文档库 最新最全的文档下载
当前位置:文档库 › 最新半导体物理复习提纲知识讲解

最新半导体物理复习提纲知识讲解

最新半导体物理复习提纲知识讲解
最新半导体物理复习提纲知识讲解

基础知识

1.

导体,绝缘体和半导体的能带结构有什么不同 ?并以此

说明半导体的导电机理(两种载流 子参与导电)与金属有何不同?

导体能带中一定有 不满带 ;绝缘体能带中只有 满带和空带 ,禁带宽度较宽一般大于 2eV ; 半导体

T=0 K 时,能带中只有满带和空带, T>0 K 时,能带中有不满带,禁带宽度较小,一 般小于 2eV 。(能带

状况会发生变化)

半导体的导带没有电子, 但其价带中电子吸收能量, 会跃迁至导带, 价带中也会剩余空 穴。在外电场的情况下, 跃迁到导带中的 电子 和价带中的 空穴都会 参与导电 。而金属中价带 电子是非满带,在外场的作用下直接产生电流。

2. 什么是空穴 ?它有哪些基本特征 ?以硅为例,对照能带结构和价键结构图理解空穴概念。

当满带附近有空状态 k '时,整个能带中的电 流,以及电流在外场作用下的变化,完全如同存 在一个带正电荷 e 和具有正有效质量 |m n * | 、速 度为 v ( k ')的粒子的情况一样,这样假想的粒子 称为空穴。

3. 半导体材料的一般特性。

( 1)电阻率介于导体与绝缘体之间

(2)对温度、光照、电场、磁场、湿度等敏感 ( 3)性质与掺杂密切相关

4.

费米统计分布与玻耳兹曼统计分布 的主要差别是什么?什么情况下

费米分布函数可以转

化为玻耳兹曼函数?为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描 述?

麦克斯韦 -玻尔兹曼统计的粒子是 可分辨的 ;费米-狄拉克统计的粒子 不可分辨 ,而且每 个状态只可能占据一个粒子。 低掺杂半导体中载流子遵循玻尔兹曼分布, 称为 非简并性系统 ;

高掺杂半导体中载流子遵循费米分布,称为

简并性系统 。

玻尔兹曼分布

空穴分布函数: 能态 E 不被电子占据的几率)

函数转化为即玻尔兹曼分布。

半导体中常见费米能级位于禁带中,满足的条件,因此导带和价带中的所有量子态来说,电子和空穴都可以用玻尔兹曼分布描述。

5. 由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分析半导体材料特性。

靠近费米能级的能带上的载流子远大于远离费米能级那边,因此将该能带上的载流子称为多数载流子简称多子。反之则为少数载流子,简称少子。

受热不均匀时,费米能级产生倾斜,导致电子从能量高的一侧流向能量低的一侧。费米能级分裂时,有非平衡载流子产生。

6. 何谓准费米能级?它和费米能级的区别是什么?当外界有大能量注入,或很多载流子注入时,载流子数量会发生突然的变化。不在遵循费米分布,费米能级暂时失灵,将这种情形下的载流子称为非平衡载流子。非平衡态下,统一的费米能级分裂为导带费米能级和价带费米能级,称其为准费米能级

7. 比较Si,Ge,GaAs 能带结构的特点,并说明各自在不同器件中应用的优势。

锗、硅的导带在简约布里渊区分别存在四个(8

个半个的椭球等能面)和六个能量最小值,导带电子

主要分布在这些极值附件,称为锗、硅的导带具有多

能谷结构。

硅和锗的导带底和价带顶在k 空间处于不同的k

值,电子跃迁时伴随着声子的发射和吸收,称为间接

带隙半导体。适用于制作半导体器件。

砷化镓的导带底和价带顶位于k 空间的同一k 值,电子发生跃迁时,仅电子的能量发生变化,称为直接带隙半导体。用于制备发光器件时,其内部量子效率较高。

8. 重空穴,轻空穴的概念。

当存在极大值相重合的两个价带时,外能带曲率小,对应的有效质量大,称该能带中的空穴为重空穴;内能带曲率大,对应的有效质量小,称该能带中的空穴为轻空穴

9. 有效质量、状态密度有效质量、电导有效质量概念。

有效质量概括了半导体内部势场的作用,使得我们在解决电子的运动规律时不涉及内部势场作用。

有效质量:

电导有效质量:

状态密度有效质量:

导带底电子能态密度有效质量:

价带顶空穴能态密度有效质量:

10. 什么是本征半导体和本征激发? 本征半导体:没有杂质和缺陷的纯净半导体。 本征激发: T>0K 时,

电子 通过 热运动 从价带激发到导带,同时价带中产生空穴。

11. 何谓施主杂质和受主杂质?浅能级杂质与深能级杂质 ?各自的作用。

施主杂质:电离时能够 释放 电子而产生导电电子,并形成 正电中心 的杂质。 受主杂质:电离时能够 获取 电子而产生导电空穴,并形成 负电中心 的杂质。 浅能级杂质: 电离能小 的杂质称为浅能级杂质。 所谓浅能级, 是指施主能级靠近导带底, 受主能级靠近价带顶。 可以通过控制掺杂杂质数量控制载流子数量, 并可以通过 补偿掺杂 进 行追加式的浓度控制。

深能级杂质:非 III 、V 族元素在硅、锗的禁带中产生的施主能级距离导带底较远和受主 能级距离价带顶较远, 形成深能级, 称为深能级杂质。 深能级能起到 减少非平衡载流子寿命 的作用。

12. 何谓杂质补偿?举例说明有何实际应用。

半导体中同时存在施主杂质和受主杂质时, 施主和受主之间有相互 抵消的作用。 利用杂 质的补偿作用, 根据扩散或离子注入的方法来 改变 半导体某一区域的 导电类型 ,制成各种器 件。在一块 n 型半导体基片的一侧掺入较高浓度的受主杂质, 由于杂质的补偿作用, 该区就 成为p型半导体。

13. 金原子的带电状态与浅能级杂质的关系? 不容易电离,对载流子浓度影响不大。 深能级杂质能够 产生多

次电离 ,每次电离均对应一个能级 ,甚至既产生施主能级也产生 受主能级。

深能级杂质的复合作用比浅能级杂质强,可作为 复合中心 。

14. 画出( a )本征半导体、 ( b )n 型半导体、( c ) p 型半导体的能带图,标出费米能级、导 带底、价

带顶、施主能级和受主能级的位置

15. 重掺杂的半导体其能带结构会发生何种变化?

