文档库 最新最全的文档下载
当前位置:文档库 › 2018版 第1章 4.1 单位圆与任意角的正弦函数、余弦函数的定义 4.2 单位圆与周期性

2018版 第1章 4.1 单位圆与任意角的正弦函数、余弦函数的定义 4.2 单位圆与周期性

2018版 第1章 4.1 单位圆与任意角的正弦函数、余弦函数的定义  4.2 单位圆与周期性
2018版 第1章 4.1 单位圆与任意角的正弦函数、余弦函数的定义  4.2 单位圆与周期性

§4正弦函数和余弦函数的定义与诱导公

4.1 单位圆与任意角的正弦函数、余弦函

数的定义

4.2 单位圆与周期性

1.理解任意角的正弦、余弦的定义及其应用.(重点)

2.掌握同角的正弦、余弦函数值间的关系.(重点)

3.理解周期函数的定义.(难点)

[基础·初探]

教材整理1正、余弦函数

阅读教材P13~P15“例1”以上部分,完成下列问题.

任意角的正弦、余弦函数的定义

(1)单位圆的定义

在直角坐标系中,以坐标原点为圆心,以单位长为半径的圆,称为单位圆.

(2)如图1-4-1所示,设α是任意角,其顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆O交于点P(u,v),那么:

图1-4-1

判断(正确的打“√”,错误的打“×”) (1)正弦函数、余弦函数的自变量都是角.( )

(2)正弦函数、余弦函数的角度通常用弧度制,这样有利于对三角函数的研究.( )

(3)角α确定,则角α的正弦、余弦函数值与点P 在终边上的位置无关.( ) (4)若sin α<0,则α为第三或第四象限角.( )

【解析】 根据三角函数的定义,知(1)正确,(3)正确;尽管在正弦函数、余弦函数的定义中,角α的值既可以用角度制,又可以用弧度制来表示,若用角度制表示时,如30°+sin 30°就无法进行运算,改用弧度制时,π6+sin π6就可以运算了,即自变量的单位与函数值的单位都用十进制数统一了,因而(2)正确;若sin α<0,α的终边也可能落在y 轴的负半轴上,因而(4)错.

【答案】 (1)√ (2)√ (3)√ (4)× 教材整理2 周期函数

阅读教材P 16~P 17练习以上部分,完成下列问题. 1.终边相同的角的正弦、余弦函数值的关系. (1)终边相同的角的正弦函数值相等,即 sin(x +2k π)=sin x (k ∈Z ).

(2)终边相同的角的余弦函数值相等,即 cos(x +2k π)=cos x (k ∈Z ).

2.一般地,对于函数f (x ),如果存在非零实数T ,对定义域内的任意一个x 值,都有f (x +T )=f (x ),则称f (x )为周期函数,T 称为这个函数的周期.

3.特别地,正弦函数、余弦函数是周期函数,称2k π(k ∈Z ,k ≠0)是正弦函数、余弦函数的周期,其中2π是正弦函数、余弦函数正周期中最小的一个,称为最小正周期.

判断(正确的打“√”,错误的打“×”) (1)2k π(k ∈Z )是正弦、余弦函数的周期.( )

(2)对正弦函数f (x )=sin x 有f ? ????π4+π2=f ? ????

π4,所以π2是f (x )的周期.( ) (3)若f (x )是定义域为R ,且周期为2的函数则f (-1)=f (1).( ) 【解析】 (1)错误.k ∈Z 且k ≠0时,2k π是正弦、余弦函数的周期. (2)错误.f ? ?

???π+π2≠f (π)不满足任意性.

(3)正确.f (-1)=f (-1+2)=f (1). 【答案】 (1)× (2)× (3)√

[小组合作型]

θ. 【精彩点拨】 利用正弦函数、余弦函数的定义可求sin θ,cos θ. 【自主解答】 当a >0时,r =a 2

+a 2

=2a ,得sin θ=a 2a =2

2

,cos θ

a 2a

=2

2.

当a<0时,r=a2+a2=-2a,得sin θ=

a

-2a

=-

2

2,cos θ=

a

-2a

2

2.

利用三角函数的定义求值的策略

1.求一个角的三角函数值,需确定三个量:角的终边上异于原点的点的横、

纵坐标及其到原点的距离.

2.若终边在直线上时,因为角的终边是射线,应分两种情况处理.

3.若已知角,则需确定出角的终边与单位圆的交点坐标.

[再练一题]

1.已知角α的终边在直线y=2x上,求角α的正弦值和余弦值.

