文档库 最新最全的文档下载
当前位置:文档库 › 图解常用离散型随机变量

图解常用离散型随机变量

图解常用离散型随机变量
图解常用离散型随机变量

22卷第1期2019年1月

高等数学研究

STUDIES IN COLLEGE MATHEMATICS

Vol.22,No. 1Jan. , 2019

doi :

10. 3969/j. issn. 1008-1399. 2019. 01. 033

图解常用离散型随机变量

杨夜茜

(同济大学数学科学学院,上海200092)

摘要在

率论的学习中,一个重要章节就是常用的离散型随机变量的学习.离

型随机变量包括伯努利分布, 二项分布,泊松分布,几何分布,超几何分布和负二项

分布等等.在本文中,首先借

助时间流的图形表达,从伯努利 试验次数和成功次数角度

区分其中的一些常用变量;其次通过一个流程图的方式柢理这些常用的离散型随

变量 的定义.本文的目的在于,基于常规的离散型随机变量的分布律等介绍之余,首次尝试从不同的比较汇总角度,借 助图表方法对常用的离散型

变量进行梳理和总结

,起

,加

强对常用离散型随机变量概念

.

关键词

;伯

;成

;时

;流

中图分类号

0211

文献标识码

A

文章编号

1008-1399(2019)01 -0118-03

Explanation of Discrete Random Variable by Diagrams

Y A N G Xiaohan

(School of Mathematics Science, Tongji University, Shanghai 200092, China)

Abstract

This paper uses time flows and flow charts to describe discrete random variables , such as Ber -

n o u lli , Binom ial , Poisson , Geometric , and Negative Binomial variables , based on two key points : number of tria ls , and number of successes .

Keywords

discrete random variable,num ber of tria ls , number of successes,time flo w , flo w chart

i 引言

关于常用的离散型随机变量,它们的定义、分 布律、概率、期望和方差等,在教科书或者是文献 中,已经有非常明确的定义[1_3].在笔者多年的教学 中发现,学生在学习这些随机变量的时候,通常会 出现计算题准确率很高,但涉及定义的问题回答模 糊.因此在本文中,不重复介绍离散型随机变量的 分布律等,尝试从不同的比较和汇总的角度借助图 表方法对这些常用的离散型随机变量进行梳理.在 文献[4]中,George C asella 给出了随机变量间的关 系图,描述了大部分的离散型和连续型随机变量两 两变量之间的联系.与他的关系图侧重点不同,在 本文中,首次设计了两种图形表述方式:时间流和

收稿日期:

2017-12-19 修改日期=2018 -03 -13

作者简介:杨筱菡(1977 —),女,江苏,博士,副教授,概率统计,

Email :xiaohyang @tongji . edu . cn

流程图.时间流的图形很具象,简单明了切中随机 变量定义的关键点.而在自上而下的流程图中,通 过回答每一个是与否的简单问题而找到变量的归 属.这两种图形方式,能快速理清每个常用的离散 型随机变量的定义,区分不同变量概念上的差异, 加强对概念的理解.

注这里要特别说明的是,本文中提及的常用的 随机变量仅是在本科公共基础课程“概率论与数理 统计”中提及的常用离散型随机变量,它们只是常 用离散型随机变量中的一部分,并非全部,例如二 项分布的推广一多项分布等就不在此文讨论的范 围内.

