文档库 最新最全的文档下载
当前位置:文档库 › 简支梁振动系统动态特性综合测试方法

简支梁振动系统动态特性综合测试方法

简支梁振动系统动态特性综合测试方法
简支梁振动系统动态特性综合测试方法

目录

一、设计题目 (1)

二、设计任务 (1)

三、所需器材 (1)

四、动态特性测量 (1)

1.振动系统固有频率的测量 (1)

2.测量并验证位移、速度、加速度之间的关系 (3)

3.系统强迫振动固有频率和阻尼的测量 (6)

4.系统自由衰减振动及固有频率和阻尼比的测量 (6)

5.主动隔振的测量 (9)

6.被动隔振的测量 (13)

7.复式动力吸振器吸振实验 (18)

五、心得体会 (21)

六、参考文献 (21)

一、设计题目

简支梁振动系统动态特性综合测试方法。

二、设计任务

1.振动系统固有频率的测量。

2.测量并验证位移、速度、加速度之间的关系。

3.系统强迫振动固有频率和阻尼的测量。

4.系统自由衰减振动及固有频率和阻尼比的测量。

5.主动隔振的测量。

6.被动隔振的测量。

7.复式动力吸振器吸振实验。

三、所需器材

振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。

四、动态特性测量

1.振动系统固有频率的测量

(1)实验装置框图:见(图1-1)

(2)实验原理:

对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。

(图1-1实验装置图)

(3)实验方法:

①安装仪器

把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。

②开机

打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。

③测量

打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

④所得图形及数据分析:

(图1-2:幅频特性曲线)

由幅频特性曲线可得到的数据:

表1-1:实验所得数据 阶数 一阶 二阶 三阶 固有频率(Hz ) 58.5938 183.5938 386.7188 幅值(mv ) 2.8724 5.6004 6.5225

2.测量并验证位移、速度、加速度之间的关系 (1)实验装置与仪器框图:见(图2-1) (2)实验原理:

在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测

量振动信号的幅值。振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器来测量。

设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A : x = Bsin (ωt-ψ) (式2-1)

v = dt

dx

=ωBcos (ωt-ψ) (式2-2)

)sin(222ψ--==wt B w dt x

d a (式2-3)

式中:B一一位移振幅ω——振动角频率ψ——初相位

X=B

A=ω2B=(2πf)2B 式(2-4)

(图2-1:实验装置图)

振动信号的幅值可根据式(2-4)中位移、速度、加速度的关系,分别用位移传感器、速度传感器或加速度传感器来测量。也可利用动态分析仪中的微分、积分功能来测量。

(3)实验方法:

①安装激振器

把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的红线标识),用专用连接线连接激振器和DH1301扫频信号源输出接口。

②连接仪器和传感器

把加速度传感器安装在简支梁的中部,输出信号接到数采分析仪的振动测试通道;把位移传感器安装在简支梁的中部,输出信号接到数采分析仪的振动测试通道;把速度传感器安装在简支梁的中部,输出信号接到数采分析仪的振动测试通道。

③仪器参数设置

打开数采仪器的电源开关,开机进入DHDAS数采分析软件的主界面,设置采样频率、量程范围,输入加速度传感器、速度传感器和位移传感器的灵敏度。

输入方式:压电传感器选AC,速度传感器选AC,位移传感器选SIN_DC;

打开三个窗口,分别显示三个通道的时间信号。

④采集并显示数据

调节扫频信号源的输出频率和信号幅值,使梁产生明显振动。在三个窗口中读取当前振动的最大值(位移、速度、加速度)。

(4)实验数据:

(图2-2:位移、速度、加速度时间曲线)

(5)实验结果与分析:

表2-1:实验数据结果

位移X 速度V 加速度 A

0.048 82.1416 3.9908 1.2670

综上所述,实验结果与计算结果大致相等。

3.系统强迫振动固有频率和阻尼的测量

(1)实验步骤:

①分析软件进入到频响函数分析模块。

②设置信号源频率,起始频率:0Hz,结束频率:100Hz,线性扫频间隔:1Hz/s。

③设置分析软件,平均方式:峰值保持;信号显示窗口内,选择显示频响函

数1-3/1-2曲线;

④开始采集数据,输出扫频信号给激振器。直到扫频信号达到结束频率,手

动停止扫频。

(2)数据处理:

频响函数曲线类似下图:

(图3-1:频响函数曲线)

由频响函数图像可知,系统固有频率f

0=51.8H

Z

,f

1

=50.9H

Z

, f

2

=55.4H

Z

阻尼比

4.系统自由衰减振动及固有频率和阻尼比的测量

(1)实验装置框图:

(图4-1:实验装置框图)

(2)实验方法:

①将测试系统连接好将加速度传感器布置在集中质量附近,加速度传感器

信号接到数采仪的振动测试通道。

②仪器设置

打开仪器电源,进入控制分析软件,新建一个项目(文件名自定),设置采样频率、量程范围、工程单位和灵敏度等参数,在数据显示窗口内点击鼠标右键,选择信号,选择时间波形,开始采集数据,数据同步采集显示在图形窗口内。

③测试和处理

用锤敲击质量块使其产生自由衰减振动。记录单自由度系统自由衰减振动波形,然后设定i,利用双光标读出i个波经历的时间△t,T

1

=△t/;读出相

距i个周期的两振幅的双振幅2A

1、2 A

i+1

之值,计算出阻尼比 ,固有频率

f。

(3)实验所得图形如下:

(图4-2:时间曲线图形)

表4-1:加速度传感器时间波形曲线上峰值数据

时间(s)9.3281 9.3516 9.3848 9.4121 9.4160 幅值(mv)109.1394 51.3051 33.3225 28.5703 26.1390

表4-2:加速度传感器时间波形曲线上峰值数据

时间(s)9.4453 9.4727 9.5059 9.5352 9.5664 幅值(mv)23.1771 17.7364 17.0072 14.5400 11.3836

(4)计算结果如下:

表4-3:数据处理结果

i 时间t 周期T

1 A

1

A

i+1

阻尼比固有频率

f

9 0.2383 0.0265 109.1394 11.3836 0.0400 37.74

i=9

△t=t10-t1=9.5664-9.3281=0.2383(s)

A1=109.1394

A10=11.3836

5.主动隔振的测量 (1)实验装置:

(图5-1:实验装置图)

(2)实验原理:

隔振设计中,常常用振动传递比T 和隔振效率η来评价隔振效果。主动隔振传递比等于物体传递到底座的振动与物体的振动比,被动隔振传递比等于底座传递到物体的振动与底座的振动之比,两个方向的传递比相等。一般,由物体传递到底座时常用力表示,由底座传递到物体时则用位移、振动速度或振动加速度表示,这样便于应用。

隔振效率:()%1001?-=T η

传动比T : 式中D 为阻尼比, 激振 频率和共

振频率的比。

只有传递比小于1才有隔振效果。因此T<1的区域称为隔振区。

①当时,T>1。系统有放大作用;

()

2

22

22

211u D u u D T +-+=

②当时,系统发生共振,传递比极大; ③当0032f f f <<时,作用有限;

④0063f f f <<时,隔振能力低(20—30dB ); ⑤00106f f f <<时,隔振能力中等(30—40dB ); ⑥010f f >时,隔振能力强(>40dB ); (3)实验步骤:

①仪器安装

把空气阻尼器和质量块组成的弹簧质量系统固定在底座中部,加速度传感器放上面,接入数采仪的电荷通道,速度传感器放在底座上,接入采集仪的应变通道将调速电机安装到隔振器上,电机连线接到调压器上。