【导学号:66470006】【解】设直线上任意一点P(a,2a),a≠0,

则r=a2+(2a)2=5|a|.

当a>0时,sin θ=2a

5|a|

2

5

25

5,

cos θ=a

5|a|

1

5

5

5.

当a<0时,sin θ=2a

5|a|

=-

2

5

=-

25

5,

cos θ=a

5|a|

-1

5

=-

5

5.

(1)

(2)若sin 2α>0,且cos α<0,试确定α所在的象限.

【精彩点拨】(1)由角的终边所在象限分别判断三角函数值的符号,进一步确定各式符号.

(2)根据正弦、余弦在各个象限的符号确定2α的象限,进而确定α所在的象限.

【自主解答】(1)∵340°是第四象限角,265°是第三象限角,

∴sin 340°<0,cos 265°<0,

∴sin 340°·cos 265°>0.

(2)∵sin 2α>0,

∴2kπ<2α<2kπ+π(k∈Z),

∴kπ<α

2(k∈Z).

当k为偶数时,设k=2m(m∈Z),

有2mπ<α<2mπ+π

2(m∈Z);

当k为奇数时,设k=(2m+1)(m∈Z),有2mπ+π<α<2mπ+3π

2(m∈Z).

∴α为第一或第三象限角.

又由cos α<0,可知α为第三象限角.

1.正弦、余弦函数值在各象限内取正数的规律可概括为“正弦上为正、余弦右为正”,即当角α的终边在x轴的上方时sin α>0;当角α的终边在y轴的右侧时,cos α>0.

2.对于确定角α所在象限的问题,应首先界定题目中所有三角函数的符号,然后根据各三角函数的符号来确定角α所在象限,则它们的公共象限即为所求.

3.由kπ<θ

2(k∈Z)确定θ所在象限时应对k进行分类讨论.

[再练一题]

2.(1)判断sin 2·cos 3

sin 4·

cos 6的符号;

(2)若sin α>0,cos α<0,判断角α所在象限.

【解】 (1)∵2∈? ????π2,π,3∈? ????π2,π,4∈? ????π,3π2,6∈? ????

3π2,2π,

∴sin 2>0,cos 3<0,sin 4<0,cos 6>0, ∴sin 2·cos 3

sin 4·

cos 6>0.

(2)∵sin α>0,∴α的终边在一、二象限或y 轴的正半轴上. ∵cos α<0,∴α的终边在二、三象限或x 轴的负半轴上. 故当sin α>0且cos α<0时,α在第二象限.

[探究共研型]

【提示】 相等.

探究2 终边相同的角的同名函数值相等吗?为什么?

【提示】 相等.因两角终边相同,其始边与单位圆交于同一点,由三角函数定义知同名函数值相等.

探究3 公式sin(2k π+x )=sin x ,k ∈Z ,cos(2k π+x )=cos x ,k ∈Z ,揭示了什么规律,有什么作用?

【提示】 (1)由公式可知,三角函数的值有“周而复始”的变化规律,即角α的终边每绕原点旋转一周,函数值将重复出现一次.

(2)利用此公式,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.

求下列各角的三角函数值. (1)sin ? ??

??

-236π;(2)cos 1 500°;

(3)sin 174π;(4)cos 253π.

【精彩点拨】 当角α不在0~2π之间时,常利用“终边相同的角的三角函数值相等”,把该角转化到0~2π之间,再求值.

【自主解答】 (1)sin ? ????-236π=sin ? ?

???-4π+π6=sin π6=12.

(2)cos 1 500°=cos(4×360°+60°)=cos 60°=1

2. (3)sin 174π=sin ? ?

???2π×2+π4=sin π4=22.

(4)cos 253π=cos ? ?

?

??2π×4+π3=cos π3=12.

1.利用终边相同的正弦、余弦值之间的关系可把任意角的三角函数化归为[0,2π)内的三角函数,实现“负化正,大化小”,体现了数学中的化归(转化)思想.

2.要熟记一些特殊角的三角函数,有利于准确求值.

[再练一题]

3.求下列三角函数值. (1)cos(-1 050°); (2)sin ? ??

??

-31π4.

【解】 (1)∵-1 050°=-3×360°+30°, ∴-1 050°的角与30°的角终边相同. ∴cos(-1 050)°=cos 30°=32. (2)∵-31π4=-4×2π+π4, ∴角-31π4与角π

4的终边相同.

∴sin ? ??

??

-31π4=sin π4=22.