2时间流区分法

通常常用的离散型随机变量总是从讲述伯努

利试验开始,伯努利试验是一类可重复、独立的试 验,且一次试验的样本空间只有两个样本点,6卩{成 功,失败},有时把样本点“成功”描述为“事件A 发

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

《离散型随机变量》教案

高一数学必修2-3 2.1--01 《2.1.1离散型随机变量》导学案 编撰崔先湖姓名班级组名. 【学习目标】1.理解随机变量地意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量 地例子; 3.理解随机变量所表示试验结果地含义,并恰当地定义随机变量. 【学习重点】随机变量、离散型随机变量、连续型随机变量地意义 【学习难点】随机变量、离散型随机变量、连续型随机变量地意义 【学法指导】自主与讨论相结合 【导学过程】 一教材导读 思考1:掷一枚骰子,出现地点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币地结果是否也可以用数字来表示呢? 在掷骰子和掷硬币地随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定地数字表示.在这个对应关系下,数字随着试验结果地变化而变化. 定义1:称为随机变量.随机变量常用字母…表示. 思考2:随机变量和函数有类似地地方吗? 随机变量和函数都是一种映射,随机变量把随机试验地映为,函数把映为.在这两种映射之间,试验结果地范围相当于函数地,随机变量地取值范围相当于函数地.我们把随机变量地取值范围叫做随机变量地.例如,在含有10件次品地100 件产品中,任意抽取4件,可能含有地次品件数X 将随着抽取结果地变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出3 件以上次品”又如何用X 表示呢? 定义2:,称为离散型随机变量. 离散型随机变量地例子很多.例如某人射击一次可能命中地环数X 是一个离散型随机变量,它地所有可能取值为;某网页在24小时内被浏览地次数Y也是一个离散型随机变量,它地所有可能取值为.jLBHrnAILg 思考3:电灯地寿命X是离散型随机变量吗? 连续型随机变量: 对于随机变量可能取地值,可以取某一区间内地一切值,这样地变量就叫做连续型随机变 4.离散型随机变量与连续型随机变量地区别与联系: 注意:(1)有些随机试验地结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上xHAQX74J0X (2)若ξ是随机变量,b a b a, , + =ξ η是常数,则η也是随机变量 二、题型导航 题型一、随机变量概念地辨析 【例1】将一颗均匀骰子掷两次,不能作为随机变量地是:() (A)两次出现地点数之和;(B)两次掷出地最大点数;(C)第一次减去第二次地点数差;(D)抛掷地次数. 变式1(1)洪湖车站每天候车室候车地人数X,(2)张三每天走路地步数Y,(3)下落地篮球离地面地距离Z,(4)每天停靠洪湖港地船地数量S.不是离散型随机变量地是LDAYtRyKfE 解题总结 题型二、随机变量地值域 【例2】写出下列随机变量可能取地值,并说明随机变量所取地值表示地随机试验地结果 (1)一袋中装有5只同样大小地白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出地球地最大号码数ξ; (2)某单位地某部电话在单位时间内收到地呼叫次数η 变式2写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到地点数.(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球地个数.(3)抛掷两枚骰子得到地点数之和.(4)某项试验地成功率为0.001,在n次试验中成功地次数.(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手地射击次数X地可能取值解题总结 题型三有关随机变量地不等式 【例3】抛掷两枚骰子各一次,记第一枚骰子掷出地点数与第二枚骰子掷出地点数地和为ξ,试问:(1)“ξ< 4”表示地试验结果是什么? (2)“ξ> 11”表示地试验结果是什么? 变式3 抛掷两枚骰子各一次,记第一枚骰子掷出地点数与第二枚骰子掷出地点数地差为ξ,试问:“ξ> 4”表示地试验结果是什么?

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量的教学设计

“离散型随机变量”的教学设计 一、内容和内容解析 “随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。 “离散型随机变量”是这一章的开门课。因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。于是,本节课的第一个教学任务就是要做好章头图的教学。教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。 对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。 二、目标和目标解析 1.了解本章学习的内容和意义。具体要求为: (1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识; (2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关; (3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。这样不仅阐述了本章的主要内容,而且激发了学生的学习兴趣,使他们明确本章的学习目标以及研究本章内容的数学思想方法。 2.理解随机变量和离散型随机变量的描述性定义,以及随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变量。具体要求是: (1)在对具体问题的分析过程中,帮助学生理解用随机变量表示随机试验结果的意义和作用:为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量,掌握随机变量的描述性概念,了解随机变量与函数的关系,构造随机变量应当注意的问题(如随机变量应该有实际意义、应该尽量简单,以便于研究),以及用随机变量表示随机事件的方法等;

