文档库 最新最全的文档下载
当前位置:文档库 › 土壤微生物多样性

土壤微生物多样性

土壤微生物多样性
土壤微生物多样性

土壤微生物多样性的研究进展

摘要:土壤微生物是土壤的重要组成部分,是土壤有机质和土壤养分转化和循环的主要动力,它参与土壤有机质的分解、腐殖质的形成等生化过程,在土壤生态系统中起着非常重要的作用。本文从土壤微生物多样性的定义、研究层次、研究方法和其影响因素来阐述目前国内外土壤微生物多样性的研究进展,并对目前存在的问题和今后面临的挑战提出几点看法。

关键词:土壤微生物;多样性;PCR-DGGE

Advances of studies on soil microbial diversity Abstract:Soil microorganism, one of the important components of soil, is the main power of soil organic matter and soil nutrients transformation and circulation, and participates in the forming of its resolving, humus of participating in soil organic matter, etc. It plays a very important role in the soil ecosystem. This paper surveyed advances of bio-diversity of soil from the definition of soil microbial diversity, research levels, effect factors and research approaches. Furthermore, some problems and suggestions were put forward for the further study of soil microbial diversity.

Key words: soil microorganism; diversity; PCR-DGGE

土壤中含有各种各样的有机和无机营养物,它是微生物生长和繁殖的天然培养基。土壤的条件也是十分复杂的,而且多变。土壤微生物是指土壤中借助光学显微镜才能看到的微小生物,包括原核微生物如细菌、蓝细菌、放线菌及超显微结构微生物,以及真核生物如真菌、藻类(蓝藻除外)、地衣和原生动物等。微生物积极参与土壤物质转化过程,在土壤形成、肥力演变、植物养分有效化和土壤结构的形成与改良、有毒物质降解及净化等方面起着重要作用。数量庞大、种类繁多的土壤微生物是丰富的生物资源库[1]。土壤微生物多样性是指生命体在遗传、种类和生态系统层次上的变化。它代表着微生物群落的稳定性,也反映土壤生态机制和土壤胁迫对群落的影响。土壤微生物多样性还可以定义为微生物生命的丰富性,通常以土壤生物区系的变化和生物化学过程间的相互关系来反映。目前在地上部植物和动物的多样性方面开展了大量的研究,但对土壤生物多样性,特别是在土壤微生物多样性方面的研究仍较薄弱。随着现代生物学尤其是多聚酶链反应(PCR)、核酸测序等分子生物学技术的迅速发展,人们对土壤微生物多样性有了更深入的了解。

1 土壤微生物分布及其群落分布

1.1土壤中微生物的分布

土壤中的微生物种类是及其丰富的,据文献记载,1g干重农田土壤就含有几百万个细菌,数十万个真菌孢子和数万个原生动物和藻类。生境的物理化学特征可以影响在这一区域中生活的微生物生长、代谢活力、生物与生物之间的相互作用和微生物的生存。土壤中的微生物既有土著微生物又有外来微生物,其中土著微生物是指在一个给定的生境中那些能生存、生长和进行活跃代谢的微生物,并且这些微生物能与来自于其他群落的微生物进行有效的竞争。土著微生物从生理方面完全适应了这一生境的物化环境。而外来微生物则是指来自于其他生态系统的微生物,所以这些微生物不能在这一生境长期生活下去。在土壤中,一般情况下真菌的生物量和细菌的生物量几乎是相等的,而原生动物和藻类的生物量与

真菌和细菌生物量相比,会少一个数量级。如表1所示。

表1农田上表层(15cm)处微生物数目和生物量[2]

微生物数量/(个细胞/g)生物量/(g/m2)

细菌108160

真菌105200

放线菌105~106160

藻类104~10532

原生动物10438

当然,这些数据不一定与其他类型的土壤情况相一致。但是在任何情况下,与农田或森林中的高等植物生物量相比,微生物生物量还是很小的。然而,与土壤中其他生物量相比,微生物生物量还是相当可观的,例如,在草地里微生物生物量可以超过其中的所有原生动物生物量。所以,微生物在土壤生态系统中的作用无疑是很大的。

1.2土壤中的微生物群落

在土壤中存在的大部分细菌为G+细菌,并且G+细菌的数目要比淡水和海洋生境中的G+细菌数目高。土壤中能利用糖类的土著细菌数目要比水圈中的多。在土壤中常见的细菌属包括:不动杆菌属(Acinetobacter)、农杆菌属(Agrobacterium)、产碱杆菌属(Alcaligenes)、节杆菌属(Arthrobacter)、芽孢杆菌属(Bacillus)、短杆菌属(Brevibacterium)、柄杆菌属(Caulobacter)、纤维单胞菌属(Cellulomonas)、梭状芽孢杆菌属(Clostridium)、棒杆菌属(Corynebacterium)、黄杆菌属(Flavobacterium)、微球菌属(Micrococcus)、分支杆菌属Mycobacterium)、假单胞菌属(Pseudomonas)、葡萄球菌属(Staphylcoccus)、黄单胞菌属(Xanthomonas)。但是在不同的土壤中它们的相对比例有很大的不同。

放线菌占土壤细菌群体的10%~33%,其中,链霉菌属(Streptomyces)和诺卡氏菌属(Nocardia)在土壤放线菌中占的比例最大,其次是微单胞菌属(Micromonas),放线菌属(Actinomyces)和其他放线菌,它们是土壤中的土著微生物,但是它们的数量是很少的。放线菌对干燥条件抗性比较大,并能在沙漠土壤中生存,它们比较适合在碱性或中性条件下生长,并对酸性条件敏感。

土壤中主要的光合自养细菌群体是蓝细菌种,包括鱼腥藻属(Anabaena)、眉藻属(Calothrix)、色球藻属(Chroococcus)、筒孢藻属(Cylindrospermum)、鞘丝藻属(Lyngbya)、小枝藻属(Microcoleus)、节球藻属(Nodularia)、念珠藻属(Nostoc)、颤藻属(Oscillatoria)、席藻属(Phormidium)、织线藻属(Plectonema)、裂须藻属(Schizothrix)、伪枝藻属(Scytonema)、单歧藻属(Tolypothrix)。在这些蓝细菌中,某些蓝细菌,如念珠藻在某些土壤环境中既能固氮气,又能通过光合作用合成有机物。合成的含氮物质可以给其他微生物和高等植物提供氮源,有时这些含氮物质甚至可以成为这些微生物生长的限制因子。蓝细菌在没有植物生长的土壤表面上形成表面壳,这对土壤具有稳定作用。固氮菌是土壤中的自生固氮菌,能把大气中的氮气转化成氮化合物。土壤中的某些厌氧梭状芽孢杆菌也能固定氮气。根瘤菌和某些植物通过共生进行固氮。在土壤中还有许多化能异养菌能对无机物进行转化,这对于维持土壤

肥力是必要的。

在土壤生境中可以发现许多外来微生物,它们是来自于空气、水圈或者由植物或动物带入到土壤中,例如,某些植物致病菌就可以由有病植物组织带入土壤中,如农杆菌属、棒杆菌属、欧文氏菌属(Erwinia)、假单胞菌属和黄单胞菌属。进入土壤生态系统的外来微生物一般很快死亡,但在某些情况下,某些外来微生物在土壤中可以生存很长时间,能形成芽孢和其他抗性状态的微生物可以在土壤中存在很长时间。

在土壤中真菌的生物量相当大,在土壤中可以找到大部分的真菌,土壤真菌可以以游离的状态存在或与植物根形成菌根关系。真菌主要存在于土壤上表面10cm处,在30cm以下很难找到真菌。如果土壤含有大量的氧气,那么真菌的量就很大。在土壤中常见的真菌主要是半知菌,如曲霉属(Aspergillus)、地霉属(Geotrichum)、青霉属(Penicillum)和木霉属(Trichoderma),但也可以找到大量的子囊菌和担子菌。

土壤中的土著酵母主要是半知菌,如假丝酵母属(Candida)、红酵母属(Rhodotorula)和隐球酵母属(Cryptococcus)。油脂酵母属(Lipomyces)、施万酵母属(Schwanniomyces)、克鲁氏酵母属(Kluyveromyces)、裂芽酵母属(Schizoblastosporion)、汉逊氏酵母属(Hansenula)、假丝酵母属和隐球酵母属只能在土壤中分离到,这说明土壤是它们的天然环境。

大量的藻类可以生活在土壤中,大部分藻类是生活在土壤表面或土壤上表层的数毫米处。在土壤表层的土著藻类可以进入土壤的亚皮层,这时这些藻类又成为外来藻类,并且有可能被其他微生物吞噬。