1.已知P (3,4)是终边α上一点,则sin α等于( ) A .34 B .43 C .45 D.35 【解析】 ∵r =32+42=5,∴sin α=4

5

.

【答案】 C 2.cos

25π

6

的值为( ) A .-12 B .-32 C .12 D.32 【解析】 cos 25π6=cos ? ?

???4π+π6=cos π6=32.

【答案】 D

3.已知函数y =f (x )是周期函数,周期T =6,f (2)=1,则f (14)= .

【导学号:66470007】

【解析】 f (14)=f (2×6+2)=f (2)=1. 【答案】 1

4.使得lg(cos α·tan α)有意义的角α是第 象限角.

【解析】 要使原式有意义,必须cos α·tan α>0,即需cos α·tan α同号,所以α是第一或第二象限角.

【答案】 一或二

5.已知|s in x |>sin x ,求x 的取值范围. 【解】 由|sin x |>sin x ,得sin x <0, 在x ∈[0,2π],π

又y=sin x是周期为2π的函数,则在x∈R时,x的取值范围是((2k+1)π,2(k+1)π),k∈Z.

关于正弦函数和余弦函数的计算公式

同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα

cot(π-α)=-cotα sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα sin(2π-α)=-sinαcos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotα sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)

11知识讲解_正弦函数、余弦函数的性质_基础

正弦函数、余弦函数的性质 【学习目标】 1.了解周期函数、周期、最小正周期的定义; 2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】 要点一:周期函数的定义 函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释: 1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足 )()(x f T x f =+都不能说T 是)(x f y =的一个周期. 2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期. 要点二:正弦函数、余弦函数的图象和性质 (1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域. (2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求

sin()y x =-的单调递增区间时, 应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先 求定义域. 要点三:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>的性质. 函数sin()y A x ω?=+与函数cos()y A x ω?=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R (2)值域:[],A A - (3)单调区间:求形如sin()y A x ω?=+与函数cos()(,0)y A x A ω?ω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ω?+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由 )(2 22 2Z k k x k ∈+ ≤+≤- π π?ωπ π解出x 的范围所得区间即为增区间,由 )(2 3222Z k k x k ∈+≤+≤+ππ?ωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>不一定具备奇偶性.对于函数sin()y A x ω?=+,当()k k z ?π=∈时为奇函数,当()2 k k z π ?π=±∈时为偶函数; 对于函数cos()y A x ω?=+,当()k k z ?π=∈时为偶函数,当()2 k k z π ?π=±∈时为奇函数. 要点诠释: 判断函数sin()y A x ω?=+,cos()y A x ω?=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件. (5)周期:函数sin()y A x ω?=+及函数cos()y A x ω?=+的周期与解析式中自变量x 的系数有关,其周期为2T π ω = . (6)对称轴和对称中心 与正弦函数sin y x =比较可知,当()2 x k k z π ω?π+=± ∈时,函数sin()y A x ω?=+取得最大值(或 最小值),因此函数sin()y A x ω?=+的对称轴由()2 x k k z π ω?π+=± ∈解出,其对称中心的横坐标 ()x k k z ω?π+=∈,即对称中心为,0()k k z π?ω-?? ∈ ??? .同理,cos()y A x ω?=+的对称轴由

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

48正弦余弦函数的图像定义域值域(1)讲解

第四章 三角函数 4.8正弦、余弦函数的图像、定义域、值域 选择题 1.α在第三、四象限,sinα=m m --43 2,则m 的取值范围是 ( ) A .(-1,0) B .(-1,21) C .(-1,23 ) D .(-1,1) 2.函数f (x )=Msin (ωx +?)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M , f (b )=M ,则函数g (x )=Mcos (ωx +?)在[a ,b ]上( ) A .是增函数 B .是减函数 C .可以取得最大值M D .可以取得最小值- M 解答题 3.已知方程sinx +cosx =k ,在0≤x ≤π上有两解,求k 的取值范围. 4.作出函数y =|sinx |+|cosx |.x ∈[0,π]的图象,并写出函数的值域. 5.设函数f (x )=A +Bsinx ,若B <0时, f (x )的最大值是23,最小值是-21 ,则A =_____,B =_____. 6.x ∈(0,2π)且cosx <sinx <21 ,则x 的取值范围是_____. 7.求函数sin cos y x x =+的值域。 8. 求函数sin y x x =-的值域。