在重掺杂的简并半导体中, 杂质浓度很高。 杂质原子相互靠近, 被杂质原子束缚的电子 的波函数显著重叠,这时电子作 共有化运动 。那么,杂质能级扩展为 杂质能带 。

杂质能带中的电子,可以通过杂质原子间共有化运动参加导电 --- 杂质带导电 。 大量杂质中心的电势会影响晶体周期势场, 从而对能带产生扰动, 使得在禁带中靠近导 带或价带处出现 带尾 。

当杂质能带展宽,并与导带底或价带顶连接上时,相当于禁带宽度变窄

16. 何谓非简并半导体、简并半导体?简并化条件?

非简并半导体:可用玻尔兹曼分布近似费米分布的半导体。简并半导体:不可用玻尔兹曼分布近似费米分布的半导体。当掺杂浓度很高时,会使E F接近或进入了导带—半导体简并化了。

E C-E F>2k 0T 非简并

0

E C-E F<0 简并

17.写出热平衡时,非简并半导体n0、p0、n D 、p A 的表达式,n0、p0 用n i表示的表达式。

18. n型、p 型(包括同时含有施主和受主杂质)半导体的电中性方程。

19. 解释载流子浓度随温度的变化关系,并说明为什么高温下半导体器件无法工作。

低温时半导体获得能量小于杂质电离能,杂质电离不充分。

中温时杂质完全电离,本征激发未开始,载流子浓度较稳定。

高温时始本征激发占主导作用,大量电离。

本征激发产生的载流子远多于杂质电离产生的载流

子,半导体器件失去控制。

20. 温度、杂质浓度对费米能级位置的影响。

n 型半导体费米能级靠近导带底。 p 型半导体费米能级靠近价带顶。

随着温度升高,无论 n 型还是 p 型半导体都将转变为(高温)本征半导体,从而半导 体中费米能级随着温度的升高逐渐 趋近于禁带中央 。

21. 热平衡态、非平衡态、稳态概念 .

热平衡态:,没有外界作用,电子的复合率等于热产生率。 非平衡态:在外界作用下,热平衡条件被破坏,偏离了热平衡状态,称为非平衡状态 稳态:外界能量恒定时为稳态。

22. 非平衡状态下载流子浓度表达式(用准费米能级表示) 和空穴浓度 p 的乘积。

载流子的各种运动

1.

何谓直接复合?间接复合? 直接复合:导带电子直接跃迁到价带与空穴复合。 间接复合:通过位于禁带中的杂质或缺陷能级的中间过渡。

2. 推导直接复合的非平衡载流子寿命公式, 从直接复合的非平衡载流子寿命公式出发说明小 注入条件下,

寿命为定值。

复合率: R=rnp 产生率: G=rn 0p 0 净复合率: U d =R-G=r(np-n 0p 0) 将 n= n 0+ Δn 、p= p 0+ Δp 代入得: U d = r(n 0+p 0) Δp+r( Δp) 2

非平衡载流子寿命: τ=

小注入情况下Δ p (n 0+p 0),则有:

3. 了解间接复合的净复合率公式中各参量代表的意义,

明深能级是最有效的复合中心。

,比较平衡与非平衡下电子浓度 n

并从间接复合的净复合率公式出发说

命达到极小值。 这意味着复合中心能级 E t 的位置越靠近禁带中央, 复合中心的复合作用越强。 因此,通过掺入深能级杂质来降低非平衡载流子寿命是确实有效的。

4.

已知间接复合的非平衡载流子寿命公式的一般形式, 会化简不同费米能级位置下的寿命公

式。

強 n 型区( E t < E F < E c ):

5. 半导体的主要散射机制?温度对它们的影响

晶格振动(声子)散射 : , 或者声子数

目越多,电子遭声学波声子散射的概率越大。

电离杂质散射 : 越大,于是可以很快掠过杂质中心,偏转小,受到电离杂质的影响小。 对于杂质半导体, 温度低 时,电离

杂质散射 起主要作用; 温度高 时, 晶格振动散射 起主 要作用

6. 何谓漂移运动? 半导体中的载流子在 外场 的作用下,作 定向运动 。

7. 迁移率的定义 、量纲。影响迁移率的因素。

漂移速度 :因电场加速而获得的 平均 速度。 影响因素: 有效质量 、 散射

8. 解释迁移率与杂质浓度、温度的关系。 掺杂很轻(忽略电离杂质散射) : T ↑→晶格振动散射↑→μ↓

一般情况低温: T ↑→电离杂质散射↓→μ↑ 一般情况高温: T ↑→晶格振动散射↑→μ↓ ,此时净复合率 U 取最大值,非平衡载流子的寿

强 p 型区( E V < E F

,原因? 温度升高

散射增加

。温度越高电子热运动速度越大

。温度越高载流子热运动的平均速度

,温度升高散射减少

迁移率:单位电场下,载流子的平均漂移速度(

2

cm /V ·s )

