文档库 最新最全的文档下载
当前位置:文档库 › 细胞信号转导及与相关疾病综述

细胞信号转导及与相关疾病综述

细胞信号转导及与相关疾病综述
细胞信号转导及与相关疾病综述

细胞信号转导及与相关疾病综

——广医大李雪银孔颖诗郭欣仪张淑珍谭丞茵小组

摘要:由于细胞的信号转导功能就是机体生理功能调节的细胞和分子机制,所以信号转导通路及信号分子、信号分子间的以及信号通路间的相互

作用的改变,是许多人类疾病的分子基础,这已在癌症、动脉硬化、

心肌肥大、炎症疾病以及神经退行性疾病等发展的病理机制研究中取

得了显著进展。

关键词:信号转导,受体,配体,介导等

一、信号传导的概念:是指生物学信息(兴奋或抑制)在细胞间或细胞内

转换和传导,并产生生物效应的过程。信号转导的核心在于通过特定

信号通路进行生物信息的细胞内转换与传递过程并涉及对相关蛋白

质基因表达过程的调控。

二、信号转导的生理意义:1)其本质上就是细胞核分子水平的功能调节,

是机体生命活动中的生理功能调节的基础。2)信号转导中的信号指

的是生物学信号,可以是物理信号,如电、声光等,更多的是以化学

物质为载荷物体的化学信号,如激素、神经递质等。3)信号转导的

结果即生物效应是各式各样的,可为对靶细胞功能的硬性,或为对靶

细胞代谢、分化和生长发育的影响,甚至是对靶细胞形态结构和生存

状态等方面的影响。

三、与信号转导作用有关物质的概念与性质

1)受体:是指细胞中具有接受和转导信息功能的蛋白质,分布于细胞膜中的受体称为膜受体,位于细胞质内和核内的受体

则称之为胞质受体和核受体①离子通道型受体:是一种同时

具有受体和离子通道功能的蛋白质分子,属于化学门控通道,

他们接受的化学信号绝大多数是神经递质,激活后可引起离

子的跨膜流动。②G蛋白耦联受体:是指激活后作用于之耦

联的G蛋白,然后一发一系列以信号蛋白为主的级联反应而

完成跨膜信号转导的一类受体。③酶联型受体:是指自身就

具有酶的活性或能与酶结合的膜受体。④招募型受体:也是

单个跨膜受体,受体分子的胞内域没有任何酶的活性,故不

能进行生物信号的放大。⑤核受体:实质上是激素调控特定

蛋白质转录的一大类转录调节因子,包括类固醇激素,维生

素D3受体,甲状腺激素受体和维甲酸受体等。

2)配体:凡能与受体发生特异性结合的活性物质称之为配体

3)G蛋白耦联受体:是指激活后作用于与之耦联的G蛋白,然后引发一系列以信号为主的级联反应而完成跨膜信号转导的一类

受体。

4)G蛋白:是鸟苷酸结合蛋白的简称,是G蛋白耦联受体联系胞内信号通路的关键蛋白。

5)G蛋白效应器:是指G蛋白直接作用的靶标,包括效应器酶、膜离子通道以及膜转运蛋白等。

6)第二信使:是指激素、神经递质、细胞因子等细胞外信号分子(第一信使)作用于膜受体后产生的细胞内信号分子。

7)蛋白激酶:是一类将ATP分子上的磷酸基因转移到底物蛋白而产生蛋白磷酸化的酶类。

8)酶联型受体:是指其自身就具有酶的活性或能与酶结合的膜受体。这类受体的结构特点:每个受体分子只有一个跨膜区段,

其胞外结构域含有可结合配体的部位,而胞内结构域则具有酶

的活性或含能与酶结合的位点。

9)招募型受体:也是单个跨膜受体,受体分子的胞内没有任何的活性,故不能进行生物信号的放大。

10)核受体:由于胞质受体在于配体结合后,一般也要转入核内发挥作用,因而常把细胞内的受体统称为核受体。核受体实质上

是激素调控特定蛋白质转录的一大类转录调节因子。

四、离子通道型受体介导的信号转导

