文档库 最新最全的文档下载
当前位置:文档库 › Hash算法

Hash算法

Hash算法
Hash算法

编辑本段计算机算法领域

基本知识

Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

HASH主要用于信息安全领域中加密算法,它把一些不同长度的信息转化成杂乱的128位的编码,这些编码值叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系

基本概念

* 若结构中存在和关键字K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。

* 对不同的关键字可能得到同一散列地址,即key1≠key2,而

f(key1)=f(key2),这种现象称冲突。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表或散列,所得的存储位置称散列地址。

* 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。

常用的构造散列函数的方法

散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位ǐ

1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即

H(key)=key或H(key) = a?key + b,其中a和b为常数(这种散列函数叫做自身函数)

2. 数字分析法

3. 平方取中法

4. 折叠法

5. 随机数法

6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p, p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。

处理冲突的方法

1. 开放寻址法;Hi=(H(key) + di) MOD m, i=1,2,…, k(k<=m-1),其中H(key)为散列函数,m为散列表长,di为增量序列,可有下列三种取法:

1. di=1,2,3,…, m-1,称线性探测再散列;

2. di=1^2, (-1)^2, 2^2,(-2)^2, (3)^2, …, ±(k)^2,(k<=m/2)称二次探测再散列;

3. di=伪随机数序列,称伪随机探测再散列。 ==

2. 再散列法:Hi=RHi(key), i=1,2,…,k RHi均是不同的散列函数,即在同义词产生地址冲突时计算另一个散列函数地址,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。

3. 链地址法(拉链法)

4. 建立一个公共溢出区

查找的性能分析

散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。

查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素:

1. 散列函数是否均匀;

2. 处理冲突的方法;

3. 散列表的装填因子。

散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度

α是散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。

实际上,散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。

了解了hash基本定义,就不能不提到一些著名的hash算法,MD5和SHA-1可以说是目前应用最广泛的Hash算法,而它们都是以MD4为基础设计的。那么他们都是什么意思呢?

这里简单说一下:

(1) MD4

MD4(RFC 1320)是 MIT 的Ronald L. Rivest在 1990 年设计的,MD 是Message Digest 的缩写。它适用在32位字长的处理器上用高速软件实现--它是基于 32 位操作数的位操作来实现的。

(2) MD5

MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是4个32位字的级联,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好(3) SHA-1及其他

SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于264的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。

那么这些Hash算法到底有什么用呢?

Hash算法在信息安全方面的应用主要体现在以下的3个方面:

(1) 文件校验

我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。

MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。

(2) 数字签名

Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。

(3) 鉴权协议

如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。以上就是一些关于hash以及其相关的一些基本预备知识。那么在emule里面他具体起到什么作用呢?

MD5、SHA1的破解

2004年8月17日,在美国加州圣芭芭拉召开的国际密码大会上,山东大学王小云教授在国际会议上首次宣布了她及她的研究小组近年来的研究

成果——对MD5、HAVAL-128、MD4和RIPEMD等四个著名密码算法的破译结果。次年二月宣布破解SHA-1密码。

编辑本段散列函数的性质

所有散列函数都有如下一个基本特性:如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。这个特性是散列函数具有确定性的结果。但另一方面,散列函数的输入和输出不是一一对应的,如果两个散列值相同,两个输入值很可能是相同的,但并不能绝对肯定二者一定相等。输入一些数据计算出散列值,然后部分改变输入值,一个具有强混淆特性的散列函数会产生一个完全不同的散列值。

典型的散列函数都有无限定义域,比如任意长度的字节字符串,和有限的值域,比如固定长度的比特串。在某些情况下,散列函数可以设计成具有相同大小的定义域和值域间的一一对应。一一对应的散列函数也称为排列。可逆性可以通过使用一系列的对于输入值的可逆“混合”运算而得到。求。到2007年为止,第三版还未完备。

编辑本段散列函数的应用

由于散列函数的应用的多样性,它们经常是专为某一应用而设计的。例如,加密散列函数假设存在一个要找到具有相同散列值的原始输入的敌人。一个设计优秀的加密散列函数是一个“单向”操作:对于给定的散列值,没有实用的方法可以计算出一个原始输入,也就是说很难伪造。为加密散列为目的设计的函数,如MD5,被广泛的用作检验散列函数。这样软件下载的时候,就会对照验证代码之后才下载正确的文件部分。此代码有可能因为环境因素的变化,如机器配置或者IP地址的改变而有变动。以保证源文件的安全性。

错误监测和修复函数主要用于辨别数据被随机的过程所扰乱的事例。当散列函数被用于校验和的时候,可以用相对较短的散列值来验证任意长度的数据是否被更改过。

编辑本段散列表

散列表是散列函数的一个主要应用,使用散列表能够快速的按照关键字查找数据记录。(注意:关键字不是像在加密中所使用的那样是秘密的,但它们都是用来“解锁”或者访问数据的。)例如,在英语字典中的关键字是英文单词,和它们相关的记录包含这些单词的定义。在这种情况下,散列函数必须把按照字母顺序排列的字符串映射到为散列表的内部数组所创建的索引上。

散列表散列函数的几乎不可能/不切实际的理想是把每个关键字映射到唯一的索引上(参考完美散列),因为这样能够保证直接访问表中的每一个数据。

一个好的散列函数(包括大多数加密散列函数)具有均匀的真正随机输出,因而平均只需要一两次探测(依赖于装填因子)就能找到目标。同样重要的是,随机散列函数几乎不可能出现非常高的冲突率。但是,少量的可以估计的冲突在实际状况下是不可避免的(参考生日悖论)。