时双曲函数

弱 n 型区

弱 p 型区

9. 解释电阻率随温度的变化关系。低温:T ↑→电离杂质散射↓→μ↑→ρ↓→ρ↓

n (未全电离):T↑→ n↑→ρ↓ 中温:T ↑→晶格振动散射↑→μ↓→ρ↑→ρ↑

n (全电离):n=N D 饱和高温:T ↑→晶格振动散射↑→μ↓→ρ↑→ρ↓↓

n (本征激发开始):T↑→ n↑↑→ ρ↓↓

10. 强电场下Si、Ge 和GaAs 的漂移速度的变化规律,并解释之。无电场时:载流子与晶格散射,交换的净能量为零,载流子与晶格处于热平衡状态。弱电场时:载流子从电场获得能量,与声子作用过程中,一部分通过发射声子转移给晶格,其余部分用于提高载流子的漂移速度。但漂移速度很小,仍可认为载流子系统与晶格系统近似保持热平衡状态。

电场较强时:载流子从电场获得很多能量,载流子的平均能量比热平衡状态时的大,因而载流子系统与晶格系统不再处于热平衡状态。

电场很强时:载流子从电场获得的能量与晶格散射时,以光学波声子的方式转移给了晶格。所以获得的大部分能量又消失,故平均漂移速度可以达到饱和。

GaAs 特殊性:因为GaAs 的多能谷结构决定的。卫星能谷的曲率比中心能谷要小,因此有效质量大。当电场不强时,导带电子都集中在中心能谷,但是随着电场强度的增加,能谷1 中的电子从电场中获得足够能量后开始转移到卫星能谷中,发生能谷间的散射。由于卫星能谷有效质量大,所以电子转移的结果使平均迁移率下降,从而出现电场强度增加漂移速度下降,即电导率下降的负微分电导区域。

11. 何谓热载流子?载流子的平均能量比热平衡时大,即载流子的动能高于平均热运动能量。

12. 载流子在什么情况下做扩散运动?扩散系数的定义、量纲。载流子依靠浓度梯度所产生的一种定向运

动。

扩散系数D:表征载流子在一定分布下扩散的快慢,主要由晶体内部的散射机制决定。单位:cm/S 2

13. 爱因斯坦关系式?理解推导过程。

表征了非简并情况下载流子迁移率和扩散系数之间的关系。

14. 扩散长度和牵引长度的定义。扩散长度:表征少数载流子一边扩散,一边复合所能够走过的平均距离。

牵引长度:载流子在寿命时间内所漂移的距离。

15.在不同条件下,对连续性方程进行化简。

16.平均自由时间、非平衡载流子寿命概念。

平均自由时间:载流子在电场中作漂移运动时,只有在连续两次散射之间的时间内才做加速运动,这段时间称为自由时间,其平均值为平均自由时间。

非平衡载流子寿命:寿命τ表示光照停止之后,非平衡载流子浓度衰减到原来的数值1/e 所经历的时间,也表示非平衡载流子的平均生存时间。

17. 平均自由程与扩散长度概念。

扩散长度:非平衡载流子深入样品的平均距离,称为扩散长度。平均自由程:相邻两次碰撞之间的平均距离,即称为载流子的平均自由程。

18. 小注入、大注入概念

小注入:获得能量后非平衡载流子,尤其是非平衡少子的数量远远小于原来热平衡时多子的数量,称为非平衡少子的小注入。

大注入:非平衡少子的数量已达到或超过热平衡多子的数量,那么就会出现所有的少子的总量会达到与多子总量接近的程度,产生多子不多少子不少的情形,将其称为非平衡少子的大注入。

半导体与外界作用、半导体接触现象

1. 本课程中哪几种外界作用能够改变单一半导体的电导率,试述原理。

温度:温度可以影响载流子浓度和载流子的分布。低温弱电离,中文全电离,高温本征激发。温度不均匀使载流子浓度不均匀,导致扩散运动,产生温差电动势。

光照:光照使半导体吸收光子,价带电子激发到导带产生非平衡载流子,产生光生伏特效应。

磁场:霍尔效应,通了电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。一些物质如半导体中的载(电)流子在一定的恒定(直流)磁场和高频磁场同时作用下会发生抗磁共振(常称回旋共振)。

外力:对半导体施加外力,使内部晶格间距发生变化,改变半导体内部势场,导致能带变化。由于载流子迁移率的变化,电阻率发生变化

2. 请说出判断半导体导电类型的实验方法。

n 型半导体 <0 , p 型半导体 >0。

3. 试述平衡 p-n 结形成的物理过程,画出势垒区中载流子漂移运动和扩散运动的方向。

当 p 型半导体和 n 型半导体接触在一起时, 扩散 和漂 移这一对相反的运动最终达到平衡,相当于两个区之间没 有电荷运动,空间电荷区的厚度固定不变。在两者的交界 面处存在着一个过渡区,通常称为 p-n 结。

p 区空穴扩散电子漂移, n 区电子扩散空穴漂移。 4. 内建电势差 V D 的公式 。分析影响接触电势差的因素。

接触电势差与 PN 结两侧掺杂 浓度 、温度、材料 等参数有关。

5. 平衡 p-n 结、正向偏置 p-n 结、反向偏置 p-n 结的空间图、能带图,各区域载流子浓度 表达式、载流

子运动方向、电流方向。

qV D

qV ( x)

qV ( x)

k 0T

k 0T

nx

n n0e 0

n x

n p 0e 0

qV D qV ( x)

qV(x)

k 0T

k 0T

px

p n0 e

p

x p p0e

6. 分别说明空间电荷区、耗尽区、势垒区的三个概念

空间电荷区 :也称耗尽层。 在 PN 结中,由于自由电子的扩散运动和内电场导致的漂移运 动,使 PN 结中间的部位 (P 区和 N 区交界面 )产生一个很薄的电荷区,它就是空间电荷区。