大部分原生动物往往只存在于土壤的表层15cm处,因为它们需要相对高浓度的氧气,这些原生动物是土壤细菌和藻类的捕食者。

细菌病毒在土壤中是广泛分布的,但数量不是很多。如果有关的细菌数目增加,那么相关的病毒数目也在增加。根瘤菌及其噬菌体与形成根瘤和固氮的关系引起许多研究者的注意。但是,现在发现对噬菌体产生抗性的根瘤菌却不能进行固氮,这是一个奇怪的现象。能引起高等植物产生病变的某些病毒通常也可以存在于土壤中,但有些植物病毒在土壤中仅能生存很短时间。某些能感染植物根的病毒可以被某些线虫和真菌携带并进行传播。

2土壤微生物多样性研究层次

长期以来,微生物多样性的研究层次一直是众说纷纭。DeLong[3]认为生物多样性应从物种多样性、遗传(基因)多样性和生态系统多样性三个层次上综合表述。马克平[4]等认为生物多样性可分为物种多样性、基因多样性、生态系统多样性和景观多样性四个层次。Solbrig[5]对微生物群落多样性进行剖析后提出3个组成要素:物种多样性、遗传多样性和功能多样性。而Watve等[6]则认为,微生物多样性可细致划分为生活环境多样性、生长繁殖速度多样性、营养和代谢类型多样性、生活方式多样性、基因多样性和微生物资源开发利用多样性等。但不论如何划分,如果将土壤微生物的多样性与整个生态系统联系起来,都可以从物种多样性、遗传多样性、结构多样性和功能多样性4个方面全面的概括土壤微生物多样性的基本特征[7]。

2.1土壤微生物的物种多样性

土壤微生物的物种多样性是指土壤生态系统中微生物的物种丰富度和均一度,这是微生物多样性的

最直接表现形式,也是多样性研究中最基本的内容。根据原位的、不经培养的微生物系统发育学研究发现,自然界中95%~99%的微生物种群尚未被分离培养或描述过,从而推算地球上仅细菌就有10万~50万种[8]。研究推算,细菌、真菌及病毒的已知种占估计种的比例分别为5%、10%和4%[9]。

2.2土壤微生物的遗传多样性

土壤微生物的遗传多样性是指土壤微生物在基因水平上所携带的各类遗传物质和遗传信息的总和,这是微生物多样性的本质和最终反映。与高等生物相比,微生物的多样性在基因水平上更为突出,不同种群间的遗传物质和基因表达具有很大的差异[10]。从本质上讲,生物多样性源于遗传的多样性。遗传多样性可用来描述种群遗传变异和研究维持变异的机制,遗传变异可以在形态、细胞和分子水平上体现。微生物遗传多样性在分子水平上体现主要是由于遗传物质的碱基排列顺序的多样性和组成核酸分子的碱基数量的巨大性。

2.3土壤微生物的结构多样性

土壤微生物的结构多样性是指土壤微生物群落在细胞结构组分上的多样化程度,这是导致微生物代谢方式和生理功能多样化的直接原因。例如,微生物标记物分析法通过提取和分析微生物群落中可以用作不同类群标记性指纹的生化组分或胞外产物来获取微生物群落组成和结构多样性的信息[11]。

2.4土壤微生物的功能多样性

土壤微生物的功能多样性是指土壤微生物群落所能执行的功能范围以及这些功能的执行过程,如分解功能、营养传递功能以及促进或抑制植物生长的功能等,这些对土壤生态功能及自然界元素循环具有重要意义。目前一般采用底物诱导下的代谢响应模式测算土壤微生物群落的代谢功能多样性[12]。

3土壤微生物多样性研究方法

虽然土壤微生物研究一直深受各国土壤学家和生态学家的关注,但是,长期以来土壤微生物的深入研究受限于手段落后已是不争的事实[13]。比如:对于土壤细菌认识,人们通常是通过先分离细菌细胞再在培养基上培养、鉴定菌落的方法,但事实上,土壤中只有少部分细菌可以通过此方法得到,而大部分细菌是极难培养成功的,这使得许多土壤细菌包含的大量遗传信息难以被发现[14]。土壤真菌和放线菌也是一样,人们对它们的认识主要依赖于其地上的子实体或分生孢子的形态,而现实中的许多真菌和放线菌的菌丝体在土壤中处于休眠或不活动状态,用常规调查方法只能了解到其中的一小部分,很难得到大多数种类的信息[15]。所以,方法的局限性,造成了人们全面了解和深入研究土壤微生物多样性的主要障碍。随着科学技术的不断发展,分子生物学及其其它新方法逐渐应用在土壤微生物多样性的研究上,使得多样性的研究得到了进展性的突破。

土壤微生物多样性的实验研究方法很多,从国内外目前采用的方法来看,大致上包括以下几类:(1)传统的微生物平板纯培养方法;(2)Biolog微平板分析方法;(3)脂肪酸分析方法;(4)分子生物学方法;(5)其他方法,如用于微生物生物量测定的氯仿熏蒸方法(Fumigation-incubation)、底物诱导呼吸法(Substrate-induced respiration)和光合微生物色素法等等;用于测定土壤C矿化速率和微生物呼吸强度等方法;用于测定土壤酶活性分析方法;用于土壤微生物形态鉴定的方法;用于测定微生物能量代谢的分析方法;用于测定微生物对土壤养分利用与转化功能的同位素示踪法;以及以荧光为基础的显微技术,包括荧光标记蛋白、荧光染色和荧光原位杂交等。

土壤微生物的实验研究方法如图1所示。

图1土壤微生物多样性的实验研究方法

Fig.1 Methods for laboratory analysis of biodiveristy in soil

下面仅对有关土壤微生物多样性几种主要的实验研究方法加以介绍与评述。

3.1微生物平板培养方法

微生物平板纯培养法是用于估计微生物多样性的传统方法,被认为是监测特殊微生物群变化的非常有效的方法[15]。根据目标微生物选择相应的培养基,然后通过各种微生物的生理生化特征及外观形态等方面进行分析鉴定。可用于跟踪特定分类组或功能组的微生物数量,并评价在该平板上的微生物群落的组成。但后者需从琼脂平板上将菌落分离出来,并对分离菌进行鉴定。由所得到的分类组或分类群的分布情况可了解群落的结构。

这种方法对于衡量小群体多样性方面不失为一种快速的方法。但由于微生物培养方法存在许多不足,只能反映极少数微生物的信息,所测结果误差较大,埋没了大量极有应用价值的微生物资源。且这种平板培养方法通常只能得到微生物类群的数量信息,若要得到种类信息,则必须进一步地分离、纯化和鉴定。因此,在土壤微生物群落多样性研究中,需要结合现代生物技术来更详细的了解土壤微生物状况。但这种方法在分离具有一定功能的特殊目标物种时是非常有用的,利用这种方法已获得许多很有应用价值的微生物种类,并应用于基因介导及生态修复等方面。

3.2 BIOLOG微平板法

BIOLOG系统是Garland和Miss1991年建立起来的一套用于研究土壤微生物群落结构和功能多样性的方法。这种方法是根据微生物对单一碳源底物的利用能力的差异,当接种菌悬液时,其中的一些孔中的营养物质被利用,使孔中的氧化反应指示剂四氯唑紫呈现不同程度的紫色,从而构成了该微生物的特定指纹。经过BIOLOG系统配套软件分析,并与标准菌种的数据库比较之后,该菌株的分类地位便被确认出来。这种方法成功的运用在区分作物的土壤微生物区系方面。作物方面的影响可能与植物根系分

泌物有关,分泌物质导致了某些底物利用率能力的差异[16]。

但目前的数据库中菌种资料不完善,有些只能得到相似的类群。因此,对于微生物的分类鉴定,仅靠Biolog系统的方法是远远不够的,需结合其他方法如微生物生理生化和表型分析等进行。同时,根据Biolog颜色反应数据组合模式,利用主成分分析和聚类分析方法可以获得土壤微生物群落结构和代谢功能方面的信息。虽然不同微生物对同一C源的利用能力是有差异的,但微生物对不同单一C源的代谢指纹差异不能简单地归纳为微生物群落数量和结构的差异,也就是说,需要同时考虑土壤微生物在Biolog 微平板系统中生长时,由于温育环境的改变引起微生物对C底物实际利用能力的改变及其适应性问题如代谢补偿、代谢适应等。同时,Biolog微平板法描述的只是土壤中快速生长型或富营养微生物类群的活性,而不能反映土壤中生长缓慢的微生物信息,包括Biolog方法在内的微生物培养方法测定的土壤微生物种类数量不到16SrRNA方法测定的微生物数量的1%[17],因而大大低估了土壤中微生物的实际情况,故许多学者建议在使用Biolog微平板法时,需要结合其他方法,以获得更全面的结果。

3.3 脂肪酸甲酯(Fatty Acid Methyl Ester,FAME)谱图分析

目前,FAME谱图分析已成为土壤微生物多样性的较为常用研究方法之一。该方法首先是利用有机溶剂将土壤微生物中的磷脂脂肪酸浸提出来,然后再进行分离纯化,最后利用标记脂肪酸,通过气相色谱(GC)等仪器分析方法,得到土壤微生物磷脂脂肪酸组成图谱,进而得到不同脂肪酸的含量和种类,即所谓的FAME指纹剖面(Fingerprint Profile)(图2)。根据FAME的多样性,利用相关的计算机分析软件和相关数据库可同时得到土壤微生物的群落结构组成多样性、比例以及微生物生物量等方面的信息。