在很多情况下,heuristic散列函数所产生的冲突比随机散列函数少的多。Heuristic函数利用了相似关键字的相似性。例如,可以设计一个heuristic 函数使得像FILE0000.CHK, FILE0001.CHK, FILE0002.CHK, 等等这样的文件名映射到表的连续指针上,也就是说这样的序列不会发生冲突。相比之下,对于一组好的关键字性能出色的随机散列函数,对于一组坏的关键字经常性能很差,这种坏的关键字会自然产生而不仅仅在攻击中才出现。性能不佳的散列函数表意味着查找操作会退化为费时的线性搜索。

编辑本段错误校正

使用一个散列函数可以很直观的检测出数据在传输时发生的错误。在数据的发送方,对将要发送的数据应用散列函数,并将计算的结果同原始数据一同发送。在数据的接收方,同样的散列函数被再一次应用到接收到的数据上,如果两次散列函数计算出来的结果不一致,那么就说明数据在传输的过程中某些地方有错误了。这就叫做冗余校验。

对于错误校正,假设相似扰动的分布接近最小(a distribution of likely perturbations is assumed at least approximately)。对于一个信息串的微扰可以被分为两类,大的(不可能的)错误和小的(可能的)错误。我们对于第二类错误重新定义如下,假如给定 H(x) 和 x+s,那么只要s足够小,我们就能有效的计算出x。那样的散列函数被称作错误校正编码。这些错误校正编码有两个重要的分类:循环冗余校验和里德所罗门码。

编辑本段语音识别

对与像从一个已知列表中匹配一个MP3文件这样的应用,一种可能的方案是使用传统的散列函数——例如MD5,但是这种方案会对时间平移、CD读取错误、不同的音频压缩算法或者音量调整的实现机制等情况非常敏感。使用一些类似于MD5的方法有利于迅速找到那些严格相同(从音频文件的二进制数据来看)的音频文件,但是要找到全部相同(从音频文件的内容来看)的音频文件就需要使用其他更高级的算法了。

那些并不紧随IT工业潮流的人往往能反其道而行之,对于那些微小差异足够鲁棒的散列函数确实存在。现存的绝大多数散列算法都是不够鲁棒的,但是有少数散列算法能够达到辨别从嘈杂房间里的扬声器里播放出来的音乐的

鲁棒性。有一个实际的例子是Shazam[1]服务。用户可以用电话机拨打一个特定的号码,并将电话机的话筒靠近用于播放音乐的扬声器。该项服务会分析正在播放的音乐,并将它于存储在数据库中的已知的散列值进行比较。用户就能够收到被识别的音乐的曲名(需要收取一定的费用)

什么是文件的hash值呢?

大家都知道emule是基于P2P (Peer-to-peer的缩写,指的是点对点的意思的软件),它采用了"多源文件传输协议”(MFTP,the Multisource FileTransfer Protocol)。在协议中,定义了一系列传输、压缩和打包还有积分的标准,emule 对于每个文件都有md5-hash的算法设置,这使得该文件独一无二,并且在整个网络上都可以追踪得到。

MD5-Hash-文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与加密算法不同,这一个Hash 算法是一个不可逆的单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。因此,一旦文件被修改,就可检测出来。

当我们的文件放到emule里面进行共享发布的时候,emule会根据hash

算法自动生成这个文件的hash值,他就是这个文件唯一的身份标志,它包含了这个文件的基本信息,然后把它提交到所连接的服务器。当有他人想对这个文件提出下载请求的时候,这个hash值可以让他人知道他正在下载的文件是不是就是他所想要的。尤其是在文件的其他属性被更改之后(如名称等)这个值就更显得重要。而且服务器还提供了,这个文件当前所在的用户的地址,端口等信息,这样emule就知道到哪里去下载了。

一般来讲我们要搜索一个文件,emule在得到了这个信息后,会向被添加的服务器发出请求,要求得到有相同hash值的文件。而服务器则返回持有这个文件的用户信息。这样我们的客户端就可以直接的和拥有那个文件的用户沟通,看看是不是可以从他那里下载所需的文件。

对于emule中文件的hash值是固定的,也是唯一的,它就相当于这个文件的信息摘要,无论这个文件在谁的机器上,他的hash值都是不变的,无论过了多长时间,这个值始终如一,当我们在进行文件的下载上传过程中,emule 都是通过这个值来确定文件。

那么什么是userhash呢?

道理同上,当我们在第一次使用emule的时候,emule会自动生成一个值,这个值也是唯一的,它是我们在emule世界里面的标志,只要你不卸载,不删

除config,你的userhash值也就永远不变,积分制度就是通过这个值在起作用,emule里面的积分保存,身份识别,都是使用这个值,而和你的id和你的用户名无关,你随便怎么改这些东西,你的userhash值都是不变的,这也充分保证了公平性。其实他也是一个信息摘要,只不过保存的不是文件信息,而是我们每个人的信息。

那么什么是hash文件呢?