耗尽区 :耗尽区是指在半导体 pn 结、肖特基结、异质结中,由于界面两侧半导体原有 化学势的差异导致界面附近 能带弯曲 ,从而形成 能带弯曲区域 电子或空穴浓度的 下降的 界面 区域。

势垒区 :存在内建电场的区域就是势垒区。

7. 理想 p-n 结 I-V 方程 。

8. p-n 结的理想伏 -安特性与实际伏 - 安特性有哪些区别?定性分析原因。 正向小电压时忽略了势垒区的复

合电流; 正向大电压时忽略了扩散区的漂移电流和体电 阻上的压降。

在反向偏置时忽略了势垒区的产生电流。

9 .p-n 结电容包括哪两种?在正向偏置或反向偏置下哪种电容起主要作用?为什么? 势垒电容:由于势垒区

电荷变化导致的 p-n 结电容,记为 C T 。 反偏电压 越大,势垒电 容越大。

扩散区电容:由于扩散区电荷变化导致的 p-n 结电容,记为 C D 。 正偏电压 越大,扩散 区电容越大,因为只有此时扩散区才存在足够多数量的非平衡少子。

10. 定性分析影响 p-n 结电容大小的因素?并举例说明 p-n 结电容对器件性能的影响。

C T 与 C

D 都与 p-n 结的面积 A 成正比,与掺杂浓度有关,且随外加电压而变化。寄生电 容能短路高频

信号。寄生电容会使 p-n 结的整流特性显著削弱甚至消除。

11. p -n 结击穿主要有哪几种 ?说明各种击穿产生的原因和条件。 并分析影响它们的主要因素 雪崩击穿 :p-n 结中的电场随着反向电压的增加而增加, 少数载流子通过反向扩散进入 势垒区时获得的动能也就越来越

大,当载流子的动能大到一定数值后,与中性原子碰撞时, 可以把中性原子的价电子激发到导带,形成电子

-空穴对—— 碰撞电离 。连锁反应使载流子 的数量倍增式的急剧增多,因而 p-n 结的反向电流也急剧增

大,形成了 雪崩击穿 。掺杂 浓 度大,击穿电压小。禁带宽度越宽 ,击穿电压越大 。温度升高,击穿电压增大 。

齐纳击穿 :根据量子力学的观点,当隧道长度 X AB 足够窄时,将有 p 区电子穿透禁带 . 当外加反向电压很大时,能带倾斜严重,势隧道长度

X AB 变得更窄 .造成很大的反向电流,使

p-n 结击穿。掺杂 浓度大,击穿电压小。禁带宽度越宽,击穿电压越大。温度升高 ,击穿电 压下降 。 12. 从能带图出发,分析 p-n 结隧道效应的基本原理,与一般 p-n 二极管的伏 - 安特性有什

么不同 ?它有什么优点 ?

当 p-n 结的两边都是重掺杂时 : (1) 费米能级分别 进入导带和价带 。 (2)势垒十分薄 。在外加正向或反向 电压下,有些载流子将可能穿透势垒产生额外的电流 — 隧道电流 。

隧道二极管优点是开关特性好,速度快、工作频率高。

14.实际半导体通过什么方式实行欧姆接触?

在生产实际中, 主要是利用 隧道效应 的原理在半导体上制造欧姆接触。 体与 金属 接触( 金半接触 )。

15. 比较 pn 结和肖特基结伏安特性的主要异同点。 为什么肖特基结更适应高频条件下使用? ( 1)SDB

是多数载流子器件 ,而 p-n 结二极管电流取决于非平衡少数载流子的扩散运 动。

( 2) p-n 结二极管中,少数载流子注入造成非平衡载流子在势垒区两侧界面的积累, 外加电压变化,电荷积累和消失需有一弛豫过程

(电荷存储效应 ),严重影响了 p-n 结二极管

的高频性能。 SDB 器件不发生电荷存储现象 ,使得它在高频、高速器件中有重要作用。

( 3)SDB 的正向开启电压 比p-n 的低;而反向饱和电流 比 p-n 的大。这是因为多数载 流子电流远高于少数载流子电流。 SDB 中通常存在额外的漏电流。

16. 异质结能带结构特点及应用

n-p 型

采用 重掺杂 半导

p-n 型

p-p 型n-n 型

半导体物理学简答题及答案

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念,用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F作用下,电子的波失K不断改变,f=h(dk/dt),其变化率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。 7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?答:沿不同的晶向,能量带隙不一样。因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。 1.为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 答:空穴是一个假想带正电的粒子,在外加电场中,空穴在价带中的跃迁类比当水池中气泡从水池底部上升时,气泡上升相当于同体积的水随气泡的上升而下降。把气泡比作空穴,下降的水比作电子,因为在出现空穴的价带中,能量较低的电子经激发可以填充空穴,而填充了空穴的电子又留下了一个空穴。因此,空穴在电场中运动,实质是价带中多电子系统在电场中运动的另一种描述。因为人们发现,描述气泡上升比描述因气泡上升而水下降更为方便。所以在半导体的价带中,人们的注意力集中于空穴而不是电子。 2.有两块硅单晶,其中一块的重量是另一块重量的二倍.这两块晶体价带中的能级数是否相等,彼此有何联系? 答:相等,没任何关系 3.为什么极值附近的等能面是球面的半导体,当改变磁场方向时只能观察到一个共振吸收峰。答:各向同性。 5.典型半导体的带隙。 一般把禁带宽度等于或者大于2.3ev的半导体材料归类为宽禁带半导体,主要包括金刚石,SiC,GaN,金刚石等。26族禁带较宽,46族的比较小,如碲化铅,硒化铅(0.3ev),35族的砷化镓(1.4ev)。 第二章1.说明杂质能级以及电离能的物理意义。为什么受主、施主能级分别位于价带之上或导带之下,而且电离能的数值较小?答:被杂质束缚的电子或空穴的能量状态称为杂质能级,电子脱离杂质的原子的束缚成为导电电子的过程成为杂质电离,使这个多余的价电子挣脱束缚成为导电电子所需要的能量成为杂质电离能。杂质能级离价带或导带都很近,所以电离能数值小。 2.纯锗,硅中掺入III或Ⅴ族元素后,为什么使半导体电学性能有很大的改变?杂质半导体(p型或n型)应用很广,但为什么我们很强调对半导体材料的提纯?答:因为掺入III或Ⅴ族后,杂质产生了电离,使得到导带中得电子或价带中得空穴增多,增强了半导体的导电能力。极微量的杂质和缺陷,能够对半导体材料的物理性质和化学性质产生决定性的影响,,当然,也严重影响着半导体器件的质量。 4.何谓深能级杂质,它们电离以后有什么特点?答:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。特点:能够产生多次电离,每一次电离相应的有一个能级。 5.为什么金元素在锗或硅中电离后可以引入多个施主或受主能级?答:因为金是深能级杂质,能够产生多次电离,