FAME分析方法不需要对土壤微生物进行培养,可以直接提取原位土壤微生物群落的脂肪酸。但FAME分析结果的准确性与微生物体内的磷脂脂肪酸是否提取完全、稳定以及实验过程是否造成污染等有很大关系。在该方法中,细菌和真菌可根据其磷脂脂肪酸的组成来鉴别,但不同属甚至不同科的微生物FAME有可能重叠,而且该方法只能鉴定到微生物属,不能鉴定到种,同时,该方法强烈地依赖于标记脂肪酸,标记脂肪酸变化可导致错误的群落变化估计。另外,该方法一个明显的缺陷是实验条件要求高,耗时长,成本高,因而在实际研究工作中常受到一定的限制[18]。

图2土壤微生物FAME谱图分析的一般程序

Fig.2 The general procedures of FAME fingerprint analysis of soil microbes

3.4分子生物学方法

最近20~30年间,以核酸分析技术为主的分子生物学技术(如PCR、RFLP、RAPD、PCR-DGGE/TGGE、AFLP、SSR等)的广泛应用,为从分子水平揭示生物多样性提供了新的方法论,开拓了分子生物学与生态学的交叉领域,分子生物学技术也逐渐被应用到土壤微生物多样性的研究中来。

DGGE(denaturing gradient gel electrophoresis)即变性梯度凝胶电泳,是根据PCR扩增产物中长度系统但不同G+C含量的rDNA片段混合物在电泳胶中的移动位置不一样,进而形成不同rDNA指纹剖面,故可直接反映土壤微生物rDNA的多态性。

RFLP(restriction fragmentlength polymorphism)即限制性片段长度多态性技术是利用PCR扩增产物用限制性内切酶进行切割并电泳,以酶切后DNA片段长度变化来表现出来,通过DNA转印及分子杂交方法检测。由于RFLP技术具有快速、方便等优点,因此RFLP技术非常适用于复杂的微生物系统中种类结构的研究。

RAPD(random amplified polymorphic DNA)即随机扩增多态性DNA技术是以单一的短长度序列随机的寡核苷酸为引物,由于不同样本基因组序列的不同,以致与引物互补退火结合的DNA片段可能增加或减少,导致了扩增产物数目的变化。重复性不好是该技术存在的主要问题,而DNA模板的质量与数量、MgCl2和引物浓度的变化都有可能导致得到不同的图谱。另外,从条带图谱中无法得到任何微生物系统发育信息。

ARDRA(Amplitied rDNA Restriction Analysis)技术是依据原核生物DNA序列的保守性,将扩增的rDNA片段进行酶切,然后通过酶切图谱来分析菌间多样性。ARDRA技术使研究微生物更直接有效。不受培养条件的限制,为实现对自然环境中微生物及多样性的检测和认识,真实地了解微生物的特性提供了可能性。非常适用于复杂的微生物系统中种类结构的研究和不同自然状况下共生态菌的分类学研究。

AFLP(amplified fragment length polymorphism)即扩增片段长度多态性技术是通过有选择的扩增经酶切的部分基因组DNA片段而达到发现各样本基因组间差异的目的。AFLP技术的优点是效率高、稳定性好。但同时也存在着一些缺点,如:AFLP技术费用昂贵;AFLP分析需要同位素或非同位素标记引物,必须具有放射性同位素操作过程中特殊的防护措施以及配套的仪器设备;AFLP对DNA纯度和内切酶的质量要求较高,基因组DNA酶切不完全极有可能影响实验。

PCR (polymerase chain reaction)即聚合酶链式反应,是一种体外扩增核酸序列从而得到多个核酸拷贝的技术,可用于土壤微生物DNA扩增,并对扩增产物进行定量或定性分析。

一般的分子生物学技术在土壤微生物多样性的研究上的流程如图3所示。

下面就目前应用在土壤微生物多样性研究上的PCR-DGGE进行全面的介绍。

(1)原理

PCR-DGGE技术是基于核酸序列的不同,将片段大小相同的DNA序列分开的一种技术方法。在进行变性梯度凝胶电泳时,序列不同的DNA片段因为碱基组成和排列的差异,在聚丙烯酰胺凝胶中解链时需要不同的变性剂浓度,并会发生空间构型的变化,最终导致电泳迁移率的差异。将通过PCR扩增之后得到的等长双链DNA分子,在含梯度变性剂(如尿素、甲酰胺)的聚丙烯酰胺凝胶中进行电泳时,电泳迁移率的差异会使不同序列的DNA片段停留在凝胶的不同位置,从而形成相互分开的条带图谱。从理论上讲,只要选择的电泳条件足够精细,就可以分开仅有1个碱基差异的DNA片段[19]。

图3分子生物技术在土壤微生物多样性研究中的应用图解

Fig.3 A schematic of application of molecular biological techniques in the study of soil

(2)操作步骤

PCR-DGGE的主要操作步骤如下:样品总DNA的提取与纯化;对样品片段的PCR扩增;DGGE电泳。

首先对样品进行预处理,目前普遍使用的是间接法,即通过梯度离心、离心洗涤等步骤去除样品中的杂质,然后再收集和裂解细胞。这一步骤避免了直接对样品处理时,样品中杂质对DNA的污染,但容易造成微生物种类和数量的丢失。近年来,除传统的酶法、化学法和机械法裂解之外,不少新的细胞裂解方法被逐渐应用,如微珠振荡法、超声波法和微波法等。不同DNA提取方法会导致微生物的不同裂解度,所释放的核酸数量不尽相同,使得能够作为PCR模板的DNA数量在不同方法中并不一致,从而对最终的DGGE图谱产生影响。在DNA的提取过程中,一般使用乙醇、异丙醇和聚乙二醇等一些对DNA具有一定优先选择性的有机溶剂,来沉淀样品中的DNA分子。不同DNA提取方法导致抑制剂的残留水平不同,从而在不同程度上影响PCR的特异性扩增;其产生的DNA小片段数量也不同,会影响PCR 扩增的敏感性,同时也增加了嵌套作用的可能性,也可能对DGGE的结果产生影响。

再者PCR扩增是PCR-DGGE技术中至关重要的步骤。PCR扩增引物的选择在分析微生物群落时,通常选择16SrDNA中的保守序列进行PCR扩增反应。这是由于任何一种原核生物都具有16SrDNA,其序列长短适中且非常保守。应用最广泛的16SrDNA通用引物是341f/534r(V3区)、341f/926r(V3-V5区)和

968f/1401r(V6-V8区),其中以使用V3区引物后的PCR-DGGE条带数最多、分离效果最好。为避免因为单一引物扩增偏嗜性造成的偏差,可以选用多对引物同时对混合DNA进行PCR扩增。选用不同引物对目的基因进行扩增,然后比较DGGE图谱的差异,可以降低共迁移的发生频率。为使扩增产物在DGGE 中的解链程度更完全,在PCR扩增目的片段时,人为地在其起来较为繁琐。

最后进行DGGE,通常根据PCR扩增出的基因片段大小,来确定聚丙烯酰胺凝胶的浓度。变性剂的梯度范围一般根据垂直DGGE试验结果确定,垂直试验曲线斜率较大的部分代表解链区域的Tm(解链温度),此时低温解链区的不同分子分离状态最佳。通常选择水平胶的变性剂梯度范围相差30%,对于不同的样品还需要进行调整。对于大多数DNA片段,比较适宜的温度是50~65℃。电泳时间取决于样品的片段大小、凝胶浓度、变性剂梯度、电泳时的电压等因素。DGGE胶版上的DNA谱带在染色后才能观察。常用的染色剂有溴化乙锭(EB)、S YBR Green Ⅰ、SYBR Gold和银。EB和SYBR染料只对双链DNA 着色,单链DNA几乎不显色。其中EB染色最为常用,但聚丙烯酰胺对EB有熄灭作用,致使灵敏度低,导致低估环境样品中微生物的种类。SYBR染料价格昂贵,但其灵敏度高,能更好地消除染色背景;银染法对单、双链DNA均能着色,但不能用于后续的分子操作。目前在应用PCR-DGGE时常在某一引物的5′端掺入一段约40个碱基的GC序列,称为“GC夹”或“GC帽”,使目的序列的解链行为发生在最高解链温度区域,从而完全解链。试验证明,使用“GC夹”之后,PCR产物在DGGE胶版上的分离效率大大提高。目前,“GC夹”技术已经被广泛地应用于PCR-DGGE技术中。

(3)优缺点

该技术的优点是分辨率高;加样量小;重复性好;节约时间;操作简便、快速,可以同时检测多个样品。缺点是检测的DNA片段最适长度为200~900bp,超出此范围的片段难以检测;PCR扩增所需G+C 碱基对含量至少达40;如果电泳的条件不适宜,不能保证可以将有一定序列差异的DNA片段完全分开,会出现序列不同的DNA迁移在同一位置的现象。