我们经常在emule日至里面看到,emule正在hash文件,这里就是利用了hash算法的文件校验性这个功能了,文章前面已经说了一些这些功能,其实这部分是一个非常复杂的过程,目前在ftp,bt等软件里面都是用的这个基本原理,emule里面是采用文件分块传输,这样传输的每一块都要进行对比校验,如果错误则要进行重新下载,这期间这些相关信息写入met文件,直到整个任务完成,这个时候part文件进行重新命名,然后使用move命令,把它传送到incoming文件里面,然后met文件自动删除,所以我们有的时候会遇到hash 文件失败,就是指的是met里面的信息出了错误不能够和part文件匹配,另外有的时候开机也要疯狂hash,有两种情况一种是你在第一次使用,这个时候要hash提取所有文件信息,还有一种情况就是上一次你非法关机,那么这个时候就是要进行排错校验了。

关于hash的算法研究,一直是信息科学里面的一个前沿,尤其在网络技术普及的今天,他的重要性越来越突出,其实我们每天在网上进行的信息交流安全验证,我们在使用的操作系统密钥原理,里面都有它的身影,特别对于那些研究信息安全有兴趣的朋友,这更是一个打开信息世界的钥匙,他在hack 世界里面也是一个研究的焦点。

常用HASH函数

?直接取余法: f(x):= x mod maxM ; maxM一般是不太接近 2^t 的一个质数。

?乘法取整法: f(x):=trunc((x/maxX)*maxlongit) mod maxM,主要用于实数。

?平方取中法: f(x):=(x*x div 1000 ) mod 1000000); 平方后取中间的,每位包含信息比较多。

编辑本段FTP中的HASH命令

hash 每次传输完数据缓冲区中的数据后就显示一个#号

一致性哈希算法应用及优化(最简洁明了的教程)

一致性哈希算法的应用及其优化 一.简单哈希算法 哈希(Hash)就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,使得散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。哈希算法是一种消息摘要算法,虽然哈希算法不是一种加密算法,但由于其单向运算,具有一定的不可逆性使其成为加密算法中的一个重要构成部分。 二.分布式缓存问题 哈希算法除了在数据加密中的运用外,也可以用在常见的数据分布式技术中。哈希计算是通过求模运算来计算哈希值的,然后根据哈希值将数据映射到存储空间中。设有由N 个存储节点组成的存储空间,采用简单哈希计算将一个数据对象object 映射到存储空间上的公式为:Hash(object)% N。 现在假设有一个网站,最近发现随着流量增加,服务器压力越来越大,之前直接读写数据库的方式已经不能满足用户的访问,于是想引入Memcached作为缓存机制。现在一共有三台机器可以作为Memcached服务器,如下图1所示。

图1.三台memcached服务器 可以用简单哈希计算:h = Hash(key) % 3 ,其中Hash是一个从字符串到正整数的哈希映射函数,这样能够保证对相同key的访问会被发送到相同的服务器。现在如果我们将Memcached Server分别编号为0、1、2,那么就可以根据上式和key计算出服务器编号h,然后去访问。 但是,由于这样做只是采用了简单的求模运算,使得简单哈希计算存在很多不足: 1)增删节点时,更新效率低。当系统中存储节点数量发生增加或减少时,映射公式将发生变化为Hash(object)%(N±1),这将使得所有object 的映射位置发生变化,整个系统数据对象的映射位置都需要重新进行计算,系统无法对外界访问进行正常响应,将导致系统处于崩溃状态。 2)平衡性差,未考虑节点性能差异。由于硬件性能的提升,新添加的节点具有更好的承载能力,如何对算法进行改进,使节点性能可以得到较好利用,也是亟待解决的一个问题。 3)单调性不足。衡量数据分布技术的一项重要指标是单调性,单调性是指如果已经有一些内容通过哈希计算分派到了相应的缓冲中,当又有新的缓冲加入到系统中时,哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。 由上述分析可知,简单地采用模运算来计算object 的Hash值的算法显得过于简单,存在节点冲突,且难以满足单调性要求。

哈希算法散列

计算机算法领域 基本知识 Hash,一般翻译做“散列”,也有直接音译为”哈希“的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 HASH主要用于信息安全领域中加密算法,他把一些不同长度的信息转化成杂乱的128位的编码里,叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系 基本概念 * 若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。 * 对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称冲突。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表或散列,所得的存储位置称散列地址。 * 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。 常用的构造散列函数的方法 散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位ǐ 1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a?key + b,其中a和b为常数(这种散列函数叫做自身函数) 2. 数字分析法 3. 平方取中法 4. 折叠法 5. 随机数法 6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即H(key) = key MOD p, p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。 处理冲突的方法 1. 开放寻址法;Hi=(H(key) + di) MOD m, i=1,2,…, k(k<=m-1),其中H(key)为散列函数,m为散列表长,di为增量序列,可有下列三种取法: 1. di=1,2,3,…, m-1,称线性探测再散列; 2. di=1^2, (-1)^2, 2^2,(-2)^2, (3)^2, …, ±(k)^2,(k<=m/2)称二次探测再散列;