1)离子通道型受体本身就是离子通道当配体(激动剂)与受体结合时,

离子通道开放,细胞膜对特定离子的通透性增加,从而引起细胞电位

改变,表现出路径简单和速度快的特点。常见的非选择性的阳离子通

道受体有烟碱(N)型乙酰胆碱受体(nAChR)、谷氨酸促离子型受体

(ACh)等。

2)离子通道型受体介导的信号转导还包括电压门控通道和机械门控

通道。尽管电压门控通道和机械门控通道不称受体,但它们也能将接

受的物理信号转换成细胞膜电位改变,具有与化学门控通道类似的信

号功能,故也可归入离子通道型受体介导的信号转导中。与离子通道

型受体不同的只是接受的是电信号和机械信号,但它们也通过离子通

道的活动和跨膜离子电流将信号转导到细胞内。

五、G蛋白耦联受体介导的信号转导配体—受体—G蛋白—G蛋白效应

器—第二信使—功能效应

1)受体-G蛋白-AC- cAMP-PKA通路/ cAMP第二信使系统(关键信号

分子cAMP)

胞外信号分子(第一信使、配体)→G蛋白藕联受体→G S→腺苷酸环

化酶(AC)→环-磷酸腺苷(第二信使、cAMP)→蛋白激酶A (PKA)

→功能效应

该通路中的受体依据其所耦联的G蛋白类型不同,可发挥相互拮抗

的作用。若活化受体激活的G蛋白为家族中的某一亚型,这类G蛋

白活化后抑制腺苷酸环化酶活性,降低环一磷酸腺苷水平。另外,

cAMP除了通过PKA磷酸化下游蛋白而产生生物效应外,还可直接作

用于膜离子通道而产生信号转导作用。

2)受体-G蛋白-PLC-IP3-Ca2+和DG-PKC通路/IP3和DG第二信使系统(关

键信号分子IP3和DG)

胞外信号分子(第一信使)→G i或G q→磷脂酶C(PLC)→二磷酸磷

脂酰肌醇→三磷酸肌醇(IP3)和二酰甘油(DG);三磷酸肌醇(IP3)至

内质网或肌质网钙离子释放和胞质中钙离子浓度升高。二酰甘油(DG)

与钙离子和膜磷脂中的磷脂酰丝氨酸共同将胞质中的蛋白激酶C(PKC)

结合于膜内表面并使之激活。

IP3可被IP3磷酸单脂酶降解而消除。PKC属于丝氨酸/苏氨酸蛋白激酶,其结构中含疏水性调节区和亲水性催化区,调节区有DG、磷脂和Ca2+

的结合部位。由于PKC有多种亚型,且各自的激活条件、组织分布以

及底物特性均有所不同,PKC激活后使底物蛋白磷酸化可产生多种生

物效应。同时,由于PKC激活后常与膜脂质、DG和Ca2+形成复合物,

故被PKC催化的底物多为膜蛋白。

3)Ca2+信号系统由IP3触发从胞内钙库释放进胞质的Ca2+,以及

细胞膜中电压门控或化学门控通道由胞外进入胞内的Ca2+,一方面作

为带电离子可影响膜电位而直接改变细胞的功能,但更重要的是作为

第二信使,通过与胞内多种底物蛋白相结合而发挥作用,参与多种胞

内信号转导过程。

六、酶联型受体介导的信号转导当受体的细胞外部分与配体结合

后便可引起受体分子胞质侧部分酪氨酸激酶的活化,继而触发各种信

号蛋白沿不同的路径的信号转导。能与受体结合而完成信号传导的细

胞外分子主要是各种生长因子。

(1)酪氨酸蛋白激酶受体胰岛素与生长因子(表皮生长因子,血小

板源生长因子和肝细胞生长因子等)——与络氨酸激酶受体结合——

胞质侧活性部位活化

(2)络氨酸激酶结合型受体干扰素,白细胞介素和生长激素等——

与络氨酸激酶结合型受体结合——与胞质络氨酸激酶结合并使之激

(3)受体鸟苷酸环化酶心房钠尿肽和脑钠尿肽——与鸟苷酸环化酶

受体结合——激活鸟苷酸环化酶——催化