4土壤微生物多样性影响因素

影响土壤微生物群落的结构组成和多样性,尤其是其功能多样性的因素有很多种,可大体分成自然因素和人为因素两大类。自然因素包括植被、土壤类型、温度、水分以及pH值等;人为因素包括农药、施肥以及土壤耕作方式等人类对土壤的管理方式。下面就植被、土壤类型、温度和水分、土壤管理方式几种有代表性的土壤微生物多样性影响因素分别加以阐述。

4.1自然因素

(1)植被

植被通过影响土壤有机碳和氮的水平、土壤含水量、温度、通气性及pH值等来影响土壤微生物多样性。植被是土壤微生物赖以生存的有机营养物和能量的重要来源,影响着土壤微生物定居的物理环境,如植物凋落物的类型和总量、水分从土壤表面的损失率等。植被的存在有利于增加土壤微生物多样性和微生物生物量;反之,植被的破坏可能改变微生物组成并降低微生物多样性[20]。从微生物群落多样性的全球格局来看,植物群落类型初步决定了微生物群落的组成,土壤微生物群落多样性与覆盖于土壤上的植物群落多样性呈正相关;从微生物群落多样性的区域格局来看,土壤微生物群落多样性与覆盖于土壤上的植物群落的生产力和多样性呈正相关[21]。

(2)土壤类型

近年来大量实验都证明了土壤类型是土壤微生物群落结构和密度的主要影响因素。Yang[22]等研究了土壤有机碳与土壤微生物功能多样性的关系,结果表明,两者之间存在明显的相关性,维持土壤有机碳含量对保持微生物多样性很重要。Sessitsch[23]等用T-RFLP技术研究了长期不同施肥条件下的土壤颗粒中微生物多样性,结果表明土壤颗粒越细小,有机质含量越高,土壤颗粒中的微生物群落结构越复杂,多样性越高。Staddon[24]等对加拿大西部不同气候带的土壤微生物多样性和结构进行了研究,结果表明土壤微生物功能多样性与土壤pH值呈正相关,但随纬度增加而降低。O’Donnell[25]等研究也发现,土壤pH值是影响土壤微生物多样性的重要因子。

(3)温度和水分

温度和水分对土壤微生物多样性的影响存在交互性,具有协同效应,因此可以用季节或气候的概念来说明不同温度和水分对微生物多样性和活性的影响。我们生活的地球上有多种多样气候类型,由此形成的复杂自然条件影响土壤微生物的生态分布。特别是在高寒极地、高山冻原、热带雨林等各类土壤中,土壤微生物扮演了主要生物因子。而在高温、高盐、高碱、高压和低温、低pH的极端环境中,土壤微生物更是发挥了不可替代的作用。如酸热芽孢杆菌(Bacillus acidocaldarius)的大多数菌株在65~75℃还能生长,在40℃下停止生长;温暖、干燥气候条件下土壤曲霉属占多数,寒冷地方毛霉和青霉属为主,多湿地方木霉属最多[26]。在各种气候带中,热带占有突出的地位。只占世界陆地总面积7%的热带森林,却拥有世界50%以上的物种。此外生长于土壤中的某类嗜热菌,在高达112℃环境中能产生甲烷,嗜碱菌必须在pH高于8的环境中才能生存,专门在盐性环境中存活的嗜盐菌,嗜低温的食用菌菌种等等,目前此类大多数微生物利用价值未知,但其理论价值是肯定的。

4.2人为因素

人为的影响土壤微生物的多样性主要体现在对土地的利用及管理方式上,具体主要体现在:土地利用方式,农药的使用和施肥及土地的耕作方式等,这些人为的影响因素通过改变土壤的理化性质而影响土壤微生物多样性。

(1)农药的使用

农药等杀虫剂作为一种外施入土壤生态系统的物质,它和土壤中其它物质一样能被土壤中的微生物或其分泌的酶降解,从而刺激或抑制了土壤中微生物的活性,引起土壤微生物群落结构的改变[27]。农药对土壤微生物的影响不同,可能对土壤微生物产生不同程度的抑制作用,也可能使土壤微生物多样性和生物量减少,还可能使土壤微生物群落结构和功能发生改变。

(2)施肥

土壤的微生物量与土壤C、N等养分循环密切相关,其变化可直接或间接反映土壤肥力的变化。施肥对土壤微生物多样性及活性的影响非常复杂,施用肥料除直接影响土壤化学成分变化、引起土壤微生物活性和群落结构变化外,肥料还能改变土壤的物理性状,影响地面植物的生长,间接的影响土壤微生物群落结构。另外,肥料的种类、施用方式、土壤类型和利用方式等因素也对微生物多样性产生影响。合理的施肥也可增加蓄水保墒能力、抑制土壤蒸发、提高水分的利用率、增加作物产量。

(3)土地耕作方式

土地耕作方式包括传统耕作、免耕、连作、轮作等。不同的耕作方式会对土壤微生物多样性造成不同的影响。有较多报道认为,免耕土壤中的微生物多样性和生物量均高于传统耕作后的土壤,其原因是传统耕作会导致土壤团聚体的分裂和表层土壤中有机质的消耗,而已发现的大团聚体中的微生物生物量比微团聚体中的高,减少耕作能增大团聚体,使微生物多样性和生物量增。连作后土壤微生物区系发生变化,各类微生物数量上升,以真菌、硝化细菌、反硝化细菌数量明显增加[28]。轮作不仅影响土壤微生物,使有益微生物增加,有害微生物减少,而且使土壤微生物活性增强。轮作会使有寄主专化性的病原物得不到适宜生长和繁殖的寄主,从而减少病原物的数量;轮作还可以调节地力,提供肥力,改善土壤的理化性能。

5展望

土壤微生物多样性研究所涉及的内容较为广泛,有着不同的层次和水平。虽然目前的研究还不足以让我们认识土壤微生物的全部,但土壤微生物作为巨大的基因资源库,其丰富的基因内涵已经表现出巨大潜力。对它的认识、研究和开发,无疑将给人类带来巨大的经济效益和社会效益。

随着基因组时代的盛兴和后基因组时代(功能基因组)的到来,土壤微生物以其独特的优势将更加受到研究者的青睐。其多样性的研究将为阐明生态和生物进化原理提供新的模式,同时也将为许多新兴学科、交叉学科的发展开辟广阔的前景。各种新技术的不断完善与发展,特别是分子生物技术的发展使我们逐渐打开了土壤这个黑匣子。在研究方法上,从理论上说,使用分离鉴定土壤中目标微生物DNA 这一方法可以完全实现对土壤微生物种类的鉴别。但由于利用分子生物技术进行土壤微生物多样性的分析在国内刚刚起步,许多问题还有待进一步解决,加上土壤生态本身的复杂性和独特性,DNA提取的困难性、完全性及其它过程的干扰,常导致所得数据的可靠性下降,因此需要对研究土壤微生态的生物学方法不断完善与改进。而目前对单一方法的研究已经基本成熟,今后有必要加强对各种研究方法的灵活应用,根据各种方法的优缺点将其有机结合,取长补短,消除单一方法的误差,提供更加全面准确的微生物多样性变化信息。并且应用各种新技术手段来不断发现新的微生物类群,丰富土壤微生物的物种。参考文献

[1]郝文英.中国农业百科全书·土壤卷[M].北京:农业出版社,1996,385-400.

[2]池振明.现代微生物生态学[M].北京:科学出版社,2004,30-33.

[3]DeLong EF..1996. Diversity of naturally occurring prokaryotes[A]. In :Colwell RR. ed. Microbial Diversity in Time and Space [C]. New York:Plenum,125~133.

[4]马克平,钱迎倩.1994.生物多样性研究的原理与方法[M].北京:中国科学技术出版社.

[5]S olbrig OT.1991. From genes to ecosystems :a research agenda for biodiversity [A]. Report of a IUBS2SCOPEUNESCO workshop. The International Union of Biological Sciences[C]. Paris France :51 Boulevar dole Montmorenny.

[6]Watve MG, Gangal RM. 1996. Problems in measuring bacterial diversity and a possible solution[J]. A ppl. Environ. Microbiol.2000,62(11):4299~4301.

[7]林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报,2008,45(5):892-893.

[8]Amann R L, LudwigW, Schleifer K H. Phylogenetic identification and in situ detection of individualmicrobial cellswithout cultivation[J]. Microbiological Reviews,1995,59: 143~169.

[9]Hawksworth DL. The fungal dimension of biodiversity :magnitude ,significance ,and conservation [J]. Mycol.

Res.1995,19(4):641~655.

[10]李顺鹏.环境生物学[M].北京:中国农业出版社,2002,78~86.

[11]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报.2004,35(6):789~792.

[12]郑华,欧阳志云,方治国等. B iolog在土壤微生物群落功能多样性研究中的应用[J].土壤学报,2004,41(3):456~461.

