文档库 最新最全的文档下载
当前位置:文档库 › 不锈钢的腐蚀汇总

不锈钢的腐蚀汇总

不锈钢的腐蚀汇总
不锈钢的腐蚀汇总

第三部分

不锈钢的腐蚀

一、概述

1、不锈钢的定义

不锈钢是一系列在空气,水,盐的水溶液,酸以及其它腐蚀介质中具有高度化学稳定性的钢种。在空气中耐腐蚀的钢称为“不锈钢”,在各种腐蚀性较强的介质中耐腐蚀的钢种称为“耐酸钢”。

通常,我们把不锈钢与耐酸钢统称为不锈耐酸钢,或简称为不锈钢。根据习惯用法,不锈钢一词常包括耐酸钢在内。

现有的不锈钢从化学成分来看,都是高铬钢。由于在大气中,当钢中的铬含量超过大约12%时,就基本上不会生锈。钢的这种不锈性一般认为与钢在氧化性介质中的钝化现象有关。

2、不锈钢的分类

不锈钢分类主要有以下几种方式:

1)按化学成分分有----铬钢(及铬钼钢),铬镍钢,铬锰钢(或铬锰氮钢),铬锰镍钢等。

2)按显微组织分有----奥氏体钢,铁素体钢,马氏体钢,奥氏体+铁素体双相钢,铁素体+马氏体双相钢奥氏体钢等

3)按用途分有----耐海水不锈钢,耐点蚀不锈钢(统一在某一钢种上),耐应力腐蚀破裂不锈钢,耐浓硝酸腐蚀不锈钢,耐硫酸腐蚀不锈钢,深冲用不锈钢,高强度不锈钢,易切削不锈钢,耐热不锈钢等。

二、不锈钢的点蚀

1、点蚀现象和识别

点蚀是在不锈钢表面上局部形成的具有一定深度的小孔或锈斑。由于点蚀常常被锈层,腐蚀产物等覆盖,因而难以发现。在金相显微镜下观察点蚀,其断面有多种形貌。

点蚀一般系在特定腐蚀介质中,特别是在含有Clˉ(包括Brˉ,Iˉ)离子的介质中产生。使不锈钢产生点蚀的常见介质有:大气,水介质及水蒸气,海水,漂白液,各种有机和无机氯化物等。

点蚀可在室温下出现并随腐蚀介质温度升高而更易产生并更趋严重。点蚀不仅可导致设备,管线等穿孔而破坏,而且常常诱发晶间腐蚀,应力腐蚀和疲劳腐蚀。虽然,不锈钢的点蚀事故仅占化工,石油等系统腐蚀破坏的~20%,但在大气中使用的不锈钢,却有近80%是由于点蚀和锈斑而损坏。见图1(a)、(b)。

2、机理

一般认为,不锈钢的点蚀是在金属表面非金属夹杂物,析出相,晶界,位错露头等缺陷处,由于钝化膜较脆弱,在特定腐蚀介质作用下,钝化膜修复能力差而造二氧化碳引起的点蚀(a)Cr13不锈钢的局部腐蚀(b)

图1

成的破坏。点蚀的出现包括成核和扩展二个阶段。现以钢的表面上存在硫化锰夹杂为例简述如下:

点蚀的成核:在溶液中有Clˉ存在时,金属表面有硫化锰夹杂的部位,由于难以钝化,再钝化而产生优先溶解并形成小孔坑。硫化物溶解产生H+(或H2S),对不锈钢的新鲜表面产生活化作用,防止小孔坑的再钝化而形成孔蚀源。

??? 点蚀的扩展:孔蚀源形成后,溶解下来的金属离子会产生水解而生成H+并使局部溶液的pH值下降,进而又加速金属的溶解,使孔坑进一步扩大,加深。随着蚀孔加深并由于腐蚀产物覆盖了蚀坑口,从而使蚀孔内物质迁移困难,导致蚀孔内pH值的进一步降低。同时,Clˉ在蚀孔内富集,使蚀孔进一步加速扩大并加深,最后形成点蚀。研究表明,在特定介质中,只要不锈钢的腐蚀电位超过点蚀电位,就能产生点蚀。

3、材料选择

提高不锈钢的纯度并降低不锈钢的不均匀性,选择钝化和再钝化能力强的材料是防止不锈钢点蚀的有力措施。提高不锈钢的纯度,可通过炉外精炼手段,降低钢中的气体和非金属夹杂物的含量。研究表明,钢中的氧化物,特别是Al2O3;钢中的硫化物,特别是MnS;钢中氮化物,特别是TiN,由于它们本身的物理,化学性质,在介质作用下,常常作为敏感位置而诱发点蚀。研究还表明,对于常用的18-8型Cr-Ni钢和18-12-2型Cr-Ni-Mo钢,在降低钢中S量的同时降低Mn量也有利于耐点蚀性能的提高。降低不锈钢的不均匀性,特别是要防止M23C6等碳化物和金属间相的析出。因为它们周围Cr,Mo 等耐点蚀元素的贫化,使它们极易成为点蚀的敏感位置。由于Cr,Mo,N等元素对提高不锈钢的耐点蚀性非常有效,为了提高不锈钢的钝化和再钝化能力,就要选用高Cr,Mo含量的奥氏体,奥氏体+铁素体双相钢和铁素体不锈钢;选用高Cr,Mo且含N的奥氏体和奥氏体+铁素体双相不锈钢。如果把常用的不锈钢按其耐点蚀能力由小到大排列起来,大致可以得到下列顺序:

奥氏体不锈钢:

奥氏体+铁素体双相不锈钢:

注:顺表中箭头方向耐点蚀能力提高

二、缝隙腐蚀

1、现象和识别

不锈钢表面上若存在金属和非金属夹杂物,例如金属微粒,砂粒,灰尘,脏物,海生物,或者由于结构上的原因,例如铆接,螺栓联接,垫片(圈),管与管板胀接,与非金属接触等,均可形成缝隙。在腐蚀介质作用下,缝隙内出现腐蚀,就是缝隙腐蚀。

缝隙腐蚀一般根据缝隙形状不同而具有一定的外形。轻微时,可以是缝隙内的一般(全面)腐蚀,严重时,多为成片的点蚀状或溃疡状。研究表明,几乎所有的腐蚀介质均可引起不锈钢的缝隙腐蚀,而没有特定介质的选择。但是在含Clˉ环境中的缝隙腐蚀则最为常见;缝隙腐蚀对缝隙尺寸有一定的要求,既要使缝隙内,外溶液之间的物质迁移发生困难,还要能允许溶液进入缝隙内,不锈钢产生缝隙腐蚀的缝隙宽度一般在0.025~0.1mm范围内。

2、机理:

缝隙腐蚀可分为孔蚀型缝隙腐蚀和活化型缝隙腐蚀二种。

前者是以孔蚀为起源的缝隙腐蚀,主要是由于缝隙内钝化膜的氧化性破坏而引起的;

后者的形成机理简述如下:由于缝隙的存在,缝隙内溶液组成物质迁移产生困难。例如,腐蚀溶液中能使不锈钢钝化的氧进入缝隙,只能通过扩散,因而过程缓慢。为了维持不锈钢钝态,缝隙内氧迅速耗掉而又的不到及时补充,致使不锈钢表面钝化膜开始还原性溶解。这种溶解的结果使腐蚀产物金属盐逐渐浓缩,通过水解,缝隙内溶液的pH值急剧下降。当pH值降低到不锈钢在溶液中的去钝化pH值*时,缝隙内不锈钢表面的钝化膜便产生还原性破坏而形成缝隙腐蚀。