半导体物理学基础知识_图文(精)

1半导体中的电子状态 1.2半导体中电子状态和能带 1.3半导体中电子的运动有效质量 1半导体中E与K的关系 2半导体中电子的平均速度 3半导体中电子的加速度 1.4半导体的导电机构空穴 1硅和锗的导带结构 对于硅,由公式讨论后可得: I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰 II.磁感应沿【1 1 0】方向,有两个吸收峰 III.磁感应沿【1 0 0】方向,有两个吸收峰 IV磁感应沿任意方向时,有三个吸收峰 2硅和锗的价带结构 重空穴比轻空穴有较强的各向异性。 2半导体中杂质和缺陷能级 缺陷分为点缺陷,线缺陷,面缺陷(层错等 1.替位式杂质间隙式杂质

2.施主杂质:能级为E(D,被施主杂质束缚的电子的能量状态比导带底E(C低ΔE(D,施主能级位于离导带底近的禁带中。 3. 受主杂质:能级为E(A,被受主杂质束缚的电子的能量状态比价带E(V高ΔE(A,受主能级位于离价带顶近的禁带中。 4.杂质的补偿作用 5.深能级杂质: ⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。 ⑵这些深能级杂质能产生多次电离。 6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内部形成空位而无间隙原子。 空位表现出受主作用,间隙原子表现出施主作用。 3半导体中载流子的分布统计 电子从价带跃迁到导带,称为本征激发。 一、状态密度 状态密度g(E是在能带中能量E附近每单位间隔内的量子态数。 首先要知道量子态,每个量子态智能容纳一个电子。 导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。 二、费米能级和载流子的统计分布

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。 1.4空穴 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的

半导体物理学试题库完整

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数.内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。(状态密度.费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。(正.相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。([100]. 间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷.肖特基缺陷) 6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。(1/2.1/1+exp(2)) 7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。(间接带隙.直接带隙) 8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。(玻尔兹曼分布.费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度.禁带宽度) 10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石.闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化.则具有这种能带结构的半导体称为_________禁带半导体.否则称为_________禁带半导体。(直接.间接) 12. 半导体载流子在输运过程中.会受到各种散射机构的散射.主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射.晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径.主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴.复合中心)

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

半导体物理重点

半导体重点 第一章 1.能带论:用单电子近似的方法研究晶体中电子状态的理论成为能带论。 2.单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其它电子的平均势场中运动的。 3.金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导体。半导体中,如图所示,下面是被价电子占满的满带,亦称价带,中间为禁带,上面是空带,当温度升高,或者有光照的时候,满带中有少量电子可能被激发到上面的空带中去,此时半导体就能导电了。在半导体中导带的电子和价带的空穴均参与导电,金属中只有电子导电。 4.电子公有化运动:当原子相互接近形成晶体是,不同原子的相似壳层之间就有了一定程度的交叠,电子不再完全局限在一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体中运动,这种运动就称为电子的共有化运动。 第二章 1.施主杂质:在Si,Ge中电离是能够施放电子而产生导电电子,并形成正电中心的杂质。常见V族杂质有:P,As,Sb

2.受主杂质:在Si,Ge中电离是能够接收电子而产生导电空穴并形成负电中心的杂质。 常见的III族杂质:B,Al,Ga,In 3.深能级:非III,V族杂质在Si,Ge的禁带中产生的施主能级距导带底较远,产生的受主能级距价带顶也较远,通常称这种能级为深能级,相应的杂质为深能级杂质。 作用:这些深能级杂质能够产生多次电离,每一次电离相应的有一个能级。因此这些杂质在Si,Ge的禁带中往往引入若干个能级,而且有的杂质既能产生施主能级,又能产生受主能级。对于载流子的复合作用比前能级杂质强,Au是一种很典型的复合中心,在制造高速开关器件是,常有意掺入Au以提高器件的速度。 4.补偿作用:在半导体中,施主和受主杂质之间的相互抵消的作用称为杂质的补偿。 (1)当N >>N :为n型半导体,(2)当N >>N :为P型半导体,(3)N >>N 时,施主电子刚好填充受主能级,虽然杂质很多,但不能向导带和价带提供电子和空穴,这种现象称为杂质的高度补偿。 利用杂质的补偿作用,可以根据需要用扩散或者离子注入方法来改变半导体中某一区域的导电类型,以制成各种器件。