②开机进入控制分析软件,设置采样频率等参数,正确输入传感器灵敏度,设置双通道时间和频谱示波,并将加速度通道信号积分处理,变为速度显示。 ③改变激振频率(电机转速),分别测量20Hz,40Hz,60Hz 时,两传感器的振动幅度。

④根据所测幅值计算传动比和隔振效果

隔振传动比:

隔振效率:()%1001?-=T η

(4)实验图形:

(图5-2:激振频率20H Z下幅频特性曲线)(图5-3:激振频率40H Z下幅频特性曲线)

(图5-4:激振频率60H Z下幅频特性曲线)(5)数据处理:

表5-1:实验所得数据

激振器频率(H z)加速度传感器振幅

A1 速度传感器振幅

A2

传动

隔振效

20 0.0422 0.1391 0.3034 69.66% 40 0.4951 6.6757 0.0742 92.58% 60 1.4256 66.9644 0.0213 97.87%

6.被动隔振的测量

(1)实验装置:

(图6-1:实验装置)

(2)实验原理:

防止地基的振动通过支座传至需保护的精密仪器或仪器仪表,以减少运动的传递,称为被动隔振。被动隔振传递比等于底座传递到物体的振动与底座的振动之比,由底座传递到物体时则用位移、振动速度或振动加速度表示。

隔振效率:

()%

100

1?

-

=T

η

传动比T:

()22

2

2

2

2

1

1

u

D

u

u

D

T

+

-

+

=

式中D为阻尼比,为激振频率和共振频率的比。(3)实验步骤:

①隔振器安装

把小的空气阻尼器和质量块组成的弹簧质量系统固定在梁中部,速度传感器放上面,压电加速度传感器放在梁的下面。 ②安装激振器

把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的红线标识),用专用连接线连接激振器和DH1301扫频信号源输出接口。 ③连接仪器和传感器

把加速度传感器输出信号接到数采分析仪的振动测试通道1-2; 把速度传感器输出信号接到数采分析仪的应变测试通道1-3。 ④仪器参数设置

打开数采仪器的电源开关,开机进入DHDAS2003数采分析软件的主界面,设置采样频率、分析点数,量程范围,输入加速度传感器、速度传感器的灵敏度。

⑤打开三个窗口,分别显示二个通道的时间波形信号、二通道频谱信号和频响函数,并且加速度信号要经积分运算变换为速度信号。 ⑥采集并显示数据

调节扫频信号源的输出频率,使隔振器产生共振。在各窗口中分别读取当前振动的最大值、频率值0f 、振幅以及第一通道的峰值1A 和第二通道的峰值2A 。

⑦改变激振频率,分别测量002f f f <<、、

0032f f f << 、

0063f f f <<、00106f f f <<、010f f >、时,上下传感器的振动幅度。

⑧根据所测幅值计算传动比和隔振效果

隔振传动比:

隔振效率:()%1001?-=T η

(4)实验图形如下:

(图6-2:激振频率40H Z 下幅频特性曲线)

(图6-3:激振频率48H Z 下幅频特性曲线)

2

1

A A T =

(图6-4:激振频率88H Z下幅频特性曲线)(图6-5:激振频率40H Z下幅频特性曲线)(图6-6:激振频率320H Z下幅频特性曲线)

(图6-7:激振频率480H Z下幅频特性曲线)(5)数据处理计算:

表6-1:数据结果

频率范围频率加速度振

幅A1 速度振幅

A2

传动比T 隔振效

0.0784 4.1913 0.0187 98.13% 0.2636 11.7068 0.0225 97.75% 0.0531 1.3041 0.0407 95.93% 0.3028 4.2952 0.0705 92.95% 0.9280 6.2068 0.1495 85.05% 0.0217 0.0837 0.2593 74.07%

7.复式动力吸振器吸振实验

(1)实验装置图:

(图7-1:实验装置图)

(2)实验原理:

单式动力减振采用一个附加的特殊弹簧质量系统变成为两自由度的系

ω等于主系统的固有频率ω,如果外部激振统,附加弹簧质量系统固有频率a

频率等于其固有频率时,即可起到良好的减振效果。如果外部激振频率与主

系统的二阶或更高阶固有频率相等时,单式减振器就不能发挥作用,这时可

以采用复式减振器。

复式减振器附加一个具有两自由度或多自由度的弹簧质量系统,减振器

的一个弹簧质量系统的调节螺母经过调节,可以对应系统中的某阶固有频率,

当外部激振力引起主系统某阶共振时,能量就转移到附加质量系统,起到减

振效果。

(3)实验步骤:

①安装激振器

把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证

激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的红线标识),用专

用连接线连接激振器和DH1301扫频信号源输出接口。

②接仪器和传感器

把加速度传感器安装到梁中部集中质量上,输出信号接到数采分析仪的振

动测试通道;复式动力吸振器安装在梁中央。.

③仪器参数设置

打开数采仪器的电源开关,开机进入DHDAS数采分析软件的主界面,设置

采样率、量程范围,输入加速度传感器的灵敏度。窗口分别显示振动信号的

时间波形和频谱

④采集并显示数据

调节扫频信号源的输出频率,使梁产生共振。在窗口中分别读取当前振动

的幅值、频率值。

⑤调节吸振器上的调节螺母,观察波形,使其幅值达到最小时,停止调节,

记录其幅值及频率。

振动测试系统

一、振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 二、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

振动信号检测系统的设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导 一.等截面细直梁的横向振动 取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。梁在横向振动时,其挠曲线随时间而变化,可表示为 y=y(x,t) (1) 除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。故可以采用材料力学中的梁弯曲的简化理论。根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为: 22y EI M x ?=? (2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。至于分布载荷集度q 的正向则规定与y 轴相同。在这些规定下,有: M Q Q q x x ??==??, (3) 于是,对方程(2)求偏导,可得: 222222(EI )(EI )y M y Q Q q x x x x x x ??????====??????, (4) 考虑到等截面细直梁的EI 是常量,就有:

3434y y EI Q EI q x x ??==??, (5) 方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。 应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为 22 y q t ρ?=-? (6) 其中ρ代表梁单位长度的质量。假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程: 4242y y EI x t ρ??=--?? (7) 其中2 /a EI ρ=。 为求解上述偏微分方程(7),采用分离变量法。假设方程的解为: y(x,t)=X(x)Y(t) (8) 将式(8)代入(7),得: 22424 1Y a d X Y t X dx ?=-? (9)

测试系统的特性

第4章测试系统的特性 一般测试系统由传感器、中间变换装置和显示记录装置三部分组成。测试过程中传感器将反映被测对象特性的物理量(如压力、加速度、温度等)检出并转换为电信号,然后传输给中间变换装置;中间变换装置对电信号用硬件电路进行处理或经A/D变成数字量,再将结果以电信号或数字信号的方式传输给显示记录装置;最后由显示记录装置将测量结果显示出来,提供给观察者或其它自动控制装置。测试系统见图4-1所示。 根据测试任务复杂程度的不同,测试系统中每个环节又可由多个模块组成。例如,图4-2所示的机床轴承故障监测系统中的中间变换装置就由带通滤波器、A/D变换器和快速傅里叶变换(Fast Fourier Transform,简称FFT)分析软件三部分组成。测试系统中传感器为振动加速度计,它将机床轴承振动信号转换为电信号;带通滤波器用于滤除传感器测量信号中的高、低频干扰信号和对信号进行放大,A/D变换器用于对放大后的测量信号进行采样,将其转换为数字量;FFT分析软件则对转换后的数字信号进行快速傅里叶变换,计算出信号的频谱;最后由计算机显示器对频谱进行显示。 要实现测试,一个测试系统必须可靠、不失真。因此,本章将讨论测试系统及其输入、输出的关系,以及测试系统不失真的条件。 图4-1 测试系统简图 图4-2 轴承振动信号的测试系统