9.求函数234sin 4y x cos x =--的最大值和最小值,并写出函数取最值时对应的x 的值。 10.求函数sin cos sin cos y x x x x =++?的值域。 11.(2003年高考·北京)已知函数f (x )=cos 4x -2sinxcosx -sin 4x . (Ⅰ)求f (x )的最小正周期; (Ⅱ)若x ∈[0,2 π],求f (x )的最大值、最小值. · 答案解析 · 1.【解析】应-1<m m --43 2<0得:? ?? ??-<->-<-324040 32m m m m ① 或? ?? ??-<-<->-43204032m m m m ② 解①得-1<m <23 解②得?.【答案】C 2.【解析】由题意可知-M <M ,∴M >0 又由f (x )|min =f (a )=-M ; f (x )|max =f (b )=M . 知a ≤x ≤b 时,-1≤sin (ωx +?)≤1 故2kπ-2π≤ωx +?≤2k π+2 π ,得0≤cos (ωx +?)≤1, ∴g(x )=Mcos (ωx +?)在[a ,b ]上可取得最大值M .【答案】C 3.【解】原方程sinx +cosx =k 2?sin (x +4 π)=k 在同一坐标系内作函数y 1= 2sin

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

正弦余弦函数的性质定义值域

正弦函数、余弦函数的性质 ——定义域与值域 目的:要求学生掌握正、余弦函数的定义域与值域,尤其能灵活运用有界性 求函数的最值和值域。 过程: 一、复习:正弦和余弦函数图象的作法 二、研究性质: 1.定义域:y=sinx, y=cosx 的定义域为R 2.值域: 1?引导回忆单位圆中的三角函数线,结论:|sinx|≤1, |cosx|≤1 (有界性) 再看正弦函数线(图象)验证上述结论 ∴y=sinx, y=cosx 的值域为[-1,1] 2?对于y=sinx 当且仅当x=2k π+ 2 π k ∈Z 时 y max =1 当且仅当时x=2k π-2 π k ∈Z 时 y min =-1 对于y=cosx 当且仅当x=2k π k ∈Z 时 y max =1 当且仅当x=2k π+π k ∈Z 时 y min =-1 3.观察R 上的y=sinx,和y=cosx 的图象可知 当2k π0 当(2k-1)π0 当2k π+ 2π

(正弦、余弦函数的定义域、值域)

正、余弦函数图象和性质 一、知识点梳理: 1.正、余弦函数图象和性质表 函数 正弦函数R x x y ∈=,sin 余弦函数R x x y ∈=,cos 图象 定义域 ),(+∞-∞ ),(+∞-∞ 值域 ]1,1[- 当= x 时,1max =y 当= x 时,1min -=y ]1,1[- 当=x 时,1max =y 当= x 时,1min -=y 周期 性 是周期函数,最小正周期=T 是周期函数,最小正周期=T 奇偶性 奇函数,图象关于 对称 偶函数,图象关于 对称 单调性 在)(], [Z k ∈上是增函数 在)(],[Z k ∈上是减函 数 在)(], [Z k ∈上是增函数 在)(], [Z k ∈上是减函数 对称轴 )(,Z k x ∈= )(,Z k x ∈= 对称 中心 )( ), ( Z k ∈ )( ), ( Z k ∈ 2.利用“五点法”作函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的简图,是将?ω+x 看着一个整体,先令ππ ππ ?ω2,2 3, ,2 ,0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象. 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将 ?ω+x 看着整体并与基本正弦函数加以对照而得出.它的最小正周期| |2ωπ= T 4.图象变换 (1)振幅变换 R x x y ∈=,sin ??????????????→?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,sin A (2)周期变换 R x x y ∈=,sin ??????????????→?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,sin ω (3)相位变换 R x x y ∈=,sin ????????????→?<>个单位长度 平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(sin ? (4)复合变换 R x x y ∈=,sin ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(sin ? ??????????????→?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈+=),sin(?ω ??????????????→?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 二、习题训练 1、要得到函数x x y 2cos 2sin -=的图象,只要将函数x x y 2cos 2sin +=的图象沿x 轴( )个单位 A .向右平移 4 π B .向左平移 4 π C .向右平移 2 π D .向左平移 2 π 2、已知的定义域是函数x x y o x cos sin ),2,(-+=∈π ( ) A.][0,π B.]23, 2 [π π C. ],2[ππ D. ],22 3[ππ 3、若x x f sin )(是周期为π的奇函数,则)(x f 可以是 ( ) A .x sin B .x cos C. x 2sin D .x 2cos 4.设函数()sin()()3 f x x x R π =+∈,则下列结论正确的是( ). A 、()f x 的图像关于点(,0)3 π对称 B 、()f x 的图像关于直线3x π =对称 C 、把()f x 的图像向右平移3 π 个单位,得到一个奇函数的图像 D 、()f x 的最小正周期为2π,且在[0,]3π 上为增函数 5、对于函数)0,(A, )sin(的常数均为不等于, ?ω?ω+=x A y ,有下列说法:

【B402】正弦函数与余弦函数的定义

高一同步之每日一题【B402】 正弦函数与余弦函数的定义 B4021.若点(P -在角α的终边上,则角α的最小正值为______. 解:由点在(P -在第二象限可知角α的终边在第二象限. 由于||4OP ==,因此21cos cos12042 α-==-=?. 所以,角α的最小正值为120?. B4022.已知角θ的终边经过点(,3)P x ,其中0x ≠,且cos x θ=,求sin θ与cos θ的值. 解:由||OP = cos 10 x θ==. 解得1x =-,或1x =. 当1x =-时,sin 10θ==,cos θ=; 当1x =时,sin θ= =,cos θ= B4023.已知角θ的终边上的点均在直线3y x =上,点(,)P m n 在角θ的 终边上,且||OP =,求sin θ与cos θ的值. 解:由题意可知3n m =,且||OP == 解得m n ==-或m n = = 当m n ==-, sin 10θ= =-cos 10θ==-; 当m n ==, sin 10θ==,cos 10 θ==.

B4024.若角α的终边上一点的坐标为(sin135,cos135)P ??,则角α的最小正值为______. 解:由于点(sin135,cos135)P ??即为点P , 因为角α的终边在第四象限的角平分线上. 所以角α的最小正值为315?. B4025.若角α的终边上一点的坐标为22(cos ,sin )33P ππ-,则角α的最小正值为______. 解:由于点22(cos ,sin )33 P ππ-即为点1(,22P --, 因为角α的终边在第三象限,且1cos240,sin 2402?=- ?=所以角α的最小正值为240?. B4026.若角α的终边上一点的坐标为22(cos ,sin )55P ππ-,则角α的最小正值为______. 解:因为22cos cos(2)55πππ=-,22sin sin(2)55 πππ-=-, 且2802255 ππππ<-=<. 所以角α的最小正值为85 π. B4027.若角α的终边上一点的坐标为22(sin ,cos )55P ππ,则角α的最小正值为______. 解:因为22sin cos()525πππ=-,22cos sin()525 πππ=-, 且2022510 ππππ<-=<. 所以角α的最小正值为10 π.

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

第二节 正弦函数和余弦函数的定义及诱导公式

第二节 正弦函数和余弦函数的定义及诱导公式 A 组 1.若cos α=-35,α∈(π2 ,π),则tan α=________. 解析:cos α=-35,α∈(π2,π),所以sin α=45,∴tan α=sinαcosα=-43 . 答案:-43 2.(2009年高考北京卷)若sin θ=-45 ,tan θ>0,则cos θ=________. 解析:由sin θ=-45<0,tan θ>0知,θ是第三象限角,故cos θ=-35 . 答案:-35 3.若sin(π6+α)=35,则cos(π3 -α)=________. 解析:cos(π3-α)=cos[π2-(π6+α)]=sin(π6+α)=35.答案:35 4.(2010年合肥质检)已知sin x =2cos x ,则5sinx -cosx 2sinx +cosx =______. 解析:∵sin x =2cos x ,∴tan x =2,∴5sinx -cosx 2sinx +cosx =5tanx -12tanx +1=95 . 答案:95 5.(原创题)若cos2θ+cos θ=0,则sin2θ+sin θ=________. 解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=12 ,当cos θ=-1时,有sin θ=0,当cos θ=12时,有sin θ=±32 .于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或3或- 3 6.已知sin(π-α)cos(-8π-α)=60169,且α∈(π4,π2 ),求cos α,sin α的值. 解:由题意,得2sin αcos α=120169 .①又∵sin 2α+cos 2α=1,② ①+②得:(sin α+cos α)2=289169,②-①得:(sin α-cos α)2=49169 . 又∵α∈(π4,π2 ),∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713.③sin α-cos α=713 ,④ ③+④得:sin α=1213.③-④得:cos α=513 . B 组 1.已知sin x =2cos x ,则sin 2x +1=________. 解析:由已知,得tan x =2,所以sin 2x +1=2sin 2x +cos 2x =2sin2x +cos2x sin2x +cos2x =2tan2x +1tan2x +1=95 .答案:95 2.(2010年南京调研)cos 10π3 =________. 解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-12 3.(2010年西安调研)已知sin α=35,且α∈(π2,π),那么sin2αcos2α 的值等于________.