图解常用离散型随机变量

第 22卷第1期2019年1月 高等数学研究 STUDIES IN COLLEGE MATHEMATICS Vol.22,No. 1Jan. , 2019 doi : 10. 3969/j. issn. 1008-1399. 2019. 01. 033 图解常用离散型随机变量 杨夜茜 (同济大学数学科学学院,上海200092) 摘要在 概 率论的学习中,一个重要章节就是常用的离散型随机变量的学习.离 散 型随机变量包括伯努利分布, 二项分布,泊松分布,几何分布,超几何分布和负二项 分布等等.在本文中,首先借 助时间流的图形表达,从伯努利 试验次数和成功次数角度 区分其中的一些常用变量;其次通过一个流程图的方式柢理这些常用的离散型随 机 变量 的定义.本文的目的在于,基于常规的离散型随机变量的分布律等介绍之余,首次尝试从不同的比较汇总角度,借 助图表方法对常用的离散型 随 机 变量进行梳理和总结 ,起 到 区 分 变 量 的 差 异 ,加 强对常用离散型随机变量概念 的 理 解 . 关键词 常 用 离 散 型 随 机 变 量 ;伯 努 利 试 验 次 数 ;成 功 次 数 ;时 间 流 ;流 程 图 中图分类号 0211 文献标识码 A 文章编号 1008-1399(2019)01 -0118-03 Explanation of Discrete Random Variable by Diagrams Y A N G Xiaohan (School of Mathematics Science, Tongji University, Shanghai 200092, China) Abstract This paper uses time flows and flow charts to describe discrete random variables , such as Ber - n o u lli , Binom ial , Poisson , Geometric , and Negative Binomial variables , based on two key points : number of tria ls , and number of successes . Keywords discrete random variable,num ber of tria ls , number of successes,time flo w , flo w chart i 引言 关于常用的离散型随机变量,它们的定义、分 布律、概率、期望和方差等,在教科书或者是文献 中,已经有非常明确的定义[1_3].在笔者多年的教学 中发现,学生在学习这些随机变量的时候,通常会 出现计算题准确率很高,但涉及定义的问题回答模 糊.因此在本文中,不重复介绍离散型随机变量的 分布律等,尝试从不同的比较和汇总的角度借助图 表方法对这些常用的离散型随机变量进行梳理.在 文献[4]中,George C asella 给出了随机变量间的关 系图,描述了大部分的离散型和连续型随机变量两 两变量之间的联系.与他的关系图侧重点不同,在 本文中,首次设计了两种图形表述方式:时间流和 收稿日期: 2017-12-19 修改日期=2018 -03 -13 作者简介:杨筱菡(1977 —),女,江苏,博士,副教授,概率统计, Email :xiaohyang @tongji . edu . cn 流程图.时间流的图形很具象,简单明了切中随机 变量定义的关键点.而在自上而下的流程图中,通 过回答每一个是与否的简单问题而找到变量的归 属.这两种图形方式,能快速理清每个常用的离散 型随机变量的定义,区分不同变量概念上的差异, 加强对概念的理解. 注这里要特别说明的是,本文中提及的常用的 随机变量仅是在本科公共基础课程“概率论与数理 统计”中提及的常用离散型随机变量,它们只是常 用离散型随机变量中的一部分,并非全部,例如二 项分布的推广一多项分布等就不在此文讨论的范 围内. 2时间流区分法 通常常用的离散型随机变量总是从讲述伯努 利试验开始,伯努利试验是一类可重复、独立的试 验,且一次试验的样本空间只有两个样本点,6卩{成 功,失败},有时把样本点“成功”描述为“事件A 发

-离散型随机变量讲课教案

-离散型随机变量

§2.1.1离散型随机变量 教材分析 本节内容是数学2-3 第二章随机变量及其分布列的起始课,对后续内容的学习起着奠基的作用.是在学习了数学3第二章统计和第三章概率的知识后,对概率与统计内容的再学习,可以看作是对前面学习过的两章内容的应用和加深.要求能够理解随机变量及离散型随机变量的含义.本课题的重难点是随机变量、离散型随机变量的含义通过大量举出身边的实例,可以很好地帮助学生理解分随机变量、离散型随机变量的含义,要求学生有意识地运用概率与统计的视角,观察生活中的有关现象,为后续内容的学习作好积累上的准备. 课时分配 本节内容用1课时的时间完成,主要讲随机变量、离散型随机变量的含义. 教学目标 重点: 随机变量、离散型随机变量的含义 难点:随机变量、离散型随机变量的含义 知识点: 1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 能力点:发展抽象、概括能力,提高实际解决问题的能力.. 教育点:学会合作探讨,体验成功,提高学习数学的兴趣. 自主探究点:如何运用离散型随机变量的概念解释生活中的有关现象. 考试点:随机变量、离散型随机变量的含义. 易错易混点:随机变量与函数的区别. 拓展点:离散型随机变量的取值及其相应概率的特点. 教具准备多媒体、实物投影仪 课堂模式学案导学