[13]Dunbar J ,Ticknor L O ,Kuske C Rl1. Assessment of microbial diversity in four southwestern United States soils by

16SrRNA gene terminal restriction fragment analysis1[J]. Appl Environ Microbial1,2000,66:2943~2950.

[14]Ward D M,Weller R ,Bateson MM1 16S rRNA sequences reveal numerous unculturated microorganisms in a natural community[J]. Nature,1990,345:63~65.

[15]Viaud M, Pasquier A ,Brygoo Y1 Diversity of soil fungi studied by PCR-RFLP of ITS1[J]. Mycol Res1,2000,104

(9):1027~1032.

[16]杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版),2005,19(4):22-23.

[17]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171.

[18]章家恩,蔡燕飞,高爱霞等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350.

[19]于洁,冯炘,解玉红,刘淑琮等.PCR-DGGE技术及其在环境微生物领域中的应用[J].西北农林科技大学学报,2010,38(6):227-229.

[20]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.

[21]夏北成,Zhou J izhong,James,等.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300.

[22]Yang Y H,Yao J,Hu S,Qi YE. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community:a study with RAPD marker[J].Microbial Ecology,2000,39,72–79.

[23]Sessitsch A,Weilharter A,Gerzabek M,Kirchmann H,Kandeler E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J].Applied and Environmental Microbiology,2001,67,4215–4224.

[24]Staddon W J,Trevors J T,Duchesne L C,Colombo C A. Soil microbial diversity and community structure across a climatic gradient in western Canada.Biodiversity and Conservation,1998,7:1081–1092.

[25]O'Donnell AG,Seasman M,Macrae A,Waite I,Davies JT. Plants and fertilizers as drivers of changes in microbial community structure and function in soils[J].Plant and Soil, 2001,23(2):135–145.

[26]张薇,魏海雷,高洪文等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(11):48-52.

[27]沈雪梅.土壤微生物多样性的主要影响因子[J].安徽农学通报,2009,15(11):83-84.

[28]陈芝兰,周晓英,何建清等.设施栽培措施对土壤微生物区系的影响[J].西藏科技,2007,12(1):14-15.

导学案(教师版)探究土壤微生物的分解作用

班级 小组 姓名 评价等级 沅江三中四环八步教学模式 生物模块三导学案 第1页(共6页) 探究土壤微生物的分解作用(教师版) 【学习目标】 1.设计和进行对照实验,尝试探究土壤微生物的分解作用,进一步培养探究和创造能力。 2.分析土壤微生物分解淀粉的情况。 3.学会检测淀粉和还原糖的方法,并根据现象作出合理判断和解释。 案例1: 探究土壤微生物对落叶的作用 一、提出问题: 秋天,落叶纷飞。春天,绿草如茵。且不见落叶痕迹!落叶去哪里了? 结合上面的实例,你能提出什么问题呢?请写下来。 落叶在土壤中能被分解掉,这究竟主要是土壤的物理化学因素的作用,还是土壤中微生物的作用呢 ? 注意: (1)要选择有研究意义的问题作为课题来研究 (2)要选择我们能力范围之内的问题作为实验研究课题。 二、作出假设: 落叶是在土壤微生物的作用下腐烂的 提示:假设既可以是基于已有的知识或经验作出的解释,也可以是想像或猜测。 三、设计实验 1、设计方案 (1)实验原理: 微生物能分泌多种水解酶将大分子有机物分解成小分子有机物,如纤维素酶、淀粉酶可将纤维素、淀粉水解成葡萄糖。然后被分解者吸收到细胞中进行氧化分解,最终形成CO2、水和各种无机盐,同时释放能量。 (2)、实验材料: 土壤、落叶、 (3)、实验器具: 玻璃容器、标签、塑料d 袋、恒温箱、纱布。 (4)、实验设计步骤: ①取两个圆柱形的玻璃容器,一个贴上“甲组”标签,另一个贴上“乙组”标签。 ②将准备好的土壤分别放入两个玻璃容器中,将其中乙组放入恒温箱, 60℃灭菌1h 。 ③取 大小、形态相同的落叶12片,分成2份,分别用包好,埋入2个容器中,深度约5cm 。 ④将2 个容器放于实验室相同的环境中, 一段时间后,取纱布包。 ⑤观察比较对照组与实验组落叶的 腐烂程度。 提示: (1)要确定实验变量是什么 需要控制的变量有哪些如何控制这些变量 ; (2)要注意实验步骤的先后顺序。 (3)要注意写出具体的实验步骤以便指导实验的进行。

高通量测序:环境微生物群落多样性分析

(5)高通量测序:环境微生物群落多样性分析 微生物群落多样性的基本概念 环境中微生物的群落结构及多样性和微生物的功能及代谢机理是微生物生态学的研究 热点。长期以来,由于受到技术限制,对微生物群落结构和多样性的认识还不全面, 对微生物功能及代谢机理方面了解的也很少。但随着高通量测序、基因芯片等新技术 的不断更新,微生物分子生态学的研究方法和研究途径也在不断变化。第二代高通量 测序技术(尤其 是Roche 454高通量测序技术)的成熟和普及,使我们能够对环境微生物进行深度测序,灵 敏地探测出环境微生物群落结构随外界环境的改变而发生的极其微弱的变化,对于我 们研究微生物与环境的关系、环境治理和微生物资源的利用以及人类医疗健康有着重 要的理论和现实意义。 在国内,微生物多样性的研究涉及农业、土壤、林业、海洋、矿井、人体医学等诸多领域。以在医疗领域的应用为例,通 过比较正常和疾病状态下或疾病不同进程中人体微生物群落的结构和功能变化,可以 对正常人群与某些疾病患者体内的微生物群体多样性进行比较分析,研究获得人体微 生物群

落变化同疾病之间的关系;通过深度测序还可以快速地发现和检测常见病原及新发传 染病病原微生物。研究方法进展 环境微生物多样性的研究方法很多,从国内外目前采用的方法来看大致上包括以下四 类:传统的微生物平板纯培养方法、微平板分析方法、磷脂脂肪酸法以及分子生物学 方法等等。 近几年,随着分子生物学的发展,尤其是高通量测序技术的研发及应用,为微生物分 子生态学的研究策略注入了新的力量。 目前用于研究微生物多样性的分子生物学技术主要包 括:DGGE/TGGE/TTGE 、 T-RFLP 、SSCP、FISH 、印记杂交、定量 PCR、基因芯片等。 DGGE 等分子指纹图谱技术,在其实验结果中往往只含有数十条条带,只能反映出样品中少数 优势菌的信息;另一方面,由于分辨率的误差,部分电泳条带中可能包含不只一种 16S rDNA 序列,因此要获悉电泳图谱中具体的菌种信息,还需 对每一条带构建克隆文库,并筛选克隆进行测序,此实验操 作相对繁琐;此外,采用这种方法无法对样品中的微生物做 到绝对定量。生物芯片是通过固定在芯片上的探针来获得微

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

土壤微生物的分类、多样性及作用 王悦 1521011188

土壤微生物的分类及作用 摘要:土壤是生态系统中岩石圈、大气圈、水圈和生物圈的交界面,而土壤微生物分布广、数量大、种类多,是土壤的重要组成部分,也是土壤生物中最活跃的部分。其在地球生境中数量最多、生物多样性最复杂、生物量最大。土壤微生物能够参与土壤有机质的分解、腐殖质的合成、养分的转化和推动土壤的发育和形成,同时它也是土壤肥力水平的活性指标。因此研究土壤微生物的分类、多样性以及其在土壤中的作用有重要意义。 关键词:土壤微生物分类;土壤微生物多样性;土壤微生物作用 Abstract:The soil is the interface of lithosphere, atmosphere, hydrosphere, and biosphere in the ecosystem.There are many kinds of soil microbial,their havel wide distribution and large quantity and, they are an important component of the soil, as well as the most active part of soil organisms. In the earth's habitats, their biodiversity is the most complex and the biomass is the largest. Soil microorganisms can participate in soil organic matter decomposition, synthesis of humus, nutrient transformation and promote the development and form of the soil, it is also the activity indicators of soil fertility level .So research the classification, the diversity of soil microorganisms and its role in the soil have important significance. Key words: the classification of soil microorganisms, the diversity of soil microorganisms, the role of soil microorganisms. 1 引言 土壤微生物是从19世纪中叶发展起来的一支生命科学的分支学科[1],这时学术界己经将土壤内部的三大过程(土壤有机质的分解、硝化和固氮作用)清晰界定为生物过程,对这些土壤内部过程的机理探索直接催生了土壤微生物学,并导致20世纪初土壤微生物学的空前繁荣。土壤微生物是土壤生物的重要组成部分,参与了土壤发生、发展和发育的全过程。其群落结构组成和生物量等可以反映土壤的肥力状况。土壤微生物可以分解土壤有机质和促进腐殖质形成,吸收、固定并释放养分, 对植物营养状况的改善和调节有重要作用。有些微生物可以和植物形成共生系统,促进植物的生长发育。同时土壤微生物在降解土壤污染物方面也有重要作用。 2 土壤微生物的组成及分类[2] 土壤微生物的生物量通常以生物量碳表示。它是指土壤中体积小于5x103um3的生物总量,包括细菌、放线菌、真菌和小型动物,不包括植物根系。测量土壤微生物生物量的方法包括传统镜检法、成分分析法、底物诱导呼吸法和熏蒸法。 土壤微生物按形态可以分为真核微生物,原核微生物和分子微生物。其中真核微生物包括真菌和藻类。原核微生物有细菌、放线菌和蓝细菌。分子生物则无