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

正弦余弦函数的定义教学反思

《任意角正弦、余弦函数的定义》公开课后的教学反思2017年4月12日,在数学组备课组长、教研组长及所有组内同事的共同指导与帮助下,我有幸在高一1605班上了一节《任意角正弦、余弦函数的定义》的公开课。本节内容是北师大版高一数学必修四第一章第三节的内容,该节内容是对推广后任意角的正弦、余弦函数的重新定义,理论性较强,虽然学生在初中有学习过相应的函数知识,但由于任意角的推广,学生对于任意角的正弦、余弦函数就不那么容易理解了。整节课讲授之后,我才发现学生的学习情况并没有自己想象中的那么理想与完美,因此,对于这节课,我做出以下几点教学反思: 1.对“数学概念”的反思——学会数学的思考 对一名高中数学教师而言教学反思首先是对数学概念的反思。 对于学生来说,学习数学的一个重要目的是要学会数学的思想,用数学的眼光去看世界去了解世界:用数学的精神来学习。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,去挖掘、发现新的问题,解决新的问题。因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。 2.对“备学生”的反思---学会课前多“备学生” 教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来,这样我们才能更充分了解学生的思想,掌握他们的学习情况。因此,课前充分去“备学生”—--备学生的思想,备学生的差异,备学生的基础都是很有必要的。 3.对“备教材”的反思----学会课前多听课 由于我是今年开学初才接任的高中数学科教学任务,教学时间短,经验不是很足,因此,在备教材的时候,感觉自己也有点力不从心。整节课的内容,虽然我花了很长的时间去备课,但到了真正的课堂,在和学生一起探究正弦、余弦函数定义的环节时,我发现自己仍存在一定的问题,比如:如何引导学生通过构造

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》 江西省铜鼓县铜鼓中学漆赣湘(336200) 教材:北师大版高一数学必修四第一章第四节第一小节 一、教学目标 1.知识与技能目标 (1)了解任意角的正弦函数、余弦函数定义产生的背景和应用; (2)掌握任意角的正弦函数与余弦函数的定义,正确理解三角函数是以实数为自变量的函数,并能应用. 2.过程与方法目标 (1)通过参与知识的“发现”与“形成”的过程,培养合理猜测的能力,体会函数模型思想,数形结合思想. (2)培养观察、分析、探索、归纳、类比及解决问题的能力.3.情感、态度、价值观目标 在学习中感悟数学概念的合理性、严谨性、科学性.感悟数学的本质,培养追求真理的精神.通过本节的学习,使同学们对正弦函数与余弦函数有了一个全新的认识,通过对定义的应用,提高学生分析、解决问题的能力. 二、教学重难点 教学重点: 任意角的正弦函数与余弦函数的定义(包括定义域和函数值在各象限的符号)及其应用. 难点: 任意角的正弦函数与余弦函数的定义及其构建过程的理解. 三、教学方法与教学手段 问题教学法、合作学习法结合多媒体课件 四、教学过程

(一)问题引入【投影展示】 问题1:初中我们学过锐角α的正弦函数与余弦函数,同学们还记得它是怎样表示的吗? 借助右图直角三角形,复习回顾. sin s r α α==的对边 斜边 , cos h r α== α的邻边 斜边 . 问题2:锐角三角函数就是以锐角为自变量,以比值为函数值的 函数,那么该比值会随着三角形的大小而改变吗?为什么?(根据相似三角形的知识可知该比值不会发生改变) (二)新知探究 我们所学角的范围已经扩充到任意角,如果角α为任意角,显然初中正弦函数与余弦函数的定义已经不能满足我们的需求,我们必须重新定义正弦函数、余弦函数.今天,我们将在直角坐标系中,对此作深入探讨. 【投影展示】问题3:如图,在直角坐标系中,我们作出一个以原点为圆心,以单位长度为半径的圆,该圆称为单位圆.设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,终边与单位圆交于点(,) P u v,你能求出sinα与cosα的值吗?该值与点P的坐标有什么关系呢? 由学生自己探究,得出结论,sin v v r α==, cos u u r α==. 归纳总结:一般地,在直角坐标系中,给定 α r x y (,) P u v O α M