一、引入新课 思考:掷一枚骰子,出现正面向上的点数共有几种不同的数字?能否用这些数值表示相应结果呢? 答:共有6中,可以用1 , 2 ,3,4,5,6来表示相应结果 思考:那么掷一枚硬币的结果是否也可以用数字来表示呢? 答:掷一枚硬币,可能出现正面向上、反面向上两种结果 虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上: 正面向上——1; 反面向上——0 师总结:在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示在这个对应关系下,数字随着试验结果的变化而变化这种随着试验结果的变化而变化的变量我们称为随机变量——引出随机变量的定义: 二、探究新知 (一)随机变量 随机变量的定义:随着试验结果变化而变化的变量称为随机变量(random variable ) 随机变量常用字母 X , Y,ξ,η,…表示 师举例:例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 生举例:1; 2;

离散型随机变量(优质课一等奖)

2.1离散型随机变量 淮北十二中崔军 一、教学目标解析 1.在对具体实例的分析中,认识和体会随机变量对刻画随机现象的重要性和建立随机变量概念的必要性,并会恰当地定义随机变量来描述所感兴趣的随机现象,能叙述随机变量可能取的值及其所表示的随机试验的结果; 2.在列举的随机试验中,通过对随机变量取值类型的分辨,归纳和概括离散型随机变量的特征,形成离散型随机变量的概念,并会利用离散型随机变量刻画随机试验的结果; 3.在举例、观察、思考、发现中经历将随机试验结果数量化的过程,渗透将实际问题转化为数学问题的思想方法,进一步形成用随机观念观察和分析问题的意识. 二、教学重点和难点解析: 本节内容是为求离散型随机变量的分布列作铺垫的一节概念课,所以要把随机变量和离散型随机变量的概念讲清楚。于是,可以确定的重点、难点是: 重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.难点:对随机变量意义的理解;构造随机变量的方法。 三、教学方法:启发讲授式与问题探究式. 四、教学手段:多媒体 五、教学过程设计: (一)情景引入展示图片:北京奥运男子50米步枪三姿决赛精彩一幕。 (二)新课讲解 试验1:某人在射击训练中,射击一次,命中的环数. 试验2:掷一枚骰子一次,向上的点数. 思考:从上述两个试验中,你能发现它们有无共同的特征? 1、随机变量定义: 问题1:随机变量与函数有什么区别与联系吗? 问题2:你能再举些随机试验的例子吗? 问题3:任何随机试验的所有结果都可以用数字表示吗?

试验3:观看一场足球赛,你比较喜欢的那个球队,会出现哪几种结果? 能否用数字刻画随机试验的结果呢? 试验4:掷一枚硬币,可能会出现哪几种结果?能否用数字来刻画这种随机试验的结果呢? 2、离散型随机变量的定义: 3、典型例题 例1、已知在10件产品中有2件不合格品。现从这10件产品中任取3件,这是一个随机现象。 (1)写成该随机现象所有可能出现的结果; (2)试用随机变量来描述上述结果。 练习:写成该随机现象所有可能出现的结果,并试用随机变量来描述上述结果。 (1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数。 (2)袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的最大号码数。 课时小结: 1、你能用自己的语言总结一下这节课的主要内容吗?随机变量、离散型随机变量的概念。 2、你能简单说说引入随机变量的好处吗? 思考:抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二次骰子掷出的点数差记为X,则X是一个随机变量。 (1)写成随机现象所有可能出现的结果。 (2)试用随机变量来描述上述结果。 (3)试问“X>4”表示的试验结果是什么? 教学反思:

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

常见离散型随机变量分布列示例

常见随机事件的概率与分布列示例 1、耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 2、独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论.