3、材料选择

不锈钢的缝隙腐蚀主要是因为缝隙内的溶液酸化,缺氧而引起表面钝化膜破坏。因而,提高不锈钢钝化膜的稳定性和钝化,再钝化能力同样是提高不锈钢耐缝隙腐蚀能力的重要措施。因此,选用耐点蚀材料的一些措施同样适用于耐缝隙腐蚀材料的选择。

三、腐蚀疲劳现象和识别

在介质与交变应力共同作用下所引起的不锈钢的破坏称为腐蚀疲劳。由于不锈钢多在腐蚀环境中使用,因此在交变应力作用下,所产生的不锈钢的破坏多为腐蚀疲劳。与一般机械疲劳相比,不锈钢的腐蚀疲劳表面上常见明显的腐蚀和点蚀。腐蚀疲劳既可以是仅有一条裂纹,也可以有多条裂纹并存,这与不锈钢的腐蚀疲劳既可以在一点又可以在多处生核并扩展有关。不锈钢腐蚀疲劳裂纹宏观常见切向何正向扩展并多呈锯齿状和台阶状;微观上裂纹一般没有分支且裂纹尖端较钝。除腐蚀和裂纹外,不锈钢腐蚀疲劳最重要的特点是断口上有一般机械疲劳的各种特征。例如,宏观断口较平整,呈瓷状或贝壳状,有疲劳弧线,疲劳台阶,疲劳源等;微观断口则有疲劳条纹等。

不锈钢在任何腐蚀介质中均可产生腐蚀疲劳,而没有介质的选择。

为了验证是否是腐蚀疲劳,还可根据提高钢的强度和耐蚀性或排除腐蚀介质的作用后,是否仍出现破坏来断定。如果由于钢强度提高,不锈钢疲劳断裂消失或寿命延长,则可断定原断裂为机械疲劳;如果提高了钢的耐蚀性或排除了腐蚀介质的作用后,不锈钢疲劳断裂消失或寿命延长,则可断定原断裂为腐蚀疲劳。

根据断口特征可以准确的把应力腐蚀与腐蚀疲劳区别开来。

2、机理

目前,不锈钢腐蚀疲劳的机理主要有以下几种模型。

(1)点蚀应力集中模型:认为不锈钢点蚀坑底部的应力集中是引起裂纹成核的主要原因;

(2)形变金属优先溶解模型:认为形变金属为阳极,未变形金属为阴极,从而导致形变部分的优先溶解;

(3)表面膜破裂模型:认为在交变应力作用下,金属滑移带穿透表面膜,形成无保护膜的台阶,从而使其处于活化态而溶解,引起裂纹成核。滑移-溶解反复作用而形成腐蚀疲劳;

(4)吸附模型:认为腐蚀介质中的活化物质吸附到金属表面上,使表面能降低,改变了材料的力学性能,从而使不锈钢表面滑移带的产生和裂纹的扩展更易进行。

3、材料选择

选择耐蚀性更好的不锈钢和具有复相结构的双相不锈钢,是解决不锈钢腐蚀疲劳的主要措施。

由于不锈钢的腐蚀疲劳多以点蚀为起源,因此,为了防止腐蚀疲劳可选择耐点蚀好的各种不锈钢。例如,含Cr,Mo较高的马氏体不锈钢,Cr-Ni奥氏体不锈钢和铁素体不锈钢等。

由于一些双相不锈钢不仅Cr,Mo较高,且多含有N,因此耐点蚀性能好,同时,由于其组织具有复相结构,不仅显着提高钢的腐蚀疲劳强度,而且疲劳裂纹的扩展也较单相组织结构困难,所以,选用双相不锈钢是解决不锈钢腐蚀疲劳破坏的重要途径。

四、刀状腐蚀

1、现象和识别:

在含Ti,Nb的Cr-Ni奥氏体不锈钢焊缝与母材之交界处的很窄区域内产生严重腐蚀,而母材和焊缝本身则腐蚀轻微,甚至未见腐蚀,金相显微镜下观察可见敏化态晶间腐蚀的特徽。研究表明,含Ti的Cr-Ni不锈钢,无论是在氧化性介质,还是在还原性介质中,均可产生刀状腐蚀。

2、机理:

冶炼厂在生产含Ti(Nb)的Cr-Ni奥氏体不锈钢时(例如1Cr18Ni9Ti,0Cr18Ni9Ti,0Cr18Ni11Ti,0Cr18Ni11Nb等),经冶炼,浇注,锻,轧等成材后,出厂前一般经过920~1150°C加热,随后急冷的固溶处理。此时钢中的Ti(或Nb)大都应以TiC(NbC)的形式存在。但经焊接后,与焊缝相邻的高温(>=1150°C)狭窄区域内TiC(NbC)就会分解,钢中碳便会溶于奥氏体基体中。在随后的冷却过程中,当此高温区通过450~850°C,即敏化温度范围时,又会有大量富铬的M23C6(Cr23C6)沿晶界析出,从而导致晶界铬的贫化,在介质作用下便会出现刀状腐蚀。因此,刀状腐蚀系含Ti(Nb)的Cr-Ni奥氏体不锈钢在焊缝熔合线上出现的一种晶间腐蚀,是钢中TiC(NbC)分解,Ti和C溶解,随后富铬的M23C6析出,形成贫铬区的结果。本质上与敏化态晶间腐蚀没有区别。

3、材料选择

从根本上讲,刀状腐蚀仍然是因含Ti(Nb)的Cr-Ni奥氏体不锈钢中常常含有比

较高的C量而引起的。因此,在选择材料时首先考虑选用低碳(0.04~0.06%)和超低碳(<=0.03%)Cr-Ni奥氏体不锈钢以代替含Ti(Nb)的不锈钢;当必须选用含Ti(Nb)的Cr-Ni 奥氏体不锈钢时,也须将钢中的碳量控制在允许的范围内并尽量低。

五、晶间腐蚀

不锈钢的晶间腐蚀是沿不锈钢晶粒间界产生的一种优先破坏.它曾经是人们20世纪30~50年代最为关注,最为常见的腐蚀破坏形式。虽然不锈钢敏化态晶间腐蚀的事故已大大减少,但非敏化态晶间腐蚀的研究和解决尚需人们继续努力。

(一)铬镍奥氏体不锈钢的敏化态晶间腐蚀

1、现象和识别

??? 敏化态晶间腐蚀出现在焊接构件的焊缝热影响区或构件经过450~850°C加热的部件,在介质作用下导致这些部位的泄漏或破损;产生敏化态晶间腐蚀的设备,部件等,其尺寸,外形几乎没有变化且无任何塑性变形;除受腐蚀的区域外,其它部位没有任何腐蚀的迹象,仍具有明显的金属光泽;局部取样检查,受腐蚀部位的强度,塑性已严重丧失,冷弯时不仅出现裂纹,严重时常常出现脆断和晶粒脱落且落地无金属声。