微生物多样性研究—β多样性分析概述

微生物多样研究中的—β多样性分析概述

一、β-多样性分析介绍 1. β(Beta)Diversity: 是对不同样品/不同组间样品的微生物群落构成进行比较分析。 ?β多样性分析前的数据“来源”: 1)OTUs的丰度信息表; 2)OTUs之间的系统发生关系, 计算Unweighted Unifrac及Weighted Unifrac距离。 ?通过多变量统计学方法主成分分析(PCA,Principal Component Analysis),主坐标分析(PCoA,Principal Co-ordinates Analysis),非加权组平均聚类分析(UPGMA,Unweighted Pair-group Method with Arithmetic Means)等分析方法,从中发现不同样品(组)间的差异。

2. PCA & PCoA分析 ?主成分分析(PCA)是多变量统计学中最为人熟知的分析方法,它通过线性变换,将原始的高维数据投影至少量新合成的变量(即主成分),从而简化数据结构,展现样品的自然分布。 ?主成分分析不考虑原始变量之间可能存在的相互关系,并且是基于欧式距离评价样品之间的相似度。 ?多维尺度分析与主成分分析类似,但是它可以采用任何距离评价样品之间的相似度。主坐标分析(Principal coordinates analysis,PCoA)是经典的多维尺度分析方法。

3.UniFrac距离 ?由于微生物极其多样,不同微生物彼此之间的系统发育关系往往千差万别,仅仅将群落中不同微生物成员视为相互独立的变量显然并不合理。 ?因此,在比较不同群落样品之间的差异时,需要考虑两个群落成员之间的系统发育关系是否相似。 ?基于这个思想,计算微生物群落样品间距离的UniFrac距离应运而生,通过比较两个群落各自独有的微生物成员之间系统发育关系的远近,更为客观地反映两个群落样品之间的相似程度。

土壤微生物测定方法

土壤微生物测定 土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。土壤微生物活性的表征量有:微生物量、C/N、土壤呼吸强度和纤维呼吸强度、微生物区系、磷酸酶活性、酶活性等。 测定指标: 1、土壤微生物量(MierobialBiomass,MB) 能代表参与调控土壤能量和养分循环以及有机物质转化相对应微生物的数量,一般指土壤中体积小于5Χ103um3的生物总量。它与土壤有机质含量密切相关。 目前,熏蒸法是使用最广泛的一种测定土壤微生物量的方法阎,它是将待测土壤经药剂熏蒸后,土壤中微生物被杀死,被杀死的微生物体被新加人原土样的微生物分解(矿化)而放出CO2,根据释放出的CO2:的量和微生物体矿化率常数Kc可计算出该土样微生物中的碳量。 因此碳量的大小就反映了微生物量的大小。 此外,还有平板计(通过显微镜直接计数)、成份分析法、底物诱导呼吸法、熏蒸培养法(测定油污染土壤中的微生物量—碳。受土壤水分状况影响较大,不适用强酸性土壤及刚施 用过大量有机肥的土壤等)、熏蒸提取法等,均可用来测定土壤微生物量。 熏蒸提取-容量分析法 操作步骤: (1)土壤前处理和熏蒸 (2)提取 -1K2SO 4(图将熏蒸土壤无损地转移到200mL聚乙烯塑料瓶中,加入100mL0.5mol·L 水比为1:4;w:v),振荡30min(300rev·min -1),用中速定量滤纸过滤于125mL塑料瓶中。熏蒸开始的同时,另称取等量的3份土壤于200mL聚乙烯塑料瓶中,直接加入100mlL0.5mol·L -1K2SO4提取;另作3个无土壤空白。提取液应立即分析。 (3)测定 吸取10mL上述土壤提取液于150mL消化管(24mmх295mm)中,准确加入10mL0.018 mol·L -1K2Cr2O7—12mol·L-1H2SO4溶液,加入2~3玻璃珠或瓷片,混匀后置于175±1℃ 磷酸浴中煮沸10min(放入消化管前,磷酸浴温度应调至179℃,放入后温度恰好为175℃)。冷却后无损地转移至150mL三角瓶中,用去离子水洗涤消化管3~5次使溶液体积约为80mL, 加入一滴邻菲罗啉指示剂,用0.05mol·L -1硫酸亚铁标准溶液滴定,溶液颜色由橙黄色 变 为蓝色,再变为红棕色,即为滴定终点。 (4)结果计算

微生物之微生物多样性分析-DGGE

变性梯度凝胶电泳(PCR-DGGE) 普通的聚丙烯酰胺凝胶电泳只能通过片段大小不同在同一浓度的胶上电泳迁移率不同而分离不同的DNA片段,对于片段大小接近或相同的DNA片段无法做到有效地分离;DGGE(denaturing gradient gel electrophoresis) 即变性梯度凝胶电泳,是利用DNA在不同浓度的变性剂中解链行为的不同而导致电泳迁移率发生变化,从而将片段大小相同而碱基组成不同的DNA片段分开。 DGGE作为一种成熟的分子生物学技术被广泛应用于环境科学(土壤、海洋、河流、冰川、淤泥等)、医学(各种疾病治疗前后,病变部位微生物的差异)、人体(鼻咽、口腔、黏膜、肠道)等领域进行微生物多样性分析。 实验流程图: 实验结果 实验结果包括以下内容 1 引物设计 以下是DGGE中常用的引物,我们将根据客户的不同需求,进行针对性的引物设计。 引物序列(5’-3’)

细菌 16S V3 区扩 增引物 357-F-GC CGCCCGCCGCGCGCGGCGGGCGGGGCGGGG GCACGGGGGGCCTACGGGAGGCAGCAG 518r ATTACCGCGGCTGCTGG 引物 序列(5’-3’) 真核 18S V1-3区扩增引物 Euk1A CTGGTTGATCCTGCCAG EukA516r-GC CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCA CGGGGGGACCAGACTTGCCCTCC 2 基因组DNA 抽提电泳检测图 针对客户的样本来源不同,我们针对性优化不同的基因组抽提方法,已达到提取效果最佳。 说明:1-8为样本所抽提基因组DNA,上样量3uL;M 为1kb Marker 上数第一条带为8 kb,中间的亮带为3kb,浓度为30ng/uL,其余为10 ng/uL。 3 目的片段PCR 检测 说明:1-8为样本,负为负对照(说明我们的实验没有污染,这对分子实验是至关重要的),上样量为5uL;M 为DL2000 Marker,上样量3uL。其中亮带为20ng/uL,其余为10 ng/uL。 Reconditioning PCR: 第一轮PCR 产物将会作为新的模板再进行少数循环的第二轮PCR 扩增,这叫做“Reconditioning PCR”。由于在“ Reconditioning PCR”的过程中引物和模板之

土壤微生物研究土壤采集方法

土壤微生物研究规范——II. 土壤样品的运输和贮存 1. 土壤微生物样品的运输 土样从采集点到实验室往往需要经历一定时间的运输,土样运输过程中难免影响土壤的温度、水分、氧气等环境条件,所以要尽快置于黑暗、低温(4℃)的密闭环境,尽量维持土壤含水量稳定不变,黑暗环境是为了避免光照下藻类在土壤表明的生长,低温是为了减少细菌繁殖,维持微生物区系稳定。一般装于聚乙烯袋子,并松扎。另外,储存时尽可能避免物理压实,样品袋不要堆叠过多,以免破坏土壤原有的团粒结构,并导致底层样品处于厌氧环境。 微生物取样的土壤样品需要在0-4℃的条件下保存,所以土壤样品应及时保存在保温箱或冰箱中(设置0-4℃),并最好在一周内完成前期处理。 如果采集地有冰箱、熏蒸所需的真空干燥器和通风橱等设施,建议将微生物土壤样品熏蒸浸提后,以冷冻的浸提液保存在塑料小瓶中,以方便运送。 如果采集地没有通风橱等设施,建议将所取的土壤样品过筛后冷藏在保温箱中,以方便运送。具体的流程如下: (1)提前准备好保温箱及冷冻好的冰板。冰板需要提前1-2 d冷冻,可以再用自封袋装一定量水分放平冷冻为规则的冰块备用。 (2)按照微生物取样规范进行取样,及时过筛去除根系、土壤动物等杂质,放置在0-4℃保鲜冰箱中保存。用于DNA或RNA分析的土壤样品应用干冰速冻。用于RNA分析的土壤样品在运输过程中应用干冰保持低温。用于DNA分析的土壤样品应用冰盒运输,也可用干冰。 (3)运输当天将土壤样品密封好,放入保温箱中,保温箱底部、四周及顶部均放置冰板和用自封袋密封的冰块,保证样品四周均可接触冰板或冰块。注意保证土壤样品和冰块分别密封,以防路途中融化的水分进入土壤样品造成污染。 (4)到达目的地后,迅速将样品放入保鲜冰箱(0-4℃)保存待测。 如果采样地条件允许,可以根据规范上的实验方法,将样品熏蒸、浸提后保存在塑料小方瓶中,-20℃冷冻,然后再按照上述流程放置保温箱中运送到目的地,迅速放置在冷冻冰箱中(-20℃)保存待测。 如果购买不到保温箱,可以选用运输水果、蔬菜等的白色泡沫箱,密封严实后亦可。由于泡沫箱保温效果可能不及保温箱,路途较远时应多放置冰板及冰块,途中尽量不要打开,放入及取出都要及时,且需要提前确认样品采集地和目的地

