实验 (14) 实验三点对点通信实验 (18) 实验四 Mesh自动组网实验 (21) 附录 (25) 实验一代码 (25) 实验二代码 (26) 实验三代码 (28) 实验四代码 (29)

前言 1、ZigBee基础创新套件概述 无线传感器网络技术被评为是未来四大高科技产业之一,可以预见无线传感器网络将会是继互联网之后一个巨大的新兴产业,同时由于无线传感网络的广泛应用,必然会对传统行业起到巨大的拉动作用。 无线传感器网络技术,主要是针对短距离、低功耗、低速的数据传输。数据节点之间的数据传输强调网络特性。数据节点之间通过特有无线传输芯片进行连接和转发形成大范围的覆盖容纳大量的节点。传感器节点之间的网络能够自由和智能的组成,网络具有自组织的特征,即网络的节点可以智能的形成网络连接,连接根据不同的需要采用不同的拓扑结构。网络具有自维护特征,即当某些节点发生问题的时候,不影响网络的其它传感器节点的数据传输。正是因为有了如此高级灵活的网络特征,传感器网络设备的安装和维护非常简便,可以在不增加单个节点成本同时进行大规模的布设。 无线传感器网络技术在节能、环境监测、工业控制等领域拥有非常巨大的潜力。目前无线传感器网络技术尚属一个新兴技术,正在高速发展,学习和掌握新技术发展方向和技术理念是现代化高等教育的核心理念。 “ZigBee基础创新套件”产品正是针对这一新技术的发展需要,使这种新技术能够得到快速的推广,让高校师生能够学习和了解这项潜力巨大的新技术。“ZigBee基础创新套件”是由多个传感器节点组成的无线传感器网络。该套件综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种技术领域,用户可以根据所需的应用在该套件上进行自由开发。 2、ZigBee基础创新套件的组成 CITE 创新型无线节点(CITE-N01 )4个 物联网创新型超声波传感器(CITE-S063)1个 物联网创新型红外传感器(CITE-S073)1个 物联网便携型加速度传感器(CITE-S082)1个 物联网便携型温湿度传感器(CITE-S121 )1个 电源6个 天线8根 CC Debugger 1套(调试器,带MINI USB接口的USB线,10PIN排线)物联网实验软件一套

传感器实验指导书(实际版).

实验一 金属箔式应变片性能实验 (一)金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =? 式中R R ?为电阻丝电阻相对变化, K 为应变灵敏系数, l l ?=ε为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受 力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压4 1ε EK U O =。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、士15V 电源、土4V 电源、万用表(自备)。 四、实验步骤: 1.应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的1R 、2R 、3R 、4R 。加热丝也接于模板上,可用万用表进行测量判别, Ω====3504321R R R R ,加热丝阻值为Ω50左右。 2.接入模板电源上15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器3W R 顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端i V 相连,调节实验模板上调零电位器4W R ,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。 3.将应变式传感器的其中一个应变片1R (模板左上方的1R )接入电桥作为一个桥臂与5R 、6R 、7R 接成直流电桥(5R 、6R 、7R 模块内已连接好) ,接好电桥调零电位器4W R ,接上桥路电源上4V (从主控箱引入)如图1—2所示。检查接线无误后,合上主控箱电源

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

传感器实验指导书修订稿

传感器实验指导书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

传感器与检测技术实验 指导教师:陈劲松

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 基本原理: 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用相对变化量来表示,则有: ρ ρ ?+?-?=?S S l l R R (2) 式中的l l ?为电阻丝的轴向应变,用ε表示, 常用单位με(1με=1×mm mm 610-)。若径向应变为r r ?,电阻丝的纵向伸长和横 向收缩的关系用泊松比μ表示为)(l l r r ?-=?μ,因为S S ?=2(r r ?),则(2)式可以写成: l l k l l l l l l R R ?=???++=?++?=?02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是 ) (ρερ?,是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。

传感器原理实验指导书

《传感器原理及应用》实验指导书闻福三郭芸君编著 电子技术省级实验教学示范中心

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 实验仪器 1、传感器特性综合实验仪 THQC-1型 1台 2、万用表 MY60 1个 三、 实验原理 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,可以得到被测对象的应变值ε,而根据应力应变关系 εσE = (2) 式中:ζ——测试的应力; E ——材料弹性模量。 可以测得应力值ζ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 四、 实验内容与步骤 1、应变式传感器已装到应变传感器模块上。用万用表测量传感器中各应变片R1、R 2、R 3、R4,R1=R2=R3=R4=350Ω。 2、将主控箱与模板电源±15V 相对应连接,无误后,合上主控箱电源开关,按图1-1顺时针调节Rw2使之中间位置,再进行放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(如四根粗实线),把电桥调零电位器Rw1,电源±5V ,此时应将±5V 地与±15V 地短接(因为不共地)如图1-1所示。检查接线无误后,合上主控箱电源开关。调节Rw1,使数显表显示为零。 4、按表1-1中给出的砝码重量值,读取数显表数值填入表1-1中。

传感器与自动检测技术实验指导书

传感器与自动检测技术实验指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

传感器与自动检测技术实验指导书.