在金相显微镜和扫描电镜下可以明显看到钢的晶界由于受腐蚀而变宽,多呈网状,严重时还有晶粒脱落现象。

2、机理

常见的敏化态晶间腐蚀应用贫铬理论可得到圆满的解释。

Cr-Ni奥氏体不锈钢在使用前或冶炼厂出厂交货状态多为固溶处理状态。即将不锈钢加热到高温(1000~1150°C左右,随钢种而异),保温后快冷(一般为水冷)。此时,当Cr-Ni奥氏体不锈钢中含碳量在0.02~0.03%以上时(随钢中的含Ni量而异),碳在钢中便处于过饱和状态。随后,在不锈钢的加工及设备,构件的制造和使用过程中,若要经过450~850°C的敏化温度加热(例如焊接或在此温度范围内使用),则钢中过饱和的碳就会向晶界扩散,析出并与其附近的铬形成铬的碳合物。在常用的Cr-Ni奥氏体不锈钢中,这种碳化物一般为Cr23C6[M23C6]。由于这种碳化物含有较高的Cr,所以铬碳化物沿晶界沉淀就导致了碳化物周围钢的基体中Cr浓度的降低,形成所谓“贫铬区”。当铬碳化物沿晶界沉淀呈网状时,贫铬区亦呈网状,不锈钢耐腐蚀是因为在介质作用下,钢中含有足以使钢在此介质中钝化的铬量。而贫铬区铬量不足,使钝化能力降低,甚至消失,而奥氏体晶粒本身仍具有足够钝化(耐蚀)能力,因此,在腐蚀介质作用下晶界附近连成网状的贫铬区便优先溶解而产生晶间腐蚀。

3、常见介质

容易使Cr-Ni奥氏体不锈钢产生晶间腐蚀的常见介质种类很多,下表仅列出其

中的一部分供参考。

表1 使Cr-Ni奥氏体不锈钢产生晶间腐蚀的常见介质

4、材料选择

长期以来,人们选用含稳定化元素Ti,Nb的Cr-Ni奥氏体不锈钢,例如1Cr18Ni9Ti, 0Cr18Ni11Ti, 1Cr18Ni12Mo2Ti, 1Cr18Ni12Mo3Ti, 1Cr18Ni11Nb, 0Cr18Ni11Nb等以防止敏化态晶间腐蚀并取得了满意的结果。Ti,Nb的作用主要是与钢中过饱和的碳形成稳定的TiC,NbC等碳化物而防止或减少铬碳化物Cr23C6的形成。

但是含稳定化元素Ti,Nb,特别是含Ti的不锈钢有许多缺点。在不锈钢冶炼工艺日新月异的今天。有些缺点已严重阻碍了不锈钢冶炼生产的科技进步并给使用带来了不必要的损失和危害。例如,Ti的加入,使钢的粘度增加,流动性降低,给不锈钢的连续浇注工艺带来了困难;Ti的加入,使钢锭,钢坯表面质量变坏,不仅大大增加冶金厂的修磨量,而且显着降低钢的成材率,从而提高了不锈钢的成本;Ti的加入,由于TiN 等非金属夹杂物的形成,降低了钢的纯洁度,不仅使钢的抛光性能变差,而且由于TiN 等夹杂常常成为点蚀源而使钢的耐蚀性下降;含Ti的不锈钢焊后在介质作用下,沿焊缝熔合线易出现“刀状腐蚀”,同样引起焊接结构设备的腐蚀破坏。

由于含Ti不锈钢的上述缺点,在不锈钢产量最大的日本,美国含Ti的18-8Cr-Ni 不锈钢的产量仅占Cr-Ni不锈钢产量的1~2%,而我国仍占Cr-Ni不锈钢产量的90%以上。这既反映了我国不锈钢生产和钢种使用上的不合理,也说明我国在不锈钢生产和使用中,钢种结构上的落后状况。

建议选用超低碳Cr-Ni奥氏体不锈钢。由于超低碳[C<=0.02~0.03%]Cr-Ni奥氏体不锈钢的强度较用Ti,Nb稳定化的不锈钢为低,当强度嫌不足时,可选用控氮[N0.05~0.08%]和氮合金化[N>=0.10%]的超低碳Cr-Ni奥氏体不锈钢,它们不仅强度高且耐晶间腐蚀,耐点蚀等性能也均较含Ti,Nb的不锈钢为佳。

建议含Ti,Nb的Cr-Ni奥氏体不锈钢仅用于低碳,超低碳不锈钢无法替代的条件下,例如作为耐热钢使用和在连多硫酸等用途中使用。

(二)铬镍奥氏体不锈钢的非敏化态(固溶态)晶间腐蚀

铬镍奥氏体不锈钢的非敏化态晶间腐蚀,1949年才被人们发现,虽然也开展了一些研究工作,但截止目前为止,从理论到实践还没有获得满意的解释和解决。

1、现象和识别

非敏化态(固溶态)晶间腐蚀系指Cr-Ni奥氏体不锈钢在经过高温(1000~1150°C)加热,保温后迅速冷却后的固溶状态,不需要再经过敏化(焊接或450~850°C敏化温度加热)处理,在一些腐蚀介质中同样出现的晶间腐蚀。产生非敏化态晶间腐蚀的Cr-Ni 奥氏体不锈钢既包括普通不锈钢,也包括耐敏化态晶间腐蚀的超低碳不锈钢和含稳定化元素Ti,Nb的不锈钢。

非敏化态晶间腐蚀主要出现在含Cr6+的HNO3中。除65%的HNO3外,在浓HNO3,特别是在发烟硝酸中最易出现。此外,国内在二氧化碳汽提法生产尿素的条件下,在高温,高压尿素甲铵液中,在液相,汽液相交界处,在汽相中均发现了尿素级和非尿素级的00Cr17Ni14Mo2和00Cr25Ni22Mo2N以及Fe-Ni基耐蚀合金00Cr20Ni35Mo2Cu3Nb(Carpenter 20cd-3)的非敏化态晶间腐蚀。

非敏化态晶间腐蚀一般出现在远离焊缝的母材上。对它的识别基本上与敏化态晶间腐蚀相同。但是,在金相显微镜和扫描电镜下观察,在尿素生产装置中所出现的Cr-Ni 奥氏体不锈钢的非敏化态晶间腐蚀形态,发现与前述敏化态晶间腐蚀有很大的不同。主要表现在晶间腐蚀裂纹较宽但常常延伸较浅且常伴随有晶粒脱落,但晶界并未见析出物。

2、机理

研究表明,应用溶质(杂质)偏聚理论能够较满意地解释固溶态(非敏化态)晶间腐蚀产生的原因。

在含Cr6+的硝酸介质中,选择高纯的Cr-Ni不锈钢Cr14Ni14和1Cr18Ni11Ti,研究了C,P,Si,B等对非敏化态晶间腐蚀的影响,当C<0.1%时无明显影响,P>=0.01%,显着有害;Si量在Cr-Ni不锈钢正常含量(~0.8%)范围附近时,其非敏化态晶间腐蚀敏感性最大,高于或低于此含量,晶间腐蚀敏感性下降;B量>=0.0008%,对非敏化态晶间腐蚀便有害。对含Si,P极低的高纯Cr-Ni奥氏体钢的进一步研究表明,这些不锈钢在非敏化态均无晶间腐蚀倾向。采用透射电镜和俄歇谱仪进行晶界分析结果已证实晶界P,Si,B 等元素的偏聚并优先溶解是导致非敏化态晶界腐蚀的主要原因。

但是,P,Si,B等杂质元素沿晶界偏聚导致非敏化态晶间腐蚀仅仅是由于晶界和晶内形成化学浓差而引起的单纯电化学腐蚀过程,或者是由于偏聚引起晶界耐蚀性下降,还是有其它因素的影响,尚有待于进一步探讨。