正弦、余弦函数的定义域、值域

正弦、余弦函数的定义域、值域 教学目标: 1.能指出正弦、余弦函数的定义域,并用集合符号来表示; 2.能说出函数sin y x =,x R ∈和cos y x =,x R ∈的值域、最大值、最小值,以及使函数取得这些值的x 的集合。 教学重、难点:与正、余弦函数相关的函数的定义域的求法。 教学过程: (一)复习: 1.三角函数的定义。 (二)新课讲解: 1 例1:求下列函数的定义域: (1)sin 2y x =; (2)cos()3 y x π =+; (3)y = (4)1 sin 1 y x = +; (5)lgsin y x =. 解:(1)2x R ∈, ∴x R ∈; (2) 3 x R π +∈, ∴x R ∈; (3)sin 0x ≥, ∴[2,2]x k k πππ∈+()k Z ∈; (4)sin 10x +≠,∴sin 1x ≠-, ∴{|x x x R ∈∈且2,}2 x k k Z π π≠- ∈; (5)2250sin 0 x x ?-≥?>? ∴5522() x k x k k Z πππ-≤≤?? <<+∈? ∴ [5,)[0,)x ππ∈--U . 2.正、余弦函数的值域 例2:求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么? (1)cos 1y x =+,x R ∈; (2)sin 2y x =,x R ∈. 解:(1)使函数cos 1y x =+,x R ∈取得最大值的x 的集合,就是使函数cos y x =,x R ∈ 取得最大值的x 的集合{|2,}x x k k Z π=∈,

所以,函数cos 1y x =+,x R ∈的最大值是112+=. (2)令2z x =,那么x R ∈必须并且只需z R ∈,且使函数sin y z =,z R ∈取得最大值 的z 的集合是{|2,}2 z z k k Z π π= +∈,由222 x z k π π== +,得4 x k π π= +, 即:使函数sin 2y x =,x R ∈取得最大值的x 的集合是{|,}4 x x k k Z π π=+∈,函数的最大值是1. 说明:函数sin()y A x ω?=+,x R ∈的最值:最大值||A ,最小值||A -. 例3:求下列函数的值域: (1)21sin 1y x = +; (2)sin sin 2 x y x = +. 解:(1)∵2 0sin 1x ≤≤,∴2 1sin 12x ≤+≤, ∴1 12 y ≤≤ 所以,值域为1 {|1}2 y y ≤≤. (2)2sin 1y x y = -, ∴1sin 1x -≤≤, ∴2111y y -≤ ≤-, 解得113y -≤≤, 所以,值域为1 {|1}3 y y -≤≤. 小结: 1.正、余弦函数的定义域、值域; 2.与正、余弦函数相关的一些函数的定义域、值域。 作业补充: 求下列函数的值域: (1)2sin 1sin x y x +=+;(2)cos 3 cos 2 x y x +=+;(3)y asinx b =+(其中,a b 为常数).

6.1.1 正弦函数和余弦函数的图像与性质(含答案)

【课堂例题】 例1.试画出正弦函数在区间[0,2]π上的图像. 例2.试画出余弦函数在区间[0,2]π上的图像. 课堂练习 1.作函数sin y x =-与sin 1y x =+在区间[0,2]π上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系. 3.作函数cos ,[,]y x x ππ=∈-的大致图像. 4.利用3.解不等式:cos sin ,[,]x x x ππ≥∈-

【知识再现】 正弦函数:y = ,x ∈ ; 余弦函数:y = ,x ∈ . 正弦函数和余弦函数在[0,2]π上的大致图像: 【基础训练】 1.(1)若MP 和OM 分别是角 76 π 的正弦线和余弦线,则( ) A.0MP OM <<;B.0OM MP >>; C.0OM MP <<;D.0MP OM >>. (2)正弦函数与余弦函数在区间[,]ππ-内的公共点的个数是( ) A.1; B.2; C.3; D.4. 2.我们学过的诱导公式中, (1)说明余弦函数cos ,y x x R =∈的图像关于y 轴对称的是 ; (2)说明正弦函数sin ,y x x R =∈的图像关于直线2 x π = 对称的是 . 3.(1)函数cos 3,y x x R =+∈的值域是 ; (2)函数24sin 2,(0,)y x x π=-∈的值域是 . 4.函数cos ,[0,2]y x x π=∈和1y =的图像围成的封闭的平面图形的面积为 . 5.利用“五点法”,画出下列函数的大致图像:(步骤:列表、描点、联线) (1)1sin ,[,]y x x ππ=+∈-; (2)cos ,[0,2]y x x π=-∈. O y x