单向散列函数算法Hash算法

单向散列函数算法(Hash算法): 一种将任意长度的消息压缩到某一固定长度(消息摘要)的函数(过程不可逆),常见的单向散列算法有MD5,SHA.RIPE-MD,HAVAL,N-Hash 由于Hash函数的为不可逆算法,所以软件智能使用Hash函数作为一个加密的中间步骤 MD5算法: 即为消息摘要算法(Message Digest Algorithm),对输入的任意长度的消息进行预算,产生一个128位的消息摘要 简易过程: 1、数据填充..即填出消息使得其长度与448(mod 512)同余,也就是说长度比512要小64位(为什么数据长度本身已经满足却仍然需要填充?直接填充一个整数倍) 填充方法是附一个1在后面,然后用0来填充.. 2、添加长度..在上述结果之后附加64位的消息长度,使得最终消息的长度正好是512的倍数.. 3、初始化变量..用到4个变量来计算消息长度(即4轮运算),设4个变量分别为A,B,C,D(全部为32位寄存器)A=1234567H,B=89abcdefH,C=fedcba98H,D=7654321H 4、数据处理..首先进行分组,以512位为一个单位,以单位来处理消息.. 首先定义4个辅助函数,以3个32为双字作为输入,输出一个32为双字 F(X,Y,Z)=(X&Y)|((~X)&Z) G(X,Y,Z)=(X&Z)|(Y&(~Z)) H(X,Y,Z)=X^Y^Z I(X,Y,Z)=Y^(X|(~Z)) 其中,^是异或操作 这4轮变换是对进入主循环的512为消息分组的16个32位字分别进行如下操作: (重点)将A,B,C,D的副本a,b,c,d中的3个经F,G,H,I运算后的结果与第四个相加,再加上32位字和一个32位字的加法常数(所用的加法常数由这样一张表T[i]定义,期中i为1至64之中的值,T[i]等于4294967296乘以abs(sin(i))所得结果的整数部分)(什么是加法常数),并将所得之值循环左移若干位(若干位是随机的??),最后将所得结果加上a,b,c,d之一(这个之一也是随机的?)(一轮运算中这个之一是有规律的递增的..如下运算式),并回送至A,B,C,D,由此完成一次循环。(这个循环式对4个变量值进行计算还是对数据进行变换??) For i=0 to N/16 do For j=0 to 15 do Set X[i] to M[i*16+j] End AA = A BB=B CC=C DD=D //第一轮,令[ABCD K S I]表示下面的操作: //A=B+((A+F(B,C,D)+X[K]+T[I])<<

hash算法

Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。 数学表述为:h = H(M) ,其中H( )--单向散列函数,M--任意长度明文,h--固定长度散列值。 在信息安全领域中应用的Hash算法,还需要满足其他关键特性: 第一当然是单向性(one-way),从预映射,能够简单迅速的得到散列值,而在计算上不可能构造一个预映射,使其散列结果等于某个特定的散列值,即构造相应的M=H-1(h)不可行。这样,散列值就能在统计上唯一的表征输入值,因此,密码学上的Hash 又被称为"消息摘要(message digest)",就是要求能方便的将"消息"进行"摘要",但在"摘要"中无法得到比"摘要"本身更多的关于"消息"的信息。 第二是抗冲突性(collision-resistant),即在统计上无法产生2个散列值相同的预映射。给定M,计算上无法找到M',满足H(M)=H(M') ,此谓弱抗冲突性;计算上也难以寻找一对任意的M和M',使满足H(M)=H(M') ,此谓强抗冲突性。要求"强抗冲突性"主要是为了防范所谓"生日攻击(birthday attack)",在一个10人的团体中,你能找到和你生日相同的人的概率是2.4%,而在同一团体中,有2人生日相同的概率是11.7%。类似的,当预映射的空间很大的情况下,算法必须有足够的强度来保证不能轻易找到"相同生日"的人。 第三是映射分布均匀性和差分分布均匀性,散列结果中,为0 的bit 和为 1 的bit ,其总数应该大致相等;输入中一个bit 的变化,散列结果中将有一半以上的bit 改变,这又叫做"雪崩效应(avalanche effect)";要实现使散列结果中出现1bit 的变化,则输入中至少有一半以上的bit 必须发生变化。其实质是必须使输入中每一个bit 的信息,尽量均匀的反映到输出的每一个bit 上去;输出中的每一个bit,都是输入中尽可能多bit 的信息一起作用的结果。 Damgard 和Merkle 定义了所谓"压缩函数(compression function)",就是将一个固定长度输入,变换成较短的固定长度的输出,这对密码学实践上Hash 函数的设计产生了很大的影响。Hash函数就是被设计为基于通过特定压缩函数的不断重复"压缩"输入的分组和前一次压缩处理的结果的过程,直到整个消息都被压缩完毕,最后的输出作为整个消息的散列值。尽管还缺乏严格的证明,但绝大多数业界的研究者都同意,如果压缩函数是安全的,那么以上述形式散列任意长度的消息也将是安全的。这就是所谓Damgard/Merkle 结构: 在下图中,任意长度的消息被分拆成符合压缩函数输入要求的分组,最后一个分组可能需要在末尾添上特定的填充字节,这些分组将被顺序处理,除了第一个消息分组将与散列初始化值一起作为压缩函数的输入外,当前分组将和前一个分组的压缩函数输出一起被作为这一次

哈 希 常 见 算 法 及 原 理

数据结构与算法-基础算法篇-哈希算法 1. 哈希算法 如何防止数据库中的用户信息被脱库? 你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗? 在实际开发中,我们应该如何用哈希算法解决问题? 1. 什么是哈希算法? 将任意长度的二进制值串映射成固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 2. 如何设计一个优秀的哈希算法? 单向哈希: 从哈希值不能反向推导出哈希值(所以哈希算法也叫单向哈希算法)。 篡改无效: 对输入敏感,哪怕原始数据只修改一个Bit,最后得到的哈希值也大不相同。 散列冲突: 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小。 执行效率: 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速计算哈

希值。 2. 哈希算法的常见应用有哪些? 7个常见应用:安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。 1. 安全加密 常用于加密的哈希算法: MD5:MD5 Message-Digest Algorithm,MD5消息摘要算法 SHA:Secure Hash Algorithm,安全散列算法 DES:Data Encryption Standard,数据加密标准 AES:Advanced Encryption Standard,高级加密标准 对用于加密的哈希算法,有两点格外重要,第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要小。 在实际开发中要权衡破解难度和计算时间来决定究竟使用哪种加密算法。 2. 唯一标识 通过哈希算法计算出数据的唯一标识,从而用于高效检索数据。 3. 数据校验 利用哈希算法对输入数据敏感的特点,可以对数据取哈希值,从而高效校验数据是否被篡改过。 4. 散列函数 1.如何防止数据库中的用户信息被脱库?你会如何存储用户密码这么重要的数据吗?