3、材料选择

从理论上讲,发展P<=0.01%,Si<=0.10%,B<=0.008%的高纯Cr-Ni奥氏体不锈钢是解决非敏化态晶间腐蚀最根本的措施。

目前,为解决硝酸用途中的非敏化态晶间腐蚀,主要是选用高硅(Si ~4%)不锈钢0Cr18Ni11Si4AlTi,00Cr20Ni24Si4Ti,00Cr14Ni14Si4,00Cr17Ni15Si4Nb等。

为解决二氧化碳汽提法尿素生产中四大高压设备,即尿素合成塔,高压冷凝器,高压洗涤器,二氧化碳汽提塔用Cr-Ni奥氏体不锈钢的非敏化态晶间腐蚀,目前仍需选用已有大量成熟使用经验的尿素级00Cr17Ni14Mo2和00Cr25Ni22Mo2N。但需尽量控制钢中C,P,Si量,特别是P含量应尽量低。

(三)铁素体不锈钢的晶间腐蚀

1、现象和识别

铁素体不锈钢的晶间腐蚀与前述Cr-Ni奥氏体不同:它一般出现在高于900~950°C加热后(或焊后),甚至在水等急冷条件下也无法避免;而经过750~850°C 短时间加热处理,铁素体不锈钢的晶间腐蚀敏感性可减轻,甚至消除;铁素体不锈钢的晶间腐蚀系产生在紧靠焊缝熔合线附近区域,而不是在Cr-Ni奥氏体不锈钢的热影响区内。除出现部位上的差异外,对铁素体不锈钢晶间腐蚀的识别基本上与Cr-Ni奥氏体不锈钢的敏化态晶间腐蚀相同。铁素体不锈钢的晶间腐蚀不仅在强腐蚀性介质中产生,而且在弱介质中,例如在自来水中亦可出现。

2、机理

大量研究表明,应用贫铬理论同样可满意地解释铁素体不锈钢的晶间腐蚀现象。

高铬铁素体不锈钢在900~950°C以上加热时,钢中C,N固溶于钢的基体中。由于钢中Cr在铁素体内的扩散速度约为奥氏体中的100倍,而C,N在铁素体内不仅扩散速度快(在600°C,C在铁素体中的扩散速度约为奥氏体中的600倍),而且溶解度也低(在含Cr26%的铁素体钢中,1093°C时,C的溶解度为0.04%,而在927°C仅为0.004%,温度再低,还要降至0.004%以下;N的溶解度在927°C以上为0.023%,而在593°C仅为0.006%)。因而高温加热后,在随后的冷却过程中,即使快冷也常常难以防止高铬的碳,氮化物沿晶界析出和贫铬区的形成。而在750~870°C处理,可降低,消除铁素体不锈钢的晶间腐蚀倾向。但是,在500~700°C范围内,钢中铬的扩散速度减小,短期内无法使贫铬区消失,故先经高温加热,而在冷却过程中又通过500~700°C温度区的铁素体不锈钢,由于晶界有贫铬区的存在,在腐蚀介质作用下就会产生晶间腐蚀现象。

研究表明,含Cr20%的铁素体不锈钢,其贫铬区的Cr量可<5%,甚至可为0%,贫铬区的宽度为0.05~0.07μm。

3、材料选择

为了防止铁素体不锈钢的晶间腐蚀,主要选用含Ti,Nb等稳定化元素的铁素体不锈钢。

六、应力腐蚀

1、现象和识别:

不锈钢的应力腐蚀是在静拉伸应力与特定的工作介质共同作用下而发生的一种破坏。它是不锈钢局部腐蚀破坏中最常见,危害最大的一种。

工程事故的分析经验表明,不锈钢制设备和部件,包括未经使用的设备和部件,一旦发生突然性的泄漏或损坏,而泄漏或损坏部位又未见明显的塑性变形,常常是由应力腐蚀而造成的。

识别应力腐蚀的主要依据是裂纹特征和断口形貌。见图片。

(1)裂纹特征 ? 应力腐蚀的宏观裂纹均起自于不锈钢表面且分布具有明显的局部性;裂纹的走向与所受应力,特别是与残余应力有密切关系;裂纹常呈龟裂和风干木材状,裂纹附近未见塑性变形;除裂纹部位外,其它部位腐蚀轻微,且常有金属光泽。应力腐蚀裂纹的微观形貌多为穿晶型,但也多见沿晶型和穿晶+沿晶混合型;裂纹的宽度较小,而扩展较深,裂纹的纵深常较其宽度大几个数量级;裂纹既有主干也有分支,典型裂纹多貌似落叶后的树干和树枝,裂纹尖端较锐利。

(2)断口形貌 ? 应力腐蚀的宏观断口多呈脆性断裂。断口的微观形貌,穿晶型多为准解理断裂,并常见河流,扇形,鱼骨,羽毛等花样;而沿晶型则多为冰糖块状花样。

2、常见介质:

导致各类不锈钢应力腐蚀的最常见介质是含有Clˉ和氧的大气和工业水,海水等。由于Cr-Ni奥氏体不锈钢用量最大,应力腐蚀事故也最多。下面列出了使Cr-Ni奥氏体不锈钢产生应力腐蚀和晶间(沿晶)型应力腐蚀的常见介质。

3、机理:

由于应力腐蚀的影响因素多,过程比较复杂,因此,截至目前为止,对不锈钢应力腐蚀的尚未取得统一的认识。

对于高强度不锈钢,例如马氏体和马氏体沉淀硬化不锈钢的应力腐蚀,许多人认为氢脆起主导作用。但也有人认为,在中性水溶液中,对13%Cr马氏体不锈钢的应力腐蚀起主导作用的不是氢脆,而是阳极溶解。

对于Cr-Ni奥氏体不锈钢,许多研究工作者也曾提出氢脆是它们产生应力腐蚀的主要机制。主要依据是在沸腾的Mg,Li,Ca等的氯化物溶液中,在高温水和蒸汽中,在室温H2SO4+NaCl混合介质中,由于氢的吸附,钢的塑性显着降低;在腐蚀电位和阴极极化下,有氢析出的可能性;在应力作用下,奥氏体形变可在局部产生*马氏体,同时,钢中氢量增加,可促进这种马氏体转变;断裂后,通过断口观察,认为属于氢脆断裂。但是,对于大量使用的Cr-Ni奥氏体不锈钢,从裂纹尖端产生阳极溶解而引起应力腐蚀,目前倾向于用滑移-溶解-断裂模型来加以解释。

在介质作用下,Cr-Ni奥氏体不锈钢表面上存在着籍以耐腐蚀的保护膜(钝化膜)。在拉伸应力作用下,位错沿着滑移面运动至金属表面,在表面产生滑移台阶,使表面膜产生局部破裂并暴露出没有保护膜的裸金属。有膜与无膜金属间形成微电池。在介质作用下,作为阳极的裸金属产生阳极溶解。此时,保护膜的作用不仅为腐蚀过程提供了阴极,而且又使阳极溶解集中在局部区域。显然,保护膜破裂后,若所暴露的裸金属一直处于活化腐蚀状态,则腐蚀必然会同时向横向发展。于是,裂纹尖端的曲率半径增大,应力集中程度随之减小,进而导致裂纹向纵深发展的速度变慢直至最后终止。但是,在实验室内和应力腐蚀工程事故分析中均可看到,不锈钢应力腐蚀裂纹尖端非常微细。因此,一般认为,在裸金属受到腐蚀的同时,还存在着一个能阻止腐蚀向横向发展的过程,才能使裂纹沿纵向扩展。此过程就是不锈钢的再钝化。因此,滑移-溶解-断裂模型