三角函数的图像与性质()—正余弦函数的定义域值域

1 / 2 1.3.2 三角函数的图像与性质(2) 一、课题:正、余弦函数的定义域、值域 二、教学目标:1.能指出正弦、余弦函数的定义域,并用集合符号来表示; 2.能说出函数sin y x =,x R ∈和cos y x =,x R ∈的值域、最大值、最小值,以及使函数取得这些值的x 的集合。 三、教学重、难点:与正、余弦函数相关的函数的定义域的求法。 四、教学过程: (一)复习: 1.三角函数的定义。 (二)新课讲解: 1 (1)sin 2y x =; (2)cos()3y x π=+ ; (3)y =; (4)1sin 1 y x =+; (5)lgsin y x =. 解:(1)2x R ∈, ∴x R ∈; (2)3x R π +∈, ∴x R ∈; (3)sin 0x ≥, ∴[2,2]x k k πππ∈+()k Z ∈; (4)sin 10x +≠,∴sin 1x ≠-, ∴{|x x x R ∈∈且2,}2x k k Z π π≠-∈; (5)2250sin 0x x ?-≥?>? ∴5522()x k x k k Z πππ-≤≤??<<+∈? ∴ [5,)[0,)x ππ∈--. 2.正、余弦函数的值域 (1)cos 1y x =+,x R ∈; (2)sin 2y x =,x R ∈. 解:(1)使函数cos 1y x =+,x R ∈取得最大值的x 的集合,就是使函数cos y x =,x R ∈ 取得最大值的x 的集合{|2,}x x k k Z π=∈, 所以,函数cos 1y x =+,x R ∈的最大值是112+=. (2)令2z x =,那么x R ∈必须并且只需z R ∈,且使函数sin y z =,z R ∈取得最大值 的z 的集合是{|2,}2z z k k Z π π=+∈,由222x z k π π==+,得4x k π π=+, 即:使函数sin 2y x =,x R ∈取得最大值的x 的集合是{|,}4 x x k k Z ππ= +∈,函数的最大值是1. 说明:函数sin()y A x ω?=+,x R ∈的最值:最大值||A ,最小值||A -. 例3:求下列函数的值域: (1)21sin 1y x =+; (2)sin sin 2 x y x =+. 解:(1)∵20sin 1x ≤≤,∴21sin 12x ≤+≤, ∴ 112 y ≤≤

正弦函数和余弦函数的图象

1.4.1 正弦函数和余弦函数的图象 编写人: 杨朝书 审核人:王维芳 时间 2010-3-22 一、学习目标 1、 了解如何利用正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象。 2、 会用“五点法”画出正弦函数、余弦函数的简图。 二、重点难点 重点:正弦函数、余弦函数的图象。 难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数和余弦函数图象间的关系。 三、知识链接 1、sin(2)k απ+=_____________,cos(2)k απ+=____________,tan(2)k απ+=__________ (其中k Z ∈) 2、三角函数的几何表示,即___________,作出角 23 π 的正弦线、余弦线和正切线。 3、诱导公式:sin()2πα-= sin()2 πα+= cos()πα-= cos()πα+= 4、函数的定义__________________________________________________________________ 四、学习过程 [知识探究]正弦函数、余弦函数的图象 阅读课本30p 第一段:正弦函数、余弦函数的定义是:__________________________________. 问题1、用描点法作出正弦函数sin y x =的图象(试填写下表并描点,作出图象) 阅读课本31p 完成问题2、用几何法作出正弦函数sin y x =的图象。 1、利用几何法作正弦函数的图象可分为两步:一是画出______________的图象;二是把这一图象向_____________________________连续平移(每次2π个单位长度) 2、“五点法”作图的一般步骤是①_________;②_____________;③________________ 3、“五点法”作正弦函数图象的五个点是_______________________________;“五点法”作余弦函数图象的五个点是 _______________________________ 4、函数cos y x =(x R ∈)的图象可以通过sin ()y x x R =∈的图象向_______平移_____个单位长度得到。 5、通过图象能说出正弦曲线和余弦曲线是否是轴对称图象和中心对称图形?若是对称轴是什么?对称中心是什么? [典型例题] 例题 画出下列函数的简图: ⑴1sin y x =+,[0,2]x π∈;⑵cos ,[0,2]y x x π=-∈;⑶1sin(2)26 y x π= + 变式:你能否从函数图象变换的角度出发,利用函数sin y x =,[0,2]x π∈的图象来得到1sin y x =+, [0,2]x π∈的图象?同样的,能否从函数cos ,[0,2]y x x π=∈的图象得到函数cos ,[0,2] y x x π=-∈的图象?

相关文档
相关文档 最新文档