4.1 线性系统及其基本性质 机械测试的实质是研究被测机械的信号)(t x (激励)、测试系统的特性)(t h 和测试结果)(t y (响应)三者之间的关系,可用图4-3表示。 )(t x )(t y )(t h 图4-3 测试系统与输入和输出的关系 它有三个方面的含义: (1)如果输入)(t x 和输出)(t y 可测,则可以推断测试系统的特性)(t h ; (2)如果测试系统特性)(t h 已知,输出)(t y 可测,则可以推导出相应的输入)(t x ; (3)如果输入)(t x 和系统特性)(t h 已知,则可以推断或估计系统的输出)(t y 。 这里所说的测试系统,广义上是指从设备的某一激励输入(输入环节)到检测输出量的那个环节(输出环节)之间的整个系统,一般包括被测设备和测量装置两部分。所以只有首先确知测量装置的特性,才能从测量结果中正确评价被测设备的特性或运行状态。 理想的测试装置应具有单值的、确定的输入/输出关系,并且最好为线性关系。由于在静态测量中校正和补偿技术易于实现,这种线性关系不是必须的(但是希望的);而在动态测量中,测试装置则应力求是线性系统,原因主要有两方面:一是目前对线性系统的数学处理和分析方法比较完善;二是动态测量中的非线性校正比较困难。但对许多实际的机械信号测试装置而言,不可能在很大的工作范围内全部保持线性,只能在一定的工作范围和误差允许范围内当作线性系统来处理。 线性系统输入)(t x 和输出)(t y 之间的关系可以用式(4-1)来描述 )()(...)()()()(...)()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (4-1) 当n a ,1-n a ,…,0a 和m b ,1-m b ,…,0b 均为常数时,式(4-1)描述的就是线性系统,也称为时不变线性系统,它有以下主要基本性质: (1)叠加性 若 )()(11t y t x →,)()(22t y t x →,则有

第三章 测试系统的基本特性

第三章 测试系统的基本特性 (一)填空题 1、某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为= ω,幅值= y ,相位= φ。 2、试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统 的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有、 和 。 3、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y ?=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。4、传感器的灵敏度越高,就意味着传感器所感知的越小。5、一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度(3)回程误差(4)阻尼系数 2、从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q +(3)) ()() ()(2121ωωωωQ Q Q Q +(4)) ()(21ωωQ Q ?4、一阶系统的阶跃响应中,超调量 。 (1)存在,但<5%(2)存在,但<1(3)在时间常数很小时存在 (4)不存在 5、忽略质量的单自由度振动系统是 系统。(1)零阶 (2)一阶 (3)二阶 (4)高阶 6、一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数(4)阻尼比 7、用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的

汽车发动机振动噪声测试系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率〈150W; 2.2.4工作环境温度:—10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态范围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

测试系统的基本特性

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

基于labview振动测试系统

基于LabVIEW的振动信号测试系统设计 摘要:虚拟仪器是现代计算机技术同仪器技术深层次结合的全新概念仪器,实质是利用计算机的显示器的显示功能模拟传统仪器的控制面板,以多种形式表达输出测量结果,利用计算机强大的软件功能实现信号数据的运算、分析和处理,完成各种测试功能的一种计算机仪器系统。 本次设计利用了基于LabVIEW的虚拟仪器技术设计了一套振动测试系统,下位机采用AT89C52单片机进行数据采样,并通过RS-232串口与上位机通信实现信号数据的传输,上位机软件开发基于LabVIEW平台。其具有信号采集,波形显示,数据处理,数据保存,信号参数检测等功能,具有操作简单,界面直观,适用性强等特点。通过设计,能够对数据进行时域显示和频域分析处理。 关键词:虚拟仪器;振动测试;LabVIEW;单片机