至少包括表面膜的形成;在应力作用下金属产生滑移引起表面膜的破裂;裸金属的阳极溶解和裸金属的再钝化等四个过程。这些过程的反复进行,导致不锈钢的应力腐蚀断裂。

至于Cr-Ni奥氏体不锈钢的晶间型应力腐蚀,目前的主要见解有:在应力作用下,不锈钢晶粒间界贫铬区的选择性溶解;在应力作用下,不锈钢中杂质沿晶界偏聚而引起的优先溶解;在应力作用下,不锈钢中晶界沉淀相本身的溶解等。

4、材料选择

研究和实践表明,任何一种不锈钢和合金的耐应力腐蚀性能都是有条件的。没有也不可能有在任何条件下均耐应力腐蚀的不锈钢和合金。因此,需要针对设备,部件的使用条件和耐应力腐蚀不锈钢本身的特性加以合理选择。与此同时,在设备,构件加工,成形,制造,使用过程中,还要适应所选用的不锈钢的性能特点,做到合理选择并正确使用,才能取得满意的效果。

国内外不锈钢应力腐蚀事故的大量统计表明,由于氯化物而引起的事故约占80%以上。因此,为解决一般Cr-Ni不锈钢的氯化物应力腐蚀而合理选材就显得更为重要。

工业冷却水对不锈钢换热器腐蚀的研究及对策

编号:AQ-JS-03383 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 工业冷却水对不锈钢换热器腐 蚀的研究及对策 Study on Corrosion of stainless steel heat exchanger by industrial cooling water and Countermeasures

工业冷却水对不锈钢换热器腐蚀的 研究及对策 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:不锈钢换热器在石化、电力工业的生产中有着广泛的应用。但是,不锈钢管局部腐蚀(主要是孔蚀和应力腐蚀破裂)的发展速度和所造成的破坏也是惊人的。本文简要介绍了不锈钢的腐蚀类型;针对火电厂运行、基建机组凝汽器不锈钢管的防腐蚀工作,阐述了相应的化学处理措施和成功的工作实例。 关键词:不锈钢;凝汽器;孔蚀;应力腐蚀破裂;防腐;化学处理 1不锈钢换热器的应用情况 不锈钢是铁、铬和镍的合金,最早出现在20世纪初。铬镍钢,特别是18Cr-8Ni型奥氏体不锈钢,由于它在许多化学介质中具有高度的稳定性,并且能耐高温气体腐蚀,所以在化学工业中得到最

广泛的应用,在许多有机产品和聚合物的生产过程中(如尿素、醋酸、聚丙烯、聚乙烯醇等),大多数设备都是由铬镍合金钢和奥氏体不锈钢制造的。其中大量与各种工业水接触的列管换热器、冷凝器和夹套反应器多用奥氏体不锈钢(主要类型为AISI304、304L、316、316L)制造。 在电力工业中,不锈钢的应用范围也越来越广泛。在发电厂,不锈钢主要用来制造凝汽器的冷却管。 凝汽器是汽轮发电机组的重要辅机之一,它的性能好坏直接影响机组的运行。而它的主要传热组件—冷却管,是凝汽器的最重要部分,价格占其总价的一半以上。因此,冷却管的选材和选型是凝汽器的设计关键。 早在20世纪90年代初,我国就开始应用螺旋槽管传热理论,研制新型凝汽器。经过反复论证和试验,研制出理想的冷却管凝汽器—高效不锈钢波螺焊管凝汽器。 不锈钢波螺焊管比铜管的总体传热系数提高25~30%,在几家热电厂的实际运行当中,当保持真空度不变的情况下,循环水量比

不锈钢常用表面处理方法

不锈钢常用表面处理方法: 不锈钢具有独特的强度、较高的耐磨性、优越的防腐性能及不易生锈等优良的特性。故广泛应用于化工行业,食品机械,机电行业,环保行业,家用电器行业及家庭装潢,精饰行业,给予人们以华丽高贵的感觉。 不锈钢的应用发展前景会越来越广,但不锈钢的应用发展很大程度上决定它的表面处理技术发展程度。 1不锈钢常用表面处理方法 1.1不锈钢品种简介 1.1.1不锈钢主要成分:一般含有鉻(Cr)、镍(Ni)、钼(Mo)、钛(Ti)等优质金属元素。 1.1.2常见不锈钢:有鉻不锈钢,含Cr≥12%以上;镍鉻不锈钢,含Cr≥18%,含Ni≥12%。 1.1.3从不锈钢金相组织结构分类:有奥氏体不锈钢,例如:1Cr18Ni9Ti,1Cr18Ni11Nb,Cr18Mn8Ni5。马氏体不锈钢,例如:Cr17,Cr28等。一般称为非磁性不锈钢和带有磁性不锈钢。 1.2常见不锈钢表面处理方法 常用不锈钢表面处理技术有以下几种处理方法:①表面本色白化处理;②表面镜面光亮处理;③表面着色处理。 1.2.1表面本色白化处理:不锈钢在加工过程中,经过卷板、扎边、焊接或者经过人工表面火烤加温处理,产生黑色氧化皮。这种坚硬的灰黑色氧化皮主要是NiCr2O4和NiF二种EO4成分,以前一般采用氢氟酸和硝酸进行强腐蚀方法去除。但这种方法成本大,污染环境,对人体有害,腐蚀性较大,逐渐被淘汰。目前对氧化皮处理方法主要有二种: ⑴喷砂(丸)法:主要是采用喷微玻璃珠的方法,除去表面的黑色氧化皮。 ⑵化学法:使用一种无污染的酸洗钝化膏和常温无毒害的带有无机添加剂的清洗液进行浸洗。从而达到不锈钢本色的白化处理目的。处理好后基本上看上去是一无光的色泽。这种方法对大型、复杂产品较适用。 1.2.2不锈钢表面镜面光亮处理方法:根据不锈钢产品的复杂程度和用户要求情况不同可分别采用机械抛光、化学抛光、电化学抛光等方法来达到镜面光泽。 1.2.3表面着色处理:不锈钢着色不仅赋予不锈钢制品各种颜色,增加产品的花色品种,而且提高产品耐磨性和耐腐蚀性。不锈钢着色方法有如下几种: ⑴化学氧化着色法; ⑵电化学氧化着色法; ⑶离子沉积氧化物着色法; ⑷高温氧化着色法; ⑸气相裂解着色法。 各种方法简单概况如下: ⑴化学氧化着色法:就是在特定溶液中,通过化学氧化形成膜的颜色,有重铬酸盐法、混合钠盐法、硫化法、酸性氧化法和碱性氧化法。一般“茵科法”(INCO)使用较多,不过要想保证一批产品色泽一致的话,必须用参比电极来控制。 ⑵电化学着色法:是在特定溶液中,通过电化学氧化形成膜的颜色。 ⑶离子沉积氧化物着色法化学法:就是将不锈钢工件放在真空镀膜机中进行真空蒸发镀。例如:镀钛金的手表壳、手表带,一般是金黄色。这种方法适用于大批量产品加工。因为投资大,成本高,小批量产品不合算。

304不锈钢的腐蚀

304不锈钢的腐蚀 应力腐蚀 应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。 应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 它的发生一般有以下四个特征:一、一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。二、对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。三、一般应力腐蚀都属于脆性断裂。四、应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬段区三部分 应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂 晶间腐蚀 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝和一些含铬的合金钢中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的熔解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C8等。但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的晶间腐蚀 含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌号),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。敏化作用