传感器与自动检测技术验 指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

传感器实验指导书

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358;

4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为 电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 序号 1 2 3 4 5 6 7 8

五、实验报告 1、 画出电路图,并说明设计原理。 2、 列出数据测试表并画出负载特性曲线。电源电压5V ,测试表格1. 曲线图:画图说明,x 坐标是滑动电阻器不带负载时电压;y 坐标是对应1000欧姆(负载两端电压)或100k 欧姆(负载两端电压),100欧和100K 欧两电阻可以得到两条曲线。 O 1 2 3 4 5 UK UR1UR2 3、 说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困 难及解决方法。

电气测试技术-实验指导书

电气测试技术 实 验 指 导 书 河北科技师范学院 机械电子系电气工程教研室 二00六年十月

实验台组成及技术指标 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、15个(基本型)传感器和相应的实验模板、数据采集卡及处理软件、实验台桌六部分组成。 1、主控台部分:提供高稳定的±15V、+5V、±2V~±1OV可调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。音频信号源(音频振荡器)0.4KHz~10KHz可调);低频信号源(低频振荡器)1Hz~3OHz(可调);气压源0~15kpa可调;高精度温度控制仪表(控制精度±0.5℃);RS232计算机串行接口;流量计。 2、三源板:装有振动台1Hz~3OHz(可调);旋转源0~2400转/分(可调);加热源<200℃(可调)。 3、传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流位移传感器、光纤位移传感器、光电转速传感器、集成温度传感器、K型热电偶、E型热电偶、Pt10O 铂电阻,共十五个。 4、实验模块部分:普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。 5、数据采集卡及处理软件:数据采集卡采用12位A/D转换、采样速度1500点/秒,采样速度可以选择,既可单采样亦能连续采样。标准RS-232接口,与计算机串行工作。提供的处理软件有良好的计算机显示界面,可以进行实验项目选择与编辑,数据采集,特性曲线的分析、比较、文件存取、打印等。 6、实验台桌尺寸为160O×8OO×280(mm),实验台桌上预留计算机及示波器安放位置。 注意事项: 1、迭插式接线应尽量避免拉扯,以防折断。 2、注意不要将从各电源、信号发生器引出的线对地(⊥)短路。 3、梁的振幅不要过大,以免引起损坏。 4、各处理电路虽有短路保护,但避免长时间短路。 5、最好为本仪器配备一台超低频双线示波器,最高频率≥1MHz,灵敏度不低于 2mV/cm。 6、 0.4~10KHZ信号发生器接低阻负载(小于100Ω),必须从L V接口引出。

自动化检测实验指导

实验一应变片单臂、半桥、全桥特性比较 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式应 1位数显万用表(自备)。 变片、调理电路单元中的电桥、差动放大器; 4 2 五、实验步骤: 1位数显万用表2kΩ电阻档测量所 1、在应变梁自然状态(不受力)的情况下,用4 2 有 应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。如下图1—7所示。 图1—7观察应变片阻值变化情况示意图 2、差动放大器调零点:按下图1—8示意接线。将F/V表(或电压表)的量程切换开 关 切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底

后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。差动放大器的零点调节完成,关闭主电源。 图1—8 差放调零 接线图 3、应变 片单臂电 桥特性实 验: ⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。 图1—9 应变片单臂电桥特性实验原理图与接线示意图 ⑵检查接线无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端(梁 处 于自然状态,图1—7机头所示)时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。 ⑶在测微头吸合梁的自由端前调节测微头的微分筒,使测微头的读数为10mm左右(测微头微分筒的0刻度线与测微头轴套的10mm刻度线对准);再松开测微头支架轴套的紧固