哈希算法介绍

哈希算法介绍 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

哈希算法简介

目录 1哈希算法概念 ...................................................... 2哈希函数 .......................................................... 3冲突的解决方法 .................................................... 4哈希算法应用 ......................................................

关键词: 算法、哈希、c语言 摘要: 哈希算法在软件开发和Linux内核中多次被使用,由此可以见哈希算法的实用性和重要性。本文介绍了哈希算法的原理和应用,并给出了简略的代码实现,以便读者理解。

1哈希算法概念 哈希(hash 散列,音译为哈希)算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。 哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希算法都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。 哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上,并以关键字在地址区间中的项作为记录在表中的存储位置,这种表称为哈希表,所得存储位置称为哈希地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。 查找一般是对项的摸个部分(及数据成员)进行,这部分称为键(key)。例如,项可以由字符串作为键,附带一些数据成员。 理想的哈希表数据结构只不过是一个包含一些项的具有固定大小的数组。 通常的习惯是让项从0到 TableSize-1之间变化。 将每个键映射到0到TableSize-1 这个范围中的某个 数,并且将其放到适当的单元中,这个映射就称为散列函数 (hash funciton)。 如右图,john被散列到3,phil被散列到4,dave 被散列 到6,mary被散列到7. 这是哈希的基本思想。剩下的问题则是要选择一个函数, 决定当两个键散列到同一个值的时候(称为冲突),应该做 什么。

哈 希 常 见 算 法 及 原 理

计算与数据结构篇 - 哈希算法 (Hash) 计算与数据结构篇 - 哈希算法 (Hash) 哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 构成哈希算法的条件: 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同; 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小; 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。 哈希算法的应用(上篇) 安全加密 说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。 除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。 不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1-2^128。 如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资-源下,哈希算法还是被很难破解的。 对于加密知识点的补充,md5这个算法固然安全可靠,但网络上也有针对MD5中出现的彩虹表,最常见的思路是在密码后面添加一组盐码(salt), 比如可以使用md5(1234567.'2019@STARK-%$#-idje-789'),2019@STARK-%$#-idje-789 作为盐码起到了一定的保护和安全的作用。 唯一标识(uuid) 我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。

哈 希 常 见 算 法 及 原 理 ( 2 0 2 0 )

哈希算法乱谈(摘自知乎) 最近【现场实战追-女孩教-学】初步了解了Hash算法的相关知识,一些人的见解让我能够迅速的了解相对不熟悉的知识,故想摘录下来,【QQ】供以后温故而知新。 HASH【⒈】算法是密码学的基础,比较常用的有MD5和SHA,最重要的两【О】条性质,就是不可逆和无冲突。 所谓不【1】可逆,就是当你知道x的HASH值,无法求出x; 所谓无【б】冲突,就是当你知道x,无法求出一个y,使x与y的HA【9】SH值相同。 这两条性【⒌】质在数学上都是不成立的。因为一个函数必然可逆,且【2】由于HASH函数的值域有限,理论上会有无穷多个不同的原始值【6】,它们的hash值都相同。MD5和SHA做到的,是求逆和求冲突在计算上不可能,也就是正向计算很容易,而反向计算即使穷尽人类所有的计算资-源都做不到。 顺便说一下,王小云教授曾经成功制造出MD5的碰撞,即md5(a) = md5(b)。这样的碰撞只能随机生成,并不能根据一个已知的a求出b(即并没有破坏MD5的无冲突特性)。但这已经让他声名大噪了。 HASH算法的另外一个很广泛的用途,就是很多程序员都会使用的在数据库中保存用户密码的算法,通常不会直接保存用户密码(这样DBA就能看到用户密码啦,好危险啊),而是保存密码的HASH值,验

证的时候,用相同的HASH函数计算用户输入的密码得到计算HASH值然后比对数据库中存储的HASH值是否一致,从而完成验证。由于用户的密码的一样的可能性是很高的,防止DBA猜测用户密码,我们还会用一种俗称“撒盐”的过程,就是计算密码的HASH值之前,把密码和另外一个会比较发散的数据拼接,通常我们会用用户创建时间的毫秒部分。这样计算的HASH值不大会都是一样的,会很发散。最后,作为一个老程序员,我会把用户的HASH值保存好,然后把我自己密码的HASH值保存到数据库里面,然后用我自己的密码和其他用户的用户名去登录,然后再改回来解决我看不到用户密码而又要“偷窥”用户的需要。最大的好处是,数据库泄露后,得到用户数据库的黑客看着一大堆HASH值会翻白眼。 哈希算法又称为摘要算法,它可以将任意数据通过一个函数转换成长度固定的数据串(通常用16进制的字符串表示),函数与数据串之间形成一一映射的关系。 举个粒子,我写了一篇小说,摘要是一个string:'关于甲状腺精灵的奇妙冒险',并附上这篇文章的摘要是'2d73d4f15c0db7f5ecb321b6a65e5d6d'。如果有人篡改了我的文章,并发表为'关于JOJO的奇妙冒险',我可以立即发现我的文章被篡改过,因为根据'关于JOJO的奇妙冒险'计算出的摘要不同于原始文章的摘要。 可见,摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡

字符串哈希算法

经典字符串Hash函数 工作中经常需要用大hash这个强有力的工具,hash表最核心的部分则在于怎么设计一个好的hash函数,以使数据更均匀地分布在若干个桶上。下面来介绍一下我现在用到的一个hash函数,我们来看代码: unsigned chostcachehash::get_host_key(const string& host) { int result = 1; unsigned i = 0; for (i = 0; i > 24); h = h ^ g; } } return h; } openssl中出现的字符串hash函数 unsigned long lh_strhash(char *str) { int i,l; unsigned long ret=0; unsigned short *s;

哈希算法介绍

哈希算法简介

目录 1哈希算法概念 (2) 2哈希函数 (3) 3冲突的解决方法 (3) 4哈希算法应用 (4)

关键词: 算法、哈希、c语言 摘要: 哈希算法在软件开发和Linux内核中多次被使用,由此可以见哈希算法的实用性和重要性。本文介绍了哈希算法的原理和应用,并给出了简略的代码实现,以便读者理解。

1哈希算法概念 哈希(hash 散列,音译为哈希) 算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。 哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希算法都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。 哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上,并以关键字在地址区间中的项作为记录在表中的存储位置,这种表称为哈希表,所得存储位置称为哈希地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。 查找一般是对项的摸个部分(及数据成员)进行,这部分称为键(key )。例如,项可以由字符串作为键,附带一些数据成员。 理想的哈希表数据结构只不过是一个包含一些项的具有固定大小的数组。 通常的习惯是让项从0到 TableSize-1之间变化。 将每个键映射到0到TableSize-1 这个范围中的某个数 ,并且将其放到适当的单元中,这个映射就称为散列函数(hash funciton )。 如右图,john 被散列到3,phil 被散列到4,dave 被散列到6,mary 被散列到7. 这是哈希的基本思想。剩下的问题则是要选择一个函数,决定当两个键散列到同一个值的时候(称为冲突),应该做什么。

几种字符串哈希HASH算法的性能比较

几种字符串哈希HASH算法的性能比较 2011年01月26日星期三 19:40 这不就是要找hash table的hash function吗? 1 概述 链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash 链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串 Hash函数在执行效率、离散性、空间利用率等方面的性能问题。 2 经典字符串Hash函数介绍 作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。 2.1 PHP中出现的字符串Hash函数 static unsigned long hashpjw(char *arKey, unsigned int nKeyLength) { unsigned long h = 0, g; char *arEnd=arKey+nKeyLength; while (arKey < arEnd) { h = (h << 4) + *arKey++; if ((g = (h & 0xF0000000))) { h = h ^ (g >> 24); h = h ^ g; } } return h; } 2.2 OpenSSL中出现的字符串Hash函数 unsigned long lh_strhash(char *str) { int i,l; unsigned long ret=0; unsigned short *s; if (str == NULL) return(0); l=(strlen(str)+1)/2; s=(unsigned short *)str; for (i=0; i ret^=(s[i]<<(i&0x0f)); return(ret);

常见的Hash算法

常见的Hash算法 1.简介 哈希函数按照定义可以实现一个伪随机数生成器(PRNG),从这个角度可以得到一个公认的结论:哈希函数之间性能的比较可以通过比较其在伪随机生成方面的比较来衡量。 一些常用的分析技术,例如泊松分布可用于分析不同的哈希函数对不同的数据的碰撞率(collision rate)。一般来说,对任意一类的数据存在一个理论上完美的哈希函数。这个完美的哈希函数定义是没有发生任何碰撞,这意味着没有出现重复的散列值。在现实中它很难找到一个完美的哈希散列函数,而且这种完美函数的趋近变种在实际应用中的作用是相当有限的。在实践中人们普遍认识到,一个完美哈希函数的哈希函数,就是在一个特定的数据集上产生的的碰撞最少哈希的函数。 现在的问题是有各种类型的数据,有一些是高度随机的,有一些有包含高纬度的图形结构,这些都使得找到一个通用的哈希函数变得十分困难,即使是某一特定类型的数据,找到一个比较好的哈希函数也不是意见容易的事。我们所能做的就是通过试错方法来找到满足我们要求的哈希函数。可以从下面两个角度来选择哈希函数: 1.数据分布 一个衡量的措施是考虑一个哈希函数是否能将一组数据的哈希值进行很好的分布。要进行这种分析,需要知道碰撞的哈希值的个数,如果用链表来处理碰撞,则可以分析链表的平均长度,也可以分析散列值的分组数目。 2.哈希函数的效率 另个一个衡量的标准是哈希函数得到哈希值的效率。通常,包含哈希函数的算法的算法复杂度都假设为O(1),这就是为什么在哈希表中搜索数据的时间复杂度会被认为是"平均为O(1)的复杂度",而在另外一些常用的数据结构,比如图(通常被实现为红黑树),则被认为是O(logn)的复杂度。 一个好的哈希函数必修在理论上非常的快、稳定并且是可确定的。通常哈希函数不可能达到O(1)的复杂度,但是哈希函数在字符串哈希的线性的搜索中确实是非常快的,并且通常哈希函数的对象是较小的主键标识符,这样整个过程应该是非常快的,并且在某种程度上是稳定的。 在这篇文章中介绍的哈希函数被称为简单的哈希函数。它们通常用于散列(哈希字符串)数据。它们被用来产生一种在诸如哈希表的关联容器使用的key。这些哈希函数不是密码安全的,很容易通过颠倒和组合不同数据的方式产生完全相同的哈希值。 2.哈希方法学 哈希函数通常是由他们产生哈希值的方法来定义的,有两种主要的方法: 1.基于加法和乘法的散列 这种方式是通过遍历数据中的元素然后每次对某个初始值进行加操作,其中加的值和这个数据的一个元素相关。通常这对某个元素值的计算要乘以一个素数。