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

外文文献304不锈钢晶间腐蚀研究

晶间腐蚀在石油石化行业的危害及防护 帕德·马纳班 每一个石油化工企业年度改革、更新和超过6/809的维修费用,都是由于腐蚀和废弃设备、管道及金属非金属结构更新维护造成的,腐蚀易引起恶性破坏事故,不仅会带来巨大的经济损失,而且经常会引起火灾和爆炸、伤害和灾难性的环境污染等的罪恶,并导致严重的社会后果。腐蚀损坏,必须尽力设法避免。因为消除腐蚀是不可能的,成功的方法是控制腐蚀,或进入是为了防止腐蚀。因此,这些腐蚀问题已引起人们的关注来控制。本文主要针对表面产生晶间腐蚀的危害的石油工业,并介绍了如何防止和减缓腐蚀采取 的措施。 1晶间腐蚀的定义 晶间腐蚀是局部腐蚀的一种,是沿着金属晶粒间的分界面向内部扩展的沿着或紧挨着金属的晶粒边界发生的腐蚀。晶间腐蚀(Intergranular corrosion),又叫晶界腐蚀。现在对晶间腐蚀的科技名词定义如下: 沿着或挨着晶粒边界发生的腐蚀。:海洋工程(1级主题);船舶腐蚀与防护(要求等级2的主题)。 由于金属部件中这一媒介溶解率远远高于粮食本体的速度从局部腐蚀溶解。是金属强度、塑性和韧性大大降低危险的大量的腐蚀类型。所属主题:电力(一级学科);核能(要求等级2的话题)。 沿着或挨着金属颗粒边界腐蚀。所属属主题:机械工程(1级主题);腐蚀与防护(二级学科);腐蚀类型(三级学科)。 晶间腐蚀由微电池作用而引起局部破坏,这种局部破坏是从表面开始,沿晶界向内发展,直至整个金属由于晶界破坏而完全丧失强度,这是一种危害很大的局部腐蚀。 2晶间腐蚀发生的条件

金属及其结构在其所处的环境中,许多因素往往和环境化学因素及电化学因素一起, 参与和影响金属腐蚀过程。除化学因素及金属的冶金因素(成分、金相组织和结构等)外,影响金属腐蚀的环境因素还包括:应力、振动、冲刷、摩擦与磨损等力学、机械学因素;生物学因素等。这些因素与化学因素对腐蚀的影响,往往不是各个因素单独作用时所发生影响的简单加和,在多数情况下起着彼此相张的作用,因而,常常使腐蚀加速,造成更大的破坏性后果。 而晶间腐蚀的发生因素主要有内因和外因,如下: ⑴内因:即金属或合金本身晶粒与晶界化学成分差异、晶界结构、元素的固溶特点、 沉淀析出过程、固态扩散等金属学问题,导致电化学不均匀性,使金属具有品间腐蚀倾向。 ⑵外因:在腐蚀介质中能显示晶粒与晶界的电化学不均匀性。 3晶间腐蚀的机理 20世纪30年代以来,对晶间腐蚀进行了大量研究,所提出的贫化理论,特别是对奥 氏体不锈钢的贫铬理论已得到证实,并将贫化理论应用到铝铜合金的贫铜及镍钼合金的贫钼等方面。前者在晶界上析出了CuAl 2,后者在晶界上析出了Mo 2C 。 ⑴ 贫铬理论 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。当温度升高 时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中 的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe )23C6等。数据表明,铬沿晶界扩 散的活化能力162~252KJ/mol ,而铬由晶粒内扩散活化能约540KJ/mol ,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向 晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 在工业控制中经常用到不锈钢管件作为仪器仪表附材,来构成完整的工业控制系统。有必要对各种不锈钢的耐腐蚀性能作一个全面的了解,总结如下: 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 3Cr13是马氏体不锈钢,用于食品机械及医疗器械等;42CrMo是合金钢,它比45#钢优异,用于条件苛刻的轴类及结构件等。 比较3Cr13钢与40钢、45钢等碳素结构钢的机械性能可知,3Cr13钢的强度比40钢和45钢高,它是一种强度高、塑性好的中碳马氏体不锈钢。马氏体不锈钢在热处理后的不同硬度,对车削加工的影响很大。表1是用YW2材料的车刀对热处理后不同硬度的3Cr13钢的车削情况。可见,退火状0.10.10.1态的马氏体不锈钢虽然硬度低,但车削性能差,这是因为材料塑性和韧性大,组织不均匀,粘附,熔着性强,切削过程易产生刀瘤,不易获得较好的表面质量。而调质处理后硬度在HRC30以下的3Cr13材料,车削加工性较好,易达到较好的表面质量。用硬度在HRC30以上的材料加工出的零件,表面质量虽然较好,但刀具易磨损。所以,在条件允许的情况下,可以在材料进厂后,先进行调质处理,硬度达到 HRC25~HRC30,然后再进行切削加工。

不锈钢腐蚀实验报告

不锈钢腐蚀行为及影响因素的综合评价 洪宇浩 实验一、钝化曲线法评价不同种不锈钢在同一介质中的腐蚀能力 1.实验目的 ●掌握金属腐蚀原理和金属钝化原理 ●掌握不锈钢阳极钝化曲线的测量 ●掌握恒电位仪软件的操作 2.实验原理 3.实验步骤 本实验测试430不锈钢(黑)和304不锈钢(黄)在0.25mol/L H2SO4和含1.0% NaCl 的0.25mol/L H2SO4中钝化曲线. 电位:-0.60 →1.20 V,50 mV/s 4.注意事项 ●电极的处理 ●灵敏度的选择 5.实验结果 1、304钢在0.25mol/L H2SO4的钝化曲线

-800 -600-400-20002004006008001000 -8-6 -4 -2 2 电流(m A ) 电位(mV) -293,1.841 -139,0.635410,0.235 904,0.708 2、304钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -800 -600-400-20002004006008001000 -7-6-5-4-3-2-1 01电流(m A ) 电位(mV) (-267, 0.59829) (-69, 0.38967) (398, 0.20901) (799, 0.38485) 3、430钢在0.25mol/L H 2SO 4中的钝化曲线.

-800 -600-400-200020040060080010001200 -4-202468 1012电流( m A ) 电位(mV) (-287, 11.133) (930, 1.7327) (174, 1.1011) (-21, 1.5724) 4、430钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -600 -400 -200 200 400 -10 -5 5 10 15 20 电流(m A ) 电位(mV) (-221, 15.914) (180, 1.1999) (328, 1.9463) (-84, 4.9479)

不锈钢在各种环境中的耐腐蚀性能

不锈钢在各种环境中的耐腐蚀性能 来源:电源谷作者: 发布时间:2007-09-29 18:04:12 https://www.wendangku.net/doc/7f18733531.html,/jiaocheng/jingti/2007-09-29/2590.html 不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13 、1 Cr 17 和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17 和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13 和1 Cr 17 不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7 、 1 Cr 18Ni9 和0 Cr 18Ni9 ,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02 含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。 ②淡水 淡水可定义为不分酸性、盐性或微咸,来源于江河、湖泊、池塘或井中的水。 淡水的腐蚀性受水的pH 值、氧含量和成垢倾向性的影响。结垢(硬)水,其腐蚀性主要由在金属表面形成垢的数量和类型来决定。这种垢的形成是存在其中的矿物质和温度的作

不锈钢腐蚀的机理

不锈钢腐蚀的机理 1 氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高[1 ] 。 氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为 2 穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合 ,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子,与金属形成氯化物,氯化物与 法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理[2 ] 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。③一般在合金、碳钢中易发生应力腐蚀。研究表明,应