知识讲解 离散型随机变量(理)(基础)110

离散型随机变量及其分布列 【学习目标】 1.了解离散型随机变量的概念. 2.理解取有限个值的离散型随机变量及其分布列的概念. 3.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题. 4. 理解两个特殊的分布列:“两点分布”和“超几何分布”。 【要点梳理】 要点一、随机变量和离散型随机变量 1. “随机试验”的概念 一般地,一个试验如果满足下列条件: a .试验可以在相同的情形下重复进行. B .试验的所有可能结果是明确可知的,并且不止一个. c .每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果. 这种试验就是一个随机试验,为了方便起见,也简称试验. 2.随机变量的定义 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量. 通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ξ,η,ζ)等表示。 要点诠释: (1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。 例如,任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数量性质,但仍可以用数量来表示它,比如,我们用ξ来表示这个随机试验中出现正面向上的次数,则ξ=0,表示试验结果为反面向上,ξ=1,表示试验结果为正面向上。 (2)随机变量实质是将随机试验的结果数量化 。 3.离散型随机变量的定义 如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 4. 随机变量的分类 随机变量有以下两种: (1) 离散型随机变量: (2) 连续型随机变量: 如果随机变量可以取其一区间内的一切值,这样的随机变量叫做连续型随机变量. 要点诠释: 离散型随机变量和连续型随机变量的区别: 离散型随机变量,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值按一定次序一一列出. 连续性随机变量可取某一区间内的一切值,我们无法将其中的值一一列举. 例如,抛掷一枚骰子,可能出现的点数就是一个离散型随机变量;某人早晨在出租车站等出租车的时间(单位:秒)就不是一个离散型随机变量. 5. 若ξ是随机变量,,a b ηξ=+其中a,b 是常数,则η也是随机变量,并且不改变其属性(离散型、连续型)。 要点二、离散性随机变量的分布列 1. 分布列定义:

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 一、离散型随机变量: (1)概念:设X 是一个随机变量,如果X 的取值是有限个或者无穷可列个,则称X 为离散型随机变量。 其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布列,表格表示形式如下: (2)性质:?0i p ≥ ?1 1n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- 二、连续型随机变量: (1)概念:如果对于随机变量的分布函数()F x ,存在非负的函数()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞ = ? 则称X 为连续型随机变量,()f x 称为概率密度函数或者密度函数。 (2)连续型随机变量的密度函数的性质:?()0f x ≥ ? ()1f x dx +∞ -∞ =? ?{}()()()P a X b F b F a f x dx +∞ -∞ <≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= 三、连续型随机变量和离散型随机变量的区别: (1)由连续型随机变量的定义,连续型随机变量的定义域是(),-∞+∞,对于任何x ,000{}()()0P X x F x F x ==--=; 而对于离散型随机变量的分布函数有有限个或可列个间断点,其图形呈阶梯形。 (2)概率密度()f x 一定非负,但是可以大于1,而离散型随机变量的概率分布i p 不仅非负,而且一定不大于1. (3)连续型随机变量的分布函数是连续函数,因此X 取任何给定值的概率都为0. (4)对任意两个实数a b <,连续型随机变量X 在a 与b 之间取值的概率与区间端点无关,即: {}{}{}{}()() ()b a P a X b P a X b P a X b P a X b F b F a f x dx <<=≤≤=<≤=≤<=-= ? 即:{}{}()P X b P X b F x <=≤= 四、常用的离散型随机变量的分布函数: (1)0-1分布:如果离散型随机变量X 的概率分布为:

《离散型随机变量的分布列》教学设计

中国教育学会中学数学教学专业委员会 2016年高中青年数学教师优秀课展示与研讨活动 《离散型随机变量的分布列》教学设计 一、教材分析 《离散型随机变量的分布列》是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第二课时,主要内容是学习分布列的定义、性质、应用和两点分布模型。离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。从近几年的高考观察,这部分内容有加强命题的趋势。一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。 二、学情分析 在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过设计抽奖方案,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列的三种表示方法及分布列的性质,培养学生分析问题、解决问题的能力。

相关文档
相关文档 最新文档