半导体物理试题总结

半导体物理学考题 A (2010年1月)解答 一、(20分)简述下列问题: 1.(5分)布洛赫定理。 解答:在周期性势场中运动的电子,若势函数V(x)具有晶格的周期性,即:)x (V )na x (V =+, 则晶体中电子的波函数具有如下形式:)x (u e )x (k ikx =ψ,其中,)x (u k 为具有晶格周期性的 函数,即:)x (u )na x (u k k =+ 2.(5分)说明费米能级的物理意义; 试画出N 型半导体的费米能级随温度的变化曲线。 解答: 费米能级E F 是反映电子在各个能级中分布情况的参数。 能量为E F 的量子态被电子占据的几率为1/2。 N 型半导体的费米能级随温度变化曲线如右图所示:(2分) 3、(5分)金属和N 型半导体紧密接触,接触前,二者的真空能级相等,S M W W <。试画出金属— 半导体接触的能带图,标明接触电势差、空间电荷区和内建电场方向。 解答: 4.(5分)比较说明施主能级、复合中心和陷阱在半导体中的作用及其区别。 解答: 施主能级:半导体中的杂质在禁带中产生的距离能带较近的能级。可以通过杂质电离过程向半导体导带提供电子,因而提高半导体的电导率;(1分) 复合中心:半导体中的一些杂质或缺陷,它们在禁带中引入离导带底和价带顶都比较远的局域化能级,非平衡载流子(电子和空穴)可以通过复合中心进行间接复合,因此复合中心很大程度上影响着非平衡载流子的寿命。(1分) 陷阱:是指杂质或缺陷能级对某一种非平衡载流子的显著积累作用,其所俘获的非平衡载流子数目可以与导带或价带中非平衡载流子数目相比拟。陷阱的作用可以显著增加光电导的灵敏度以及使光电导的衰减时间显著增长。(1分) 浅施主能级对载流子的俘获作用较弱;有效复合中心对电子和空穴的俘获系数相差不大,而且,其对非平衡载流子的俘获几率要大于载流子发射回能带的几率。一般说来,只有杂质的能级比费米能级离导带底或价带顶更远的深能级杂质,才能成为有效的复合中心。而有效的陷阱则要求其对电子和空穴的俘获几率必须有很大差别,如有效的电子陷阱,其对电子的俘获几率远大于对空穴的俘获几率,因此才能保持对 C v FN FM E i E ? C i d V

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体物理知识

半导体物理知识整理

————————————————————————————————作者:————————————————————————————————日期:

基础知识 1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同? 导体:能带中一定有不满带 半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带 禁带宽度较小,一般小于2eV 绝缘体:能带中只有满带和空带 禁带宽度较大,一般大于2eV 在外场的作用下,满带电子不导电,不满带电子可以导电 总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体 半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性 金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息 2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。 当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴 3.半导体材料的一般特性。 电阻率介于导体与绝缘体之间 对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力) 性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力) 4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。为什么通常情况下,半导体中载流子分布都可以

半导体物理答案知识讲解

半导体物理答案

一、选择 1.与半导体相比较,绝缘体的价带电子激发到导带所需的能量(比半导体的大); 2.室温下,半导体Si 掺硼的浓度为1014cm -3,同时掺有浓度为1.1×1015cm -3的磷,则电子 浓度约为(1015cm -3 ),空穴浓度为(2.25×105cm -3 ),费米能级为(高于E i );将该半导 体由室温度升至570K ,则多子浓度约为(2×1017cm -3),少子浓度为(2×1017cm -3),费米 能级为(等于E i )。 3.施主杂质电离后向半导体提供(电子),受主杂质电离后向半导体提供(空穴),本征 激发后向半导体提供(空穴、电子); 4.对于一定的n 型半导体材料,温度一定时,减少掺杂浓度,将导致(E F )靠近E i ; 5.表面态中性能级位于费米能级以上时,该表面态为(施主态); 6.当施主能级E D 与费米能级E F 相等时,电离施主的浓度为施主浓度的(1/3)倍; 重空穴是指(价带顶附近曲率较小的等能面上的空穴) 7.硅的晶格结构和能带结构分别是(金刚石型和间接禁带型) 8.电子在晶体中的共有化运动指的是电子在晶体(各元胞对应点出现的几率相同)。 9.本征半导体是指(不含杂质与缺陷)的半导体。 10.简并半导体是指((E C -E F )或(E F -E V )≤0)的半导体 11.3个硅样品的掺杂情况如下: 甲.含镓1×1017cm -3;乙.含硼和磷各1×1017cm -3;丙.含铝1×1015cm -3 这三种样品在室温下的费米能级由低到高(以E V 为基准)的顺序是(甲丙乙) 12.以长声学波为主要散射机构时,电子的迁移率μn 与温度的(B 3/2次方成反比) 13.公式*/q m μτ=中的τ是载流子的(平均自由时间)。 14.欧姆接触是指(阻值较小并且有对称而线性的伏-安特性)的金属-半导体接触。 15.在MIS 结构的金属栅极和半导体上加一变化的电压,在栅极电压由负值增加到足够大 的正值的的过程中,如半导体为P 型,则在半导体的接触面上依次出现的状态为(多数载 流子堆积状态,多数载流子耗尽状态,少数载流子反型状态)。 16.在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带(曲 率小),对应的有效质量(大),称该能带中的空穴为(重空穴E )。 17.如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。 18.在通常情况下,GaN 呈(纤锌矿型 )型结构,具有(六方对称性),它是(直接带 隙)半导体材料。 19.同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0值是乙的2倍,那么用类氢模型计算结果是(甲的施主杂质电离能是乙的32/9,的 弱束缚电子基态轨道半径为乙的3/8 )。 20.一块半导体寿命τ=15μs,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的(1/e 2)。 21.对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够 高、n i >> /N D -N A / 时,半导体具有 (本征) 半导体的导电特性。 22.在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向 (Ev )移动;当掺杂浓度一定时,温度从室温逐步增加,费米能级向( Ei )移动。 23.把磷化镓在氮气氛中退火,会有氮取代部分的磷,这会在磷化镓中出现(产生等电子 陷阱)。 24.对于大注入下的直接复合,非平衡载流子的寿命不再是个常数,它与(非平衡载流子 浓度成反比)。