Vibration Testing System Based on LabVIEW Signal Design Abstract : Virtual instrumentation is modern computer technology combined with the deep-seated instrument technology new concept instrument , in essence, the use of the computer monitor 's display traditional analog instrument control panel to output measurement results of various forms of expression , the use of powerful computer software functions the operation data for signal analysis and processing is completed for all test functions of a computer system apparatus . The design takes advantage of LabVIEW -based virtual instrument technology designed a vibration test systems, next-bit machine using AT89C52 microcontroller for data sampling , and to achieve data transmission signal via RS-232 serial communication with the PC , PC software development based on LabVIEW platform. Which has a signal acquisition, waveform display , data processing, data storage , signal parameter detection and other functions, with a simple, intuitive interface, applicability, and other characteristics. By design, the data can be displayed in time domain and frequency domain analysis. Ke ywords: Virtual Instrument, vibration test, LabVIEW, SCM

简述系统动态特性及其测定方法

简述系统动态特性及其测定方法 系统的特性可分为静态特性和动态特性。其中动态特性是指检测系统在被测量随时间变化的条件下输入输出关系。一般地,在所考虑的测量范围内,测试系统都可以认为是线性系统,因此就可以用一定常线性系统微分方程来描述测试系统以及和输入x (t)、输出y (t)之间的关系。 1) 微分方程:根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电 路定律等),用线性常系数微分方程表示系统的输入x 与输出y 关系的数字方程式。 a i 、 b i (i=0,1,…):系统结构特性参数,常数,系统的阶次由输出量最高微分阶次决定。 2) 通过拉普拉斯变换建立其相应的“传递函数”,该传递函数就能描述测试装 置的固有动态特性,通过傅里叶变换建立其相应的“频率响应函数”,以此来描述测试系统的特性。 定义系统传递函数H(S)为输出量与输入量的拉普拉斯变换之比,即 式中S 为复变量,即ωαj s += 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响应和频率响应的全部信息。传递函数有一下几个特点: (1)H(s)描述系统本身的动态特性,而与输入量x (t)及系统的初始状态无关。 (2)H(S)是对物理系统特性的一种数学描述,而与系统的具体物理结构无关。H(S)是通过对实际的物理系统抽象成数学模型后,经过拉普拉斯变换后所得出的,所以同一传递函数可以表征具有相同传输特性的不同物理系统。 (3)H(S)中的分母取决于系统的结构,而分子则表示系统同外界之间的联系,如输入点的位置、输入方式、被测量以及测点布置情况等。分母中s 的幂次n 代表系统微分方程的阶数,如当n =1或n =2 时,分别称为一阶系统或二阶系统。 一般测试系统都是稳定系统,其分母中s 的幂次总是高于分子中s 的幂次(n>m)。

振动测试系统

振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 一、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二二阶系统的动态特性与稳定性分析 一、实验目的 1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 )对系统动态2、分析二阶系统特征参量(ξ ω, n 性能的影响; 3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink实现方法。 二、实验内容 1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。 3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、

峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω2 2)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节 ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5 .12n =ω 保持不变,测试阻尼

双简支梁固有频率及振型测量

《振动测试实验》实验报告? 南京航空航天大学 机械结构力学及控制国家重点实验室 二○一一年 ?注:实验报告完成后请以附件形式发送至:wt78@https://www.wendangku.net/doc/7f9880474.html, 邮件主题请写明:《振动测试实验报告》,姓名,学号,分班号(三班或四班)

一、实验目的 ?测量双简支梁的固有频率和振型。 ?理解多自由度系统振型的物理概念。 ?掌握多自由度系统固有频率和振型的简单测量方法。 二、实验原理图 简支梁固有频率和振型测试原理图 三、实验过程 1、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”。打开各设备电源。 2、进入“双简支梁固有频率与振型测量”实验操作界面,使信号发生器的输出频率约为 30Hz,输出电压约为 1V 。调节功率放的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(观察并用手触摸)。 3、将信号发生器输出频率由低向高逐步调节,同时观察李萨育图形。当李萨育图为稳定的正椭圆时,信号发生器的频率读数即为第一阶固有频率。继续将