SHA-1(安全哈希算法实现)

SHA-1(安全哈希算法实现) 如题,不知道sha-1的自己百度吧。 1 #include 2 #include //定义vector数组 3 #include //记录消息 4usingnamespace std; 5 6constint NUM = 8; //一个字由32比特(或者8个16进制数) 7constint BIT = 512; //消息认证码要以512比特一组 8 9//字常量 10string H0 = "67452301"; 11string H1 = "EFCDAB89"; 12string H2 = "98BADCFE"; 13string H3 = "10325476"; 14string H4 = "C3D2E1F0"; 15 16//定义SHA1(安全哈希算法)类 17class SHA1 18 { 19public: 20//将一个字符串形式的字转化为vector数组 21 vector hex_into_dec(string word); 22 23//将vector转化为string字符串形式 24string num_into_message(vector A); 25 26//两个字X和Y的逻辑"和" 27 vector word_AND(vector A,vector B); 28 29//两个字X和Y的逻辑"或" 30 vector word_OR(vector A,vector B); 31 32//两个字X和Y的逻辑"异或" 33 vector word_XOR(vector A,vector B); 34 35//两个字X和Y的逻辑"补" 36 vector word_COMPLEMENT(vector A); 37 38//两个字X和Y的摸2^32整数加 39 vector word_ADD(vector A,vector B); 40

常用的哈希函数

常用的哈希函数 通用的哈希函数库有下面这些混合了加法和一位操作的字符串哈希算法。下面的这些算法在用法和功能方面各有不同,但是都可以作为学习哈希算法的实现的例子。(其他版本代码实现见下载) 1.RS 从Robert Sedgwicks的Algorithms in C一书中得到了。我(原文作者)已经添加了一些简单的优化的算法,以加快其散列过程。 [java]view plaincopy 1.public long RSHash(String str) 2. { 3.int b = 378551; 4.int a = 63689; 5.long hash = 0; 6.for(int i = 0; i < str.length(); i++) 7. { 8. hash = hash * a + str.charAt(i); 9. a = a * b; 10. } 11.return hash; 12. } 2.JS Justin Sobel写的一个位操作的哈希函数。 [c-sharp]view plaincopy 1.public long JSHash(String str) 2. { 3.long hash = 1315423911; 4.for(int i = 0; i < str.length(); i++) 5. { 6. hash ^= ((hash << 5) + str.charAt(i) + (hash >> 2)); 7. } 8.return hash; 9. } 3.PJW 该散列算法是基于贝尔实验室的彼得J温伯格的的研究。在Compilers一书中(原则,技术和工具),建议采用这个算法的散列函数的哈希方法。

【免费下载】hash算法实验

实验课程名称:电子商务安全管理实验项目名称1:DES 、RSA 和Hash 算法的实现实验成绩 试验者 王秀梅专业班级1105441 组别同组者无实验的目的 (1) 掌握常用加密处理软件的使用方法。 (2) 理解DES 、RSA 和Hash 算法的原理。 (3) 了解MD5算法的破解方法。实验环境 (1) 装有Windows XP/2003操作系统的PC 机1台。 (2) MixedCS 、RSATool 、DAMN_HashCalc 、MD5Crack 工具软件各1套。实验步骤1、请参考实验指导PPT 。并在最后写实验心得体会。2、将实验电子版提交FTP——1105441电子商务安全管理——第一次实验报告,文件名为“学号(1105441)+姓名+实验一”。 实验过程记录 (1) 对称加密算法DES 的实现 步骤1:双击运行MixedCS.exe 程序,打开的程序主界面步骤2:单击“浏览文件”按钮,选择要进行DES 加密的源文件,选择完成后在“输出文件”文本框中会自动出现默认的加密后的文件名。步骤3:选中“DES 加密”单选按钮,在“DES 密钥”文本框中输入5个字符 (区分大小、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

哈 希 常 见 算 法 及 原 理

Python算法系列-哈希算法 哈希算法一、常见数据查找算法简介二、什么是哈希三、实例:两个数字的和1.问题描述2.双指针办法解决3.哈希算法求解四、总结哈希算法又称散列函数算法,是一种查找算法。就是把一些复杂的数据通过某种映射关系。映射成更容易查找的方式,但这种映射关系可能会发生多个关键字映射到同一地址的现象,我们称之为冲突。在这种情况下,我们需要对关键字进行二次或更多次处理。出这种情况外,哈希算法可以实现在常数时间内存储和查找这些关键字。 一、常见数据查找算法简介 常见的数据查找算法: 顺序查找:是最简单的查找方法。需要对数据集中的逐个匹配。所以效率相对较低,不太适合大量数据的查找问题。 二分法查找:效率很高,但是要求数据必须有序。面对数据排序通常需要更多的时间。 深度优先和广度优先算法:对于大量的数据查找问题,效率并不高。这个我们后面专门讲解。 阿希查找算法:查找速度快,查询插入,删除操作简单等原因获得广泛的应用。 二、什么是哈希 哈希查找的原理:根据数量预先设一个长度为M的数组。使用一个哈希函数F并以数据的关键字作为自变量得到唯一的返回值,返回值的范围