测试技术实验指导书

测试技术实验 指导书 赵爱琼编 付俊庆审 长沙理工大学测控教研室 07 年3 月

前言 测试技术是一门实践非常强的技术基础课,通过实验,了解测试系统中各环节(包括传感器、信号变换与放大、仪表显示与记录装置、实验数据的计算机分析与处理)的作用与特点,加深同学们对测试技术基本内容和基本概念的理解。 本实验指导书适用于交通运输、机电、机制、测控、自控、车辆工程,汽车服务工程、电子信息等专业的测试技术课、检测与传感器技术课、传感器与自动检测课、传感器原理及应用等课的实验。各专业可根据课时的需要适当取舍,要求同学们在实验中要动脑动手,以达到提高实验动手能力的目的。 本实验指导书由赵爱琼老师编写,付俊庆教授审稿,并经测控教研室全体老师讨论定稿 由于编写仓促,水平有限,书中缺点错误在所难免,恳请读者批评指正 测控教研室 07年3月

目录 实验一霍尔传感器特性实验 实验二电涡流传感器特性实验 实验三电容传感器特性实验 实验四压电式传感器特性实验与振动实验 实验五电阻应变片及电桥性能实验 实验六动应力测量 实验七振动测量 实验八应变式传感器测量系统的设计 附一:CSY——2000系列传感器与检测技术实验台组成附二:实验报告格式与要求

霍尔传感器特性实验 一、实验目的: 1、掌握霍尔传感器的工作原理及特性 2、掌握霍尔传感器的静态标定方法 3、了解霍尔传感器在振幅测量中的应用 二、实验器材: 1、CSY-2000传感器与检测技术实验台,其中所取单元:霍尔传感器实验 模板、霍尔传感器、直流源±4v、±15v、测微头、数显单元、低频振 荡器 2、电子示波器、工控机数据采集系统 三、实验原理: 根据霍尔效应,霍尔电势U=KIBsinα。若保持霍尔元件的激励电流I不变,而使其在一均匀梯度磁场中移动时,则输出霍尔电势值U只决定于它在磁场B中的位移量。本实验即通过对U大小的测量来得其位移。 四、实验内容及步骤: 1、将霍尔传感器按图1安装。霍尔传感器与实验模板的连接见图2进行。1、3为电源±4v, 2、4为输出 图1

传感器技术实验指导书

《传感器技术》实验指导书 权义萍 南京工业大学自动化学院

目录 实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3) 实验二直流全桥的应用――电子秤实验 (7) 实验三电容式传感器的位移特性实验 (9) 实验四压电式传感器振动实验 (11) 实验五直流激励时霍尔式传感器位移特性实验 (13) 实验六电涡流传感器综合实验 (15) 实验七光纤传感器的位移特性实验 (18)

实验一金属箔式应变片单臂、半桥性能比较实验 一、实验目的: 了解金属箔式应变片的应变效应,电桥工作原理和性能。 二、基本原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压U o1= EKε/4。 不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改 善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 三、需用器件与单元: 应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应变片已 接入模板的左上方的R1、R2、R3、R4。可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右 图1-1 应变式传感器安装示意图

传感器实验指导书

传感器实验指导书 Revised at 2 pm on December 25, 2020.

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358; 4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为

电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 五、实验报告 1、画出电路图,并说明设计原理。 2、列出数据测试表并画出负载特性曲线。电源电压5V,测试表格1.

曲线图:画图说明,x坐标是滑动电阻器不带负载时电压;y坐标是对应1000欧姆(负载两端电压)或100k欧姆(负载两端电压),100欧和100K欧两电阻可以得到两条曲线。 3、说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及 解决方法。 实验二声音传感器应用实验-声控LED旋律灯 一、实验目的: 1、了解声音传感器的工作原理及应用; 2、掌握声音传感器与三极管的组合电路调试。 二、实验仪器与元件: 1、直流稳压电源、数字万用表、电烙铁等; 2、电子元件有: 声音传感器(带脚咪头)1个;弯座1个;线1个;5MM白发蓝LED 5个;9014三极管 2个1M电阻 1个;10K电阻 1个;电阻 1个;1UF电解电容 1个;47UF电解电容1个;万能电路板一块。 三、基本原理: 声控LED旋律灯工作电压。其功能为:本电路制作成功后5只LED会随着音乐或是其它声音的节奏闪动起来,可放置于音响附近,让灯光为音乐伴舞!电路原理图如图1所示。 图1 声控LED旋律灯 当发出声音时,声音波传入声音传感器,声音传感器把声音波转换成电压波动。 这个电压波动可以通过电容C2,传到Q1三极管的基极。然后这个电压波变Q1和Q2两级放大之后,输出较大的电压波。最后这个电压波使得5只LED闪动起来。

相关文档
相关文档 最新文档