《土壤里的微生物》教学设计

《土壤里的微生物》教学设计(第1课时) 教材分析 “土壤里的微生物”是苏科版七年级下册第13章第2节的内容。是上一节课内容的基础上,让学生进一步认识到土壤里生物的多样性,以及它们对生物圈的平衡和稳定起着非常重要的作用,从而对本单元环境中生物的多样性具有全面的认识。同时为下一章引导学生对生物进行分类奠定基础。因此本节课的意义十分重要,是本章的重点和难点。 课标对本节的要求是“描述细菌的主要特征以及与人类生活的关系”。本节从单细胞细菌到多细胞的真菌、从肉眼看不见的细菌到大型真菌,带领学生走进丰富多彩的微生物世界。土壤中的微生物,学生平时不易见到,细菌需要用高倍显微镜才能更好地观察到形态,细菌的结构更难观察,而初中又不要求使用高倍显微镜,教材呈现了细菌的形态结构图片,所以只能通过图片、视频引导学生观察、比较认识细菌的基本特征。 学情分析 七年级学生通过小学科学课和上一学期生物课的学习,对生物学科有了初步的了解,具有一定的生物基础知识和学习经验,能够通过观察图片、阅读材料、对比分析、合作讨论等方式获取有关信息。但在学习上仍以感性认识为主,好奇心强、注意力容易转移,但他们活泼好动,喜欢直观形象的事物,喜欢动手实践。 有关微生物的相关知识在上学期在生态系统的组成学习过程中及学生日常生活经验中对微生物的类型和作用从总体上有了一个初步的了解,特别是在生活过程中家长或者教师从卫生角度常常提到细菌这个概念,学生对这一概念还是比较熟悉,对细菌与人类的关系也有不同程度的了解。但在生活中微生物是肉眼看不见的生物,只有用高倍或电子显微镜才能观察到,与人类的关系和对生物圈的作用又是隐性和潜在的,很少有机会引起学生的关注,容易被学生忽视和轻视,学生缺乏相应的感性知识和学习兴趣。对土壤中的微生物的类型、形态特征,生殖、营养方式、分布以及与人类生活的关系,学生比较陌生,这些是课程标准的明确要求,也是学生学习的终极目标。教材中只用文字表述,学生不容易理解,在教学中一是通过组织学生阅读教材在自主学习中从理论上了解细菌、放线菌的有关知识。二是通过播放有关细菌、放线菌形态、结构等视频资料及图片引导学生观察分析细菌和放线菌的形态、结构。三是利用小组合作学习并结合观察、对比的方法,引导学生主动获取知识。四是注重发掘生活资源,

土壤里的微生物

第2节土壤里的微生物 一、教学目标: 1.知识目标: (1)概述土壤里主要的微生物种类。 (2)说出细菌的三种形态和基本结构,并与植物细胞和动物细胞比较细胞结构的异同点。 (3)说出放线菌的结构特点。 (4)识别青霉和匍枝根霉,并说出它们的繁殖方式和营养方式。 2.能力目标: (1)学会培养和观察青霉、匍枝根霉。 (2)探究土壤里的微生物。 3.情感态度与价值观目标: 体验培养霉菌的过程,并交流成功或失败的感受。 二、教学重点和教学难点: 教学重点:细菌、放线菌和真菌(青霉和匍枝根霉)的主要特征。 教学难点:细菌与植物细胞、动物细胞比较细胞结构的异同点。 三、教学方法:观察、讨论、比较等 四、教学过程: 引言:土壤里除了生活着一些小动物外,还有一些我们肉眼看不见或看不清的小生物,我们通常把这些小生物叫做微生物。那么土壤里都有哪些微生物呢?(学生讨论,教师小结。) 土壤里微生物主要有细菌、真菌、放线菌等,它们能分解植物的枯枝烂叶,动物的遗骸等,将土壤中的有机物分解成无机物,增加了土壤的肥力。 这些微生物到底是什么形态?它们有那些特征呢?这节课就让我们一起来认识它们。 一、认识细菌: 1.细菌的分布范围: 细菌在生物圈中数量最多,占土壤微生物总量的70%~90%,你认为在生物圈中哪些地方会分布有细菌? 学生:土壤、水里、空气,人、动物、植物体内、体表等。

教师:由此可见,细菌的分布非常广泛。 2.形态特征: (1)大小: 资料:细菌的直径一般只有1um左右,电子显微镜才能观察到细菌的形态和结构。 学生阅读资料,发现细菌个体十分微小。 (2)形状: 教师:展示图片:三种细菌 人们在电子显微镜下观察到细菌,请根据图片描述细菌有哪三种形态。 学生:球形、杆形、螺旋形。 教师:根据它们的形态,我们可以分别称它们为:球菌、杆菌、螺旋菌。3.结构特征: 不同种类的细菌虽然形态不同,但它们的基本结构却是相同的。 学生看图12-5:细菌细胞的结构示意图。观察讨论: 细菌有哪些结构?细菌的结构与动植物细胞的结构有何异同? 4.生活方式:

土壤微生物群落多样性研究方法及进展_1

第27卷增刊V ol 127,Sup 1广西农业生物科学Journal o f Guangx i A g ric 1and Biol 1Science 2008年6月June,2008 收稿日期:20080122。 基金项目:广西大学博士启动基金项目(X05119)。 作者简介:姚晓华(广西大学副教授,博士;E -mail:x hy ao@g xu 1edu 1cn 。文章编号:10083464(2008)增008405 土壤微生物群落多样性研究方法及进展 姚晓华 (广西大学农学院,广西南宁530005) 摘要:微生物多样性是指群落中的微生物种群类型和数量、种的丰度和均度以及种的分布情况。研究 土壤微生物群落多样性的方法包括传统的以生化技术为基础的方法(直接平板计数、单碳源利用模式等) 和以现代分子生物技术为基础的方法(从土壤中提取DN A ,进行G+C%含量的分析,或杂交分析,或进 行PCR,产物再进行D GGE/T GG E 等分析)。现代生物技术与传统微生物研究方法的结合使用,为更全面 地理解土壤微生物群落的多样性和生态功能提供了良好的前景。 关键词:微生物多样性;生化技术;分子生物学技术;DN A 中图分类号:.Q 938115 文献标识码:A Advancement of methods in studying soil microbial diversity YAO Xiao -hua (Co llege of Ag ricultur e,G uangx i U niv ersit y,N anning 530005,China) Abstract:Species div ersity consist o f species richness,the total number of species,species ev enness,and the distribution of species 1Methods to measure microbial diversity in so il can be categ orized into tw o g roups:biochemica-l based techniques and m olecular -based techniques 1The fo rmer techniques include plate counts,sole carbon so urce utilizatio n patterns,fatty acid methy l ester analysis,and et al 1The latter techniques include G +C%,DNA reassociation,DNA -DNA hy br idization,DGGE/TGGC,and et al 1Ov er all,the best w ay to study soil microbial diversity w o uld be to use a variety of tests w ith differ ent endpoints and degr ees o f r esolutio n to o btain the bro adest picture possible and the most inform ation r eg ar ding the microbial co mmunity 1 Key words:microbial diversity;biochem ica-l based techniques,mo lecular -based techniques,DNA 微生物多样性研究是微生物生态学最重要的研究内容之一。微生物在土壤中普遍存在,对环境条件的变化反应敏捷,它能较早地预测土壤养分及环境质量的变化过程,被认为是最有潜力的敏感性生物指标之一[1] 。但土壤微生物的种类庞大,使得有关微生物区系的分析工作十分耗时费力。因此,微生物群落结构的研究主要通过微生物生态学的方法来完成,即通过描述微生物群落的稳定性、微生物群落生态学机理以及自然或人为干扰对群落产生的影响,揭示土壤质量与微生物数量和活性之间的关系。利用分子生物学技术和研究策略,揭示自然界各种环境中(尤其是极端环境)微生物多样性的真实水平及其物种组成,是微生物生态学各项研究的基础和核心,是重新认识复杂的微生物世界的开端。