信号发生器的频率向高逐步调节,测出第二阶、第三阶固有频率。 4、再将信号发生器调到第一阶固有频率值,保持功率放大器的输出功率恒定(即:不再改变信号发生器的输出电压和功率放大器的输出功率),保持“参考”传感器的位置不变。将“测量”传感器从双简支梁的右端等距跑点,依次记下“测量”传感器在各个位置时的测量点与参考点传感器输出电压之比(即“测量点/参考点”的显示值)及其正负号。将其归一化即可得到第一阶振型,填“振型数据”表格。点击“振型图”或“振型动画”检验振型数据。 四、实验数据与分析 1、列出固有频率。 双简支梁的3个阶段的固有频率分别为: 一阶: 36.7Hz 二阶: 136.5Hz 三阶: 326.6Hz 一阶振型图

三振动系统固有频率的测量

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ( ) () 2 2 2 22 2 214e e e q A ω εω ω ωω+--= , () 22 222 242e e e q A ω εω ω ε ω+-= , m F q 0= 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: ( ) () () t q t q x e e e e e e e e ωω εω ω ε ωωω εω ω ωωsin 42cos 422 222 22 222 2 2+-+ +--= 通过变换可写成

振动信号检测系统设计1

(此文档为word格式,下载后您可任意编辑修改!) 信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。 总体设计方案介绍:

简支梁自振频率测量(正弦扫频法)实验报告

实验2简支梁自振频率测量(正弦扫频法) 一、实验目的 以简支梁为例,了解和掌握机械振动系统幅频特性曲线的测量方法以如何由幅频特性曲线得到系统的固有频率,了解常用简单振动测试仪器的使用方法。 二、实验内容及原理 简支梁系统在周期干扰力作用下,以干扰力的频率作受迫振动。振幅随着振动频率的改变而变化。由此,通过改变干扰力(激振力)的频率,以其为横坐标,以振幅B为纵坐标,得到的曲线即为幅频特性曲线。 依据共振法测试简支梁的一阶、二阶固有频率,原理同实验三。用跳沙法观察简支梁一阶、二阶振型。 测试简支梁的振型,根据简支梁的长度,划分若干个单元格,依次标号。将信号发生器的频率调整到一阶固有频率处,观察简支梁的振动情况,在该频率下,分别测试每个单元的振幅。依据测得的振幅,通过归一化,绘出简支梁的一阶振型。 三、实验仪器及设备 机械振动综合实验装置(安装简支梁)1套 激振器及功率放大器1套 加速度传感器1只 电荷放大器1台

信号发生器1台 数据采集仪1台 信号分析软件1套 计算机1台 四、实验方法及步骤 1.将激振器通过顶杆连接到简支梁上(注意确保顶杆与激振器的中心线在一直线上),激振点位于简支梁中心偏左50mm处(已有安装螺孔),将信号发生器输出端连接到功率放大器的输入端,并将功率放大器与激振器相连接。 2.用双面胶纸(或传感器磁座)将加速度传感器粘贴在简支梁上(中心偏左50mm)并与电荷放大器连接,将电荷放大器输出端分别与数据采集仪输入端连接。 3.将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源。设置信号发生器输出频率为10Hz,调节信号发生器的幅值旋钮使其输出电压为2V。调节功率放大器的幅值旋钮,逐渐增大其输出功率直至简支梁有明显的振动(用眼观察或用手触摸)。 4.将信号发生器输出频率由低向高逐步调节,观察简支梁的振动情况,若振动过大则减小功率放大器的输出功率。 5.保持功率放大器的输出功率恒定,将信号发生器的频率重新由抵向高逐步调节,记录调整频率的变化情况,采集各个调整频率下响应信号振动幅值对应的电压数据。 五、实验数据整理与分析

相关文档
相关文档 最新文档