是0~M-1。这样就可以利用哈希函数F将数据元素映射到一个数组的某一位下标,并把数据存放在对应位置,查找时利用哈希函数F计算,该数据应存放在哪里,在相应的存储位置取出查找的数据。 这里就有一个问题: 关键字的取值在一个很大的范围,数据在通过哈希函数进行映射时。很难找到一个哈希函数,使得这些关键字都能映射到唯一的值。就会出现多个关键字映射到同一个值的现象,这种现象我们称之为冲突。 哈西算法冲突的解决方案有很多:链地址法,二次再散列法。线性探测再散列建立一个公共溢出区 注意:链地址法本质是数组+链表的数据结构 链地址法存储数据过程: 首先建立一个数组哈希存储所有链表的头指针。由数组的关键字key 通过对应的哈希函数计算出哈希地址。找到相应的桶号之后,建立新的节点存储该数据。并把节点放到桶内的链表的最后面或者最前面。 链地址法查找数据:由数据关键字通过哈希。函数计算关键字对应的哈希地址之后顺序比较同类不节点。是否与所查到的关键字一样,直到找到数据为止,如果全部节点都不和关键字一样,则书名哈系表里没有该数据。解决了哈希函数的冲突。 用链地址法构造的散列表插入和删除节点操作易于实现,所以构造链表的时间开销很低。但是指针需要开辟额外的地址空间,当数据量很大时会扩大哈希表规模,内存空间要求较大。 三、实例:两个数字的和

Hash算法实验原理及哈希函数简介

任务一 MD5算法111111********* 一.哈希函数简介 信息安全的核心技术是应用密码技术。密码技术的应用远不止局限于提供机密性服务,密码技术也提供数据完整性服务。密码学上的散列函数(Hash Functions)就是能提供数据完整性保障的一个重要工具。Hash函数常用来构造数据的短“指纹”:消息的发送者使用所有的消息产生一个附件也就是短“指纹”,并将该短“指纹”与消息一起传输给接收者。即使数据存储在不安全的地方,接收者重新计算数据的指纹,并验证指纹是否改变,就能够检测数据的完整性。这是因为一旦数据在中途被破坏,或改变,短指纹就不再正确。 散列函数是一个函数,它以一个变长的报文作为输入,并产生一个定长的散列码,有时也称为报文摘要,作为函数的输出。散列函数最主要的作用于是用于鉴别,鉴别在网络安全中起到举足轻重的地位。鉴别的目的有以下两个:第一,验证信息的发送者是真正的,而不是冒充的,同时发信息者也不能抵赖,此为信源识别;第二,验证信息完整性,在传递或存储过程中未被篡改,重放或延迟等。 二.哈希函数特点 密码学哈希函数(cryptography hash function,简称为哈希函数)在现代密码学中起着重要的作用,主要用于对数据完整性和消息认证。哈希函数的基本思想是对数据进行运算得到一个摘要,运算过程满足: z压缩性:任意长度的数据,算出的摘要长度都固定。 z容易计算:从原数据容易算出摘要。 z抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的摘要都有很大区别。 z弱抗碰撞:已知原数据和其摘要,想找到一个具有相同摘要的数据(即伪造数据),在计算上是困难的。

Hash算法MD5 实验报告

哈尔滨工程大学 实验报告 实验名称:Hash 算法MD5 班级: 学号: 姓名: 实验时间:2014年6月 成绩: 指导教师: 实验室名称: 哈尔滨工程大学实验室与资产管理处制

一、实验名称 Hash算法MD5 二、实验目的 通过实际编程了解MD5 算法的加密和解密过程,加深对Hash 算法的认识。 三、实验环境(实验所使用的器件、仪器设备名称及规格) 运行Windows 或Linux 操作系统的PC 机,具有gcc(Linux)、VC(Windows)等C 语言编译环境。 四、任务及其要求 (1)利用自己所编的MD5 程序对一个文件进行处理,计算它的Hash 值,提交程 序代程和运算结果。 (2)微软的系统软件都有MD5 验证,尝试查找软件的MD5 值。同时,在Windows 操作系统中,通过开始→运行→sigverif 命令,利用数字签名查找验证非Windows 的系 统软件。__ 五、实验设计(包括原理图、真值表、分析及简化过程、卡诺图、源代码等) 在MD5 算法中,首先需要对信息进行填充,使其字节长度与448 模512 同余,即信息的字节长度扩展至n*512+448,n 为一个正整数。填充的方法如下:在信息的后面填充第一位为1,其余各位均为0,直到满足上面的条件时才停止用0 对信息填充。然后,再在这个结果后面附加一个以64 位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度为n*512+448= (n+1)*512,即长度恰好是512 的整数倍,这样做的目的是为满足后面处理中后面处理中对信息长度的要求。n 个分组中第q 个分组表示为Yq。MD5 中有A、B、C、D,4 个32 位被称作链接变量的整数参数,它们的初始值分别为: A=01234567B=89abcdef,C=fedcba98,D= 当设置好这个4 个链接变量后,就开始进入算法的4 轮循环运算。循环的次数是信息中512 位信息分组数目。首先将上面4 个链接变量复制到另外4 个变量中A

相关文档