半导体物理学第七章知识点

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静 止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0 它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。 金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。 与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数 图7-3 半导体功函数和电子亲合能

半导体物理学题库20121229

1.固体材料可以分为 晶体 和 非晶体 两大类,它们之间的主要区别是 。 2.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半 导体称 N 型半导体。 3.半导体中的载流子主要受到两种散射,它们分别是 电离杂质散射 和 晶格振动散射 。前者在 电离施 主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 4.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载 流子将做 漂移 运动。 5.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那末, 为非 简并条件; 为弱简并条件; 简并条件。 6.空穴是半导体物理学中一个特有的概念,它是指: ; 7.施主杂质电离后向 带释放 ,在材料中形成局域的 电中心;受主杂质电离后 带释放 , 在材料中形成 电中心; 8.半导体中浅能级杂质的主要作用是 ;深能级杂质所起的主要作用 。 9. 半导体的禁带宽度随温度的升高而__________;本征载流子浓度随禁带宽度的增大而__________。 10.施主杂质电离后向半导体提供 ,受主杂质电离后向半导体提供 ,本征激发后向半导体提 供 。 11.对于一定的n 型半导体材料,温度一定时,较少掺杂浓度,将导致 靠近Ei 。 12.热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与 和 有关,而与 、 无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度 12. 指出下图各表示的是什么类型半导体? 13.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不 变 ;当温度变化时,n o p o 改变否? 改变 。 14.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命 τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 15. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子 运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 16.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 17.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主 要作用 对载流子进行复合作用 。

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图: 电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触 附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。 2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低 附常规npn截面图 造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。 通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图: 由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。 附基区中电子浓度示意图: 电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

半导体物理学第八章知识点

第8章 半导体表面与MIS 结构 许多半导体器件的特性都和半导体的表面性质有着密切关系,例如,晶体管和集成电路的工作参数及其稳定性在很大程度上受半导体表面状态的影响;而MOS 器件、电荷耦合器件和表面发光器件等,本就是利用半导体表面效应制成的。因此.研究半导体表面现象,发展相关理论,对于改善器件性能,提高器件稳定性,以及开发新型器件等都有着十分重要的意义。 §8.1 半导体表面与表面态 在第2章中曾指出,由于晶格不完整而使势场的周期性受到破坏时,禁带中将产生附加能级。达姆在1932年首先提出:晶体自由表面的存在使其周期场中断,也会在禁带中引入附加能级。实际晶体的表面原子排列往往与体内不同,而且还存在微氧化膜或附着有其他分子和原子,这使表面情况变得更加复杂。因此这里先就理想情形,即晶体表面无缺陷和附着物的情形进行讨论。 一、理想一维晶体表面模型及其解 达姆采用图8-l 所示的半无限克龙尼克—潘纳模型描述具有单一表面的一维晶体。图中x =0处为晶体表面;x ≥0的区域为晶体内部,其势场以a 为周期随x 变化;x ≤0的区域表示晶体之外,其中的势能V 0为一常数。在此半无限周期场中,电子波函数满足的薛定谔方程为 )0(20202≤=+-x E V dx d m φφφη (8-1) )0()(2202≥=+-x E x V dx d m φφφη (8-2) 式中V (x)为周期场势能函数,满足V (x +a )=V(x )。 对能量E <V 0的电子,求解方程(8-1)得出这些 电子在x ≤0区域的波函数为 ])(2ex p[)(001x E V m A x η -=φ (8-3) 求解方程(8-2),得出这些电子在x ≥0区域中波函数的一般解为 kx i k kx i k e x u A e x u A x ππφ22212)()()(--+= (8-4) 当k 取实数时,式中A 1和A 2可以同时不为零,即方程(8-2)满足边界条件φ1(0)=φ2(0)和φ1'(0)=φ2'(0)的解也就是一维无限周期势场的解,这些解所描述的就是电子在导带和价带中的允许状态。 但是,当k 取复数k =k '+ik ''时(k '和k ''皆为实数),式(8-4)变成 x k x k i k x k x k i k e e x u A e e x u A x '''--''-'+=ππππφ2222212)()()( (8-5) 此解在x→∞或-∞时总有一项趋于无穷大,不符合波函数有限的原则,说明无限周期势场不能有复数解。但是,当A 1和A 2任有一个为零,即考虑半无限时,k 即可取复数。例如令A 2=0,则 x k x k i k e e x u A x ''-'=ππφ2212)()( (8-6) 图8-l 一维半无限晶体的势能函数

半导体物理考研总结

1.布喇格定律(相长干涉):点阵周期性导致布喇格定律。 2.晶体性质的周期性:电子数密度n(r)是r的周期性函数,存在 3.2πp/a被称为晶体的倒易点阵中或傅立叶空间中的一个点,倒易点中垂线做直线可得布里渊区。 3.倒易点阵: 4.衍射条件:当散射波矢等于一个倒易点阵矢量G时,散射振幅达到最大 波矢为k的电子波的布喇格衍射条件是: 一维情况(布里渊区边界满足布拉格)简化为: 当电子波矢为±π/a时,描述电子的波函数不再是行波,而是驻波(反复布喇格反射的结果) 5.布里渊区:

6.布里渊区的体积应等于倒易点阵初基晶胞的体积。 7.简单立方点阵的倒易点阵,仍是一个简立方点阵,点阵常数为2π/a,第一布里渊区是个以原点为体心,边长为2π/a的立方体。 体心立方点阵的倒易点阵是个面心立方点阵,第一布里渊区是正菱形十二面体。面心立方点阵的倒易点阵是个体心立方点阵,第一布里渊区是截角八面体。 8.能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。(边界处布拉格反射形成驻波,造成能量差) 9.第一布里渊区允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值;