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性.316和317型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢选用需要考虑的因素? 在腐蚀环境中选择不锈钢时,除应对不锈钢的具体使用条件有详细的了解外,还需要考虑的主要因素有:不锈钢的耐蚀性,,强度,韧性和物理性能,加工,成形性能,资源,价格和取得的难易。 1、耐蚀性能 耐蚀性包括不锈性和耐酸,碱,盐等腐蚀介质的性能以及高温下抗氧化,硫化,氯化,氟化等的性能。由于选用不同不锈钢主要是为了解决实际工程中所遇到的各种腐蚀问题,为此在腐蚀环境中不锈钢的耐蚀性如何是选材人员首先需要考虑的。 腐蚀是金属与介质间由于化学或电化学作用而引起的破坏,而耐蚀性指不锈钢抵抗介质腐蚀破坏的能力,故当选材中涉及耐蚀性时,需要注意以下几点。 1、耐蚀性的标准是人为确定的,既要承认它,使用它,又不能受它的约束,要根据具体使用要求来确定是否耐蚀的具体标准。 目前对不锈钢的耐蚀性多采用10级标准,选择哪一级做为耐腐蚀的要求,要考虑设备,部个的特点(薄厚,大小),使用寿命长短,产品质量(如杂质,颜色,纯度)等的要求。 一般说来,对使用过程中要求光洁镜面或尺寸精密的设备仪表和部件,可选择1~3级标准;对要求密切配合,长期不漏或要求使用限长的设备,部件选2~5级,对要求不高检修方便或要求寿命不很长的设备,部件则可选用4~7级,除特殊例外,不锈钢在使用条件下年腐蚀率超过1mm者一般多不选用,需要指出,10级标准对于产生局部腐蚀时是不适用的。 2、耐蚀性是相对的,有条件的,常说的不锈钢的不锈性,耐蚀性系指指相对于生锈和不耐蚀而言,是指在一定条件下(介质,浓度,温度,杂质,压力,流速等一定时)。

不锈钢腐蚀的分析

电化学腐蚀 电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。例如铁和氧,因为铁的电极电位总比氧的电极电位低,所以铁是阳极,遭到腐蚀。特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末 状溃疡腐蚀坑陷。 一、基本介绍: 不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。 我们知道,钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。原来,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。 金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主

要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 二、相关原理: 金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种。当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中N5等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(F勺C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。 三、方程式: (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 负极(Fe): 蠱-2L fF严 F^+2H2O-^Fe(OH)2 + 2H+ + 2e J H2 正极(杂质): 电池反应: Fe+2H3O = Fe(OH}2 + H3T 由于有氢气放出,所以称之为析氢腐蚀。

不锈钢的腐蚀研究

无机酸对316L不锈钢的腐蚀 1.前言 不锈钢是含铬11%以上或同时含镍的钢种的统称。它在常温氧化性环境(如大气、水、强氧化性酸等)中容易钝化,使表面产生一层氧化铬为主,保护性很强的薄膜,其腐蚀速率极低。但当温度增高或环境的氧化能力减小时,将由钝态变为活态,腐蚀显著增大。各类不锈钢对有机酸、有机化合物、碱、中性溶液和多种气体都有良好耐蚀性。在非氧化性酸(硫酸、盐酸等)中腐蚀严重。不锈钢设备的腐蚀常常为局部腐蚀,当处于钝态和活态边缘,在含有卤素离子的盐溶液中,可能产生孔蚀。在含有对应力腐蚀敏感离子(如Cl-、OH-等)的溶液中,受应力的部分(如焊缝附近)则可能产生危险的应力腐蚀破裂。焊缝两侧的敏化区还易产生晶间腐蚀。 铬镍钢的耐蚀性和机械性能都超过单纯铬钢。镍的加入促进奥氏体结构的生成,可以得到更好的机械性能,特别是使韧性提高,同时又增大了钝化范围,使它更容易钝化。 316L不锈钢和一般的铬镍不锈钢相似,但由于加入了2%的钼,所以在许多方面比铬镍不锈钢更为优越,特别是在非氧化性酸和热的有机酸、氯化物中的耐蚀性要比铬镍不锈钢好得多,抗孔蚀的能力也较好。 2.不锈钢成分牌号对照表 各种不锈钢的成分表 中外不锈钢牌号对照表

3.无机酸对316L 不锈钢的腐蚀 铬镍钢对一切浓度和温度的盐酸都不适用,316L 在盐酸中的溶解度少许降低一些,但也只能用于极稀的酸。如某些氯化物的溶液中,由于水解作用可能产生极微量的盐酸,可使用316L 不锈钢,但一般容易发生孔蚀。 铬镍不锈钢可使用于常温下5%以下的稀硫酸和90%以上的浓硫酸,316L 的耐蚀性比较好,但使用温度也不宜超过50~70 ℃。对于中等浓度的硫酸和发烟酸,所有的铬镍钢腐蚀都很大,不适用。所有的铬钢对一般浓度的不充气的硫酸都不适用。硫酸中如含有其它物质,如铬酸、重铬酸钠、硝酸钠和大多数硫酸盐类,对不锈钢具有缓蚀效果。 各种牌号的铬和铬镍不锈钢对硝酸都有良好的耐蚀性。对70%以下的稀硝酸,适用温度可到沸点上下。 浓度更高的硝酸,常温下还是适用,但超过50℃则腐蚀很快,特别是90~99%的高浓酸。一般不锈钢只用于常温的浓硝酸。 无机酸对304不锈钢的腐蚀

不锈钢腐蚀的知识点

不锈钢耐腐蚀知识点 不锈钢的耐腐蚀原因:不锈钢的重要因素在于其保护性氧化膜是自愈性的,合金必须含有足够量的铬以形成基本上有Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。 氯离子对不锈钢钝化膜的破坏:处于钝态的金属仍有一定的反应能力,即钝化膜的溶解和修复(再钝化)处于动平衡状态。当介质中含有活性阴离子时,平衡便受到破坏,溶解占优势。其原因是氯离子能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氧化物,结果在新露出的基底金属的特定点上生成小蚀坑(孔径多在20—30um)这些小蚀坑称为孔蚀核。 影响点腐蚀的因素:金属和合金的性质、表面状态、介质的性质、PH值、温度、流速和时间等。 不锈钢在焊接等过程中加热到一定温度之后而产生碳化铬在晶界上的沉积,因此,紧靠近碳化铬的区域就消耗掉铬,从而相对于晶内的铬更为活泼。如果存在水溶液条件,就形成了以裸露的铬为阳极,以不锈钢为阴极的原电池,大的阴极面积产生了阳极控制,因而腐蚀作用很严重,采用低碳的