土壤与环境微生物研究法

第七章土壤微生物区系分析 (92) 第一节一般土壤微生物的分离与计数 (92) 一、稀释平板法 (92) 二、MPN稀释法 (94) 三、土粒法 (96) 第二节厌氧微生物的分离 (96) 一、充氮厌氧培养法 (96) 二、焦性没食子酸吸氧法 (97) 三、专性厌氧细菌的分离法 (98) 第三节土壤主要类群微生物的分离与计数 (99) 一、好氧细菌的分离与计数 (99) 二、丝状真菌的分离与计数 (100) 三、放线菌的分离与计数 (100) 第四节土壤中功能微生物的测定 (101) 一、氨化细菌的测定 (101) 二、硝化细菌的测定 (102) 三、反硝化细菌的测定 (104) 四、好氧性自生固氮细菌的测定 (105) 十一、纤维分解菌的测定 (106) 十二、光合细菌的测定 (108) 十三、甲烷产生菌的测定 (109) 十四、有机污染物降解菌的测定 (110) 十五、重金属抗性菌的测定 (111) 第八章根圈微生物分析 (111) 第一节根圈细菌的分析 (112) 一、根圈的分区 (112) 二、根圈细菌的分离 (112) 三、根圈优势菌株的分群 (114) 第二节植物组织内微生物的分离 (115) 一、植物材料的选择 (116) 二、组织表面消毒 (116) 三、分离方法 (117) 第十五章土壤微生物生物量的测定 (119) 第一节土壤样品采集与预处理 (119) 第二节土壤微生物生物量碳分析 (120) 一、熏蒸提取——容量分析法 (120) 第三节土壤微生物生物量氮分析 (124) 一、熏蒸提取——全氮测定法 (125) 二、熏蒸提取——茚三酮比色法 (127)

污染土壤微生物群落结构多样性及功能多样性测定方法

第26卷第10期 2006年10月生 态 学 报ACT A EC O LOGIC A SI NIC A V ol.26,N o.10Oct.,2006 污染土壤微生物群落结构多样性及 功能多样性测定方法 陈承利,廖 敏3 ,曾路生 (污染环境修复与生态健康教育部重点实验室,浙江大学环境与资源学院,杭州 310029)基金项目:国家重点基础研究发展规划“973”资助项目(2002C B410804);国家自然科学基金资助项目(40201026) 收稿日期:2005206227;修订日期:2006205220 作者简介:陈承利(1982~),男,浙江平阳,硕士,主要从事土壤环境化学与环境生态毒理学研究.E 2mail :clchen1982@1631com 3通讯作者C orresponding author.E -mail :liaom in @https://www.wendangku.net/doc/7f14764532.html, or liaom inzju1@1631com Found ation item :The project was supported by National K ey Basic Research Support F oundation of China (N o.2002C B410804)and National Natural Science F oundation of China (N o.40201026) R eceived d ate :2005206227;Accepted d ate :2006205220 Biography :CHE N Cheng 2Li ,M aster ,mainly engaged in s oil environmental chem istry and ecotoxicology.E 2mail :clchen1982@1631com 摘要:土壤微生物在促进土壤质量和植物健康方面发挥着重要的作用,土壤微生物群落结构和组成的多样性及其变化在一定程度上反映了土壤质量。为了更好地了解土壤健康状况,非常有必要发展有效的方法来研究污染土壤微生物的多样性、分布以及行为等。回顾了近年来国内外污染土壤微生物群落结构多样性及功能多样性的测定方法,包括生物化学技术和分子生物学技术,现将它们的原理、优缺点、实用性及其发展动态作一阐述,同时指出结合这两种技术可为微生物群落分析提供一个更全面的、精确的方法。 关键词:污染土壤;微生物多样性;分子生物学;BI O LOG;P LFA ;PCR ;DNA 文章编号:100020933(2006)1023404209 中图分类号:Q143,Q938,S154 文献标识码:A Methods to measure the microbial community structure and functional diversity in polluted soils CHE N Cheng 2Li ,LI AO Min 3,ZE NG Lu 2Sheng (MOE K ey Laboratory ,Environmental Remediation and Ecosystem H ealth ,College o f Environmental and Resources Sciences ,Zhejiang Univer sity ,Hangzhou ,310029,China ).Acta Ecologica Sinica ,2006,26(10):3404~3412. Abstract :S oil m icroorganisms ,such as bacteria and fungi ,play im portant roles in prom oting soil quality and im proving plant health and nutrition ,thus in fluencing terrestrial ecosystems.Increasing anthropogenic activities ,such as spraw ling urbanization ,agricultural development ,pesticides utilization ,and pollutions from all sources ,can potentially affect soil m icrobial community com position and diversity ,leading to deterioration of soil quality and fertility.H owever ,it is yet to be determ ined how these changes in m icrobial diversity can in fluence surface and ground ecosystems.T o that end ,there is an acute need for reliable and accurate methods to study the community structure and tax onomy of soil m icroorganisms.W ithout the development of effective methods for studying the m icrobial diversity ,distribution ,and behavior in polluted soil ,a thorough understanding of m icrobial diversity ,as well as its im pact on soil health ,cannot be achieved. The determ ination of species diversity depends on several factors including the intensity of each species ,the total number of species present ,species evenness ,and the spatial distribution of species.M ethods to measure m icrobial community structure and functional diversity in polluted soils can be classified into tw o groups ,i.e.,biochem ical 2based techniques and m olecular biological 2based techniques.T ypically ,diversity studies include the relative com parisons of communities across a gradient of stress and disturbance.W ith current techniques ,it is difficult to study true diversity due to lack of know ledge on com position and the techniques to determ ine the accuracy of the extraction or detection methods.T raditionally ,the analysis of soil m icrobial

土壤微生物多样性的主要影响因素

龙源期刊网 https://www.wendangku.net/doc/7f14764532.html, 土壤微生物多样性的主要影响因素 作者:汪海静 来源:《北方环境》2011年第02期 摘要:土壤微生物是土壤生态系统的主要组成部分,而且不同的土壤具有不同的土壤微生物群落。影响土壤微生物多样性的因素很多,主要可以分为自然因素和人为因素。本文将从土壤微生物多样性的影响因素的两个方面阐述目前国内外土壤微生物多样性的研究现状。 关键词:土壤微生物;微生物多样性;影响因素 中图分类号:X53文献标识码:A文章编号:1007-0370(2011)1,2-0090-02 土壤微生物系统作为稳定生态系统,是保证动植物生存、农业健康、持续发展的基础。在一定程度上地球生态系统的变化与土壤微生物群落的变化密切相关。研究土壤微生物多样性的变化情况对评价生态系统、维护生态平衡有着十分重要的意义,因此土壤多样性的研究得到了广泛学者的关注。 影响土壤微生物群落的结构组成和多样性的因素可大体分成自然因素和人为因素两大类。自然因素包括土壤类型、温度、水分、植被等;人为因素包括土壤的耕作方式、农药的施用、施肥的施用等。本文将分别对几种有代表性的土壤微生物多样性影响因素加以阐述。 1、自然因素 1.1土壤类型 地球上土壤类型是多种多样的,不同土壤类型中的微生物群落结构及组成也是千差万别的。目前来许多的研究都表明土壤类型是土壤微生物群落结构的主要影响因素之一。例如:Gelsomino等通过比较不同地理位置的16种土壤微生物DGGE图谱发现土壤类型是决定土壤 微生物群落结构的主要因素。杨超等研究了我国皖南烟区四种不同植烟土壤类型在烟叶生长期内的微生物种类、数量变化情况。其结果表明了在不同的土壤环境下土壤微生物的数量和土壤养分含量呈正相关关系。这同时也说明了土壤类型在土壤微生物多样性方面具有一定的影响力。 1.2植被情况

土壤微生物生物量的测定方 法(氯仿熏蒸)

土壤微生物生物量的测定方法 1土壤微生物碳的测定方法(熏蒸提取----仪器分析法)1.1 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生物生物量碳,用一定体积的0.5mol/LK2SO4溶液提取土壤,借用有机碳自动分析仪测定微生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 1.2 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 1.3 实验试剂 1)无乙醇氯仿(CHCL3); 2)0.5mol/L硫酸钾溶液:称取87g K2SO4溶于1L蒸馏水中 3)工作曲线的配制:用0.5mol/L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下,仪器会自带的标曲,一般不用自己做的) 1.4 操作步骤 1.4.1 土壤的前处理(过筛和水分调节略) 1.4.2 熏蒸 称取新鲜(相当于干土10.0g,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO2,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,

用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 1.4.2 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不 可久放,应该快速浸提)※ 1.4.4 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml 0.5mol/L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡 30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个0.2um的滤头,一个才1元)。 1.4.5 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 1.5 计算

相关文档