-直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 绝缘体:至一个全满,其余全满或空(初基晶胞的价电子数目为偶数,能带不交 叠)2N. 金属:半空半满 半导体或半金属:一个或两个能带是几乎空着或几乎充满以外,其余全满 (半金属能带交叠) 10.自由电 子: 11.半导体的E-k关系:

半导体物理基本知识

半导体物理基本知识 一、导体、半导体和绝缘体 物质就其导电性来说,可以分为绝缘体、半导体、和导体。电阻率大于109欧姆·厘米的物体称为绝缘体,小于10-4欧姆·厘米的物体为导体,电阻率介于10-4~109欧姆·厘米的物体为半导体。 二、半导体材料的种类 半导体材料种类繁多,从单质到化合物,从无机物到有机物,从单晶体到非晶体,都可以作为半导体材料。半导体材料大致可以分为以下几类: 1、元素半导体 元素半导体又称为单质半导体。在元素周期表中介于金属与非金属之间的Si、Ge、Se、Te、B、C、P等元素都有半导体的性质。 在单质元素半导体中具有实用价值的只有硅、锗、硒。而硅和锗是最重要的两种半导体材料。尤其半导体硅材料已被广泛地用来制造各种器件、数字和线性集成电路以及大规模集成电路等。硒作为半导体材料主要用做整流器,但由于硅、锗制造的整流器比硒整流器性能良好,所以硒逐渐被硅、锗取代。 2、化合物半导体 化合物半导体是AⅢBⅤ型化合物,由元素中期表中ⅢA族的Al、Ga、和ⅤA族的P、As、Sb等合成的化合物成为AⅢBⅤ型化合物。如AlP、GaAs、GaSb、InAs、InSb。在这一类化合物半导体中用最广泛的是GaAs,它可以用来制作GaAs晶体管、场效应管、雪崩管、超高速电路及微波器件等。 3、氧化物半导体 许多金属的氧化物具有半导体性质,如Cu2O、CuO、ZnO、MgO、Al2O3等等。 4、固溶体半导体 元素半导体和无机化合物半导体相互溶解而成的半导体材料成为固溶体半导体。如:Ge-Si、GaAs-GaP,而GaAs-GaP是发光二极管的材料。 5、玻璃半导体 玻璃半导体是指具有半导体性质的一类玻璃。如氧化物玻璃半导体和元素玻璃半导

半导体物理知识点

半导体物理知识点 1.前两章: 1、半导体、导体、绝缘体的能带的定性区别 2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。注意随着原子序数的增大, 还原性增大,得到的电子稳固,便能提供更多的空穴。所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点 常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋) 3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导) 4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点, mt是沿垂直轴方向的质量,ml是沿轴方向的质量。 锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。 砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。此能谷可以造成负微分电阻效应。 2.第三章载流子统计规律: 1、普适公式 ni^2 = n*p ni^2 = (NcNv)^0.5*exp(-Eg/(k0T)) n = Nc*exp((Ef-Ec)/(k0T)) p = Nv*exp((Ev-Ef)/(k0T)) Nv Nc与 T^1.5成正比 2、掺杂时。注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意 Ef前的符号! nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度 nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度 na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度 na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度 3、掺杂时,电离情况。 电中性条件: n + na- = p + nd+ N型的电中性条件: n + = p + nd+ (1)低温弱电离区:记住是忽略本征激发。由n = nd+推导,先得费米能级,再代 入得电子浓度。Ef从Ec和Ed中间处,随T增的阶段。 (2)中间电离区:(亦满足上面的条件,即n = nd+),当T高于某一值时,Ef递减 的阶段。当Ef = Ed时,1/3的施主电离。(注意考虑简并因子!) (3)强电离区:杂质全部电离,且远大于本征激发,n = Nd,再利用2.1推导 (4)过渡区:杂质全部电离,本征激发加剧,n = Nd + p和n*p=ni^2联立 4、非简并条件 电子浓度exp((Ef-Ec)/(k0T))<<1 空穴浓度exp((Ev-Ef)/(k0T))<<1 这意味着有效态密度Nc和Nv中只有少数态被占据,近似波尔兹曼分布。不满足这 个条件时,即Ef在Ec之上或Ev之下则是简并情况。弱简并是指还在Eg之内,但 距边界小于2K0T。

半导体物理学试题库学习资料

半导体物理学试题库

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________,引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数,内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和 _________(即电子在不同能量的量子态上如何分布)。(状态密度,费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电,达到热平衡后两者的费米能级________。(正,相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央,其导带极小值位于________方向上距布里渊区边界约0.85倍处,因此属于_________半导体。([100],间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷,肖特基缺陷) 6.在一定温度下,与费米能级持平的量子态上的电子占据概率为_________,高于费米能级2kT能级处的占据概率为_________。(1/2,1/1+exp(2)) 7.从能带角度来看,锗、硅属于_________半导体,而砷化稼属于_________半导体,后者有利于光子的吸收和发射。(间接带隙,直接带隙)

8.通常把服从_________的电子系统称为非简并性系统,服从_________的电子系统称为简并性系统。(玻尔兹曼分布,费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关,而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度,禁带宽度) 10. 半导体的晶格结构式多种多样的,常见的Ge和Si材料,其原子均通过共价键四面体相互结合,属于________结构;与Ge和Si晶格结构类似,两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石,闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化,则具有这种能带结构的半导体称为_________禁带半导体,否则称为_________禁带半导体。(直接,间接) 12. 半导体载流子在输运过程中,会受到各种散射机构的散射,主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射,晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径,主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴,复合中心)

相关文档
相关文档 最新文档