奥氏不锈钢可以减轻这个问题。焊后表面不平整度增加这些都是为孔蚀核的形成提供了条件。 虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2种观点,成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论的观点认为氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力他们优先金属吸附,并从金属表面把氧排掉,因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物于金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和N i 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 3. 2 防止孔蚀的措施 (1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。耐孔蚀不锈钢基本上可分为 3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。设计时应优先选用耐孔蚀材料。 (2)降低氯离子在介质中的含量,操作时严防跑、冒、滴、漏等现象的发生。 (3)在工艺条件许可的情况下,可加入缓蚀剂。对缓蚀剂的要求是,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。例如,在10 %的FeCl3 溶液中加入3 %的NaNO2 ,可长期防止1Cr18Ni9Ti 钢的孔蚀。 (4)采用外加阴极电流保护,抑制孔蚀。氯离子对不锈钢制压力容器的腐蚀,对压力容器的安全性有很大的影响。即使是合理的设计、精确的制造避免或减少了容器本身的缺陷,但是,在长期使用中,由于各种错综复杂因素的联合作用,容器也会受到一定的腐蚀。虽然目前对防止氯离子对不锈钢腐蚀的方法还不十分完善,但掌握一些最基本的防护措施,对保证生产的正常进行,还是十分必要的。除此之外,还应严格按照操作规程操作,加强设备管理,做好容器的定期检验,以保证容器在合理的寿命期限内安全运行。 (1).氯离子对不锈钢设备耐蚀性的影响工作介质中氯离子的含量和工作温度对不锈钢应力腐蚀的影响很大。例如天津某厂水加热器腐蚀严重,采用了全不锈钢材质后,使用几个月就出现了漏液现象。经过认真分析,发现热水中含有氯离子和氧。不锈钢在一定温度下不能耐氯离子腐蚀,特别是介质中有氧存在的条件下,氧的存在能加速腐蚀。在实际生产中还发现,氯离子在一定浓度和温度时,不锈钢的耐蚀性还不如碳钢;但在氯离子合量很少或含量高、温度不高的条件下,还是远比碳钢好。在这一点上,温度对耐蚀性的影响比氯离子浓度的影响更大。所以在选材时,除考虑氯离子的浓度外,特别要注意温度的影响。提高奥氏体合金中镍的含量,是防止氯离子引起的应力开裂的一种有效方法。含镍42%以上的合金完全能耐氯离子引起的腐蚀开裂,如825合金、G合金、625合金。而含镍8%~12%的合金是最容易发生应力开裂的

不锈钢腐蚀牌制作方法

不锈钢腐蚀牌制作方法 金属腐蚀标牌大体分为凹字标牌.凸字标牌和凸凹字结合标牌这三种。腐蚀标牌的基本要求:图案美观.线条清晰.深度合适.底面平整.色彩饱满.拉丝均匀.表面色泽一致。腐蚀标牌的特点:耐候.耐溶剂性较强;即使油漆脱落仍然具有铭牌的功能。金属标牌怎样才能达到审美要求和客户的要求哪?我们必须抛弃八九十年代甚至六七十年代的落后技术和盆盆罐罐的陈旧设备。学习先进的生产技术,使用便捷的耗材和腐蚀液,更换专用设备。 我们青岛睿智达(标牌)表面装饰研究所是研究标牌生产工艺.设备和耗材的专业单位, 积累了较丰富的经验和技巧。就以上问题谈几点看法供大家参考。 一. 学习先进的生产技术。要想学习先进的技术必须做到以下几点: 1.打破陈旧的生产模式。许多标牌厂家有的已有几十年的历史,但至今仍沿用着建厂时的生产模式和技术,如自己熬骨胶.摔胶.太阳晒版.盆盆罐罐腐蚀.手工注漆等,有些技术在当时是先进的,可现在哪?耗费大量的人力物力,成本高.效率低.质量差.做不出理想的标牌。当然,有些老的技术手段至今还有使用价值,甚至还离不开它。但是,时代在发展,技术在进步,我们有些厂家固守陈规,为什么?值得我们思考。 2.加强与同行和标牌研究单位的交流。我认为改革开放的主要意义在于:走出去,拿进来。走出厂房.走出地域.甚至走出国门。去学习先进的管理模式,先进的生产技术,去借鉴.去筛选.拿来发展自己的企业。当然,有人会说,国门我走不出,同行不愿交流,研究单位找不到等一系列的问题。我想问,你去真诚的交流了吗?标牌的研究单位你真地去努力找了吗? 3.合理定位,切勿“好高骛远” 。合理定位就是以多数客户的市场的需求定位,以自己的生产能力定位。各位老板,请问你们标牌的主打产品是什么?我想多数人的回答应该是设备标牌。因为设备标牌市场广阔,批量大,占标牌总量的80% 以上,且制作相对简单,定 型后几乎长期不变。只要你的质量过关,价格合理,可常年为同一客户生产。这里有两个关键词:质量过关.价格合理,也就是说质量决定价格。标牌不仅是设备的铭牌,同时也有为设备画龙点睛之妙笔。可以想象假如你生产的标牌拿在客户手中爱不释手,他还与你讨价还价吗?他还去找其他厂家吗?我想不会的。但反之则不然。切勿“好高骛远” 。如果基本的设备标牌都没做好,你还想去学所谓高档的标牌吗?即使你学会了,有市场吗?我个人认为,从基础做起,先做好基本的,再寻求所谓高档的。 二. 选用耐腐蚀油墨的问题。金属腐蚀标牌使用的耐蚀刻油墨必须具备以下几点要求:便于丝

不锈钢表面处理常见问题及预防措施

不锈钢表面处理常见问题及预防措施 不锈钢具有独特的强度、较高的耐磨性、优越的防腐性能及不易生锈等优良的特性。故广泛应用于化工行业,食品机械,机电行业,环保行业,家用电器行业及家庭装潢,精饰行业,给予人们以华丽高贵 的感觉。 不锈钢的应用发展前景会越来越广,但不锈钢的应用发展很大程度上决定它的表面处理技术发展程 度。 1 不锈钢常用表面处理方法 1.1 不锈钢品种简介 1.1.1 不锈钢主要成分:一般含有鉻(Cr)、镍(Ni)、钼(Mo)、钛(Ti)等优质金属元素。 1.1.2 常见不锈钢:有鉻不锈钢,含Cr≥12%以上;镍鉻不锈钢,含Cr≥18%,含Ni≥12%。 1.1.3 从不锈钢金相组织结构分类:有奥氏体不锈钢,例如:1Cr18Ni9Ti,1Cr18Ni11Nb,Cr18Mn8Ni5。 马氏体不锈钢,例如:Cr17,Cr28等。一般称为非磁性不锈钢和带有磁性不锈钢。 1.2 常见不锈钢表面处理方法 常用不锈钢表面处理技术有以下几种处理方法:①表面本色白化处理;②表面镜面光亮处理;③表 面着色处理。 1.2.1 表面本色白化处理:不锈钢在加工过程中,经过卷板、扎边、焊接或者经过人工表面火烤加温处理,产生黑色氧化皮。这种坚硬的灰黑色氧化皮主要是NiCr2O4和NiF二种EO4成分,以前一般采用氢氟酸和硝酸进行强腐蚀方法去除。但这种方法成本大,污染环境,对人体有害,腐蚀性较大,逐渐被淘 汰。目前对氧化皮处理方法主要有二种: ⑴喷砂(丸)法:主要是采用喷微玻璃珠的方法,除去表面的黑色氧化皮。 ⑵化学法:使用一种无污染的酸洗钝化膏和常温无毒害的带有无机添加剂的清洗液进行浸洗。从而达到不锈钢本色的白化处理目的。处理好后基本上看上去是一无光的色泽。这种方法对大型、复杂产品较 适用。 1.2.2 不锈钢表面镜面光亮处理方法:根据不锈钢产品的复杂程度和用户要求情况不同可分别采用机 械抛光、化学抛光、电化学抛光等方法来达到镜面光泽。这三种方法优缺点如下: 1.2.3 表面着色处理:不锈钢着色不仅赋予不锈钢制品各种颜色,增加产品的花色品种,而且提高产 品耐磨性和耐腐蚀性。

相关文档
相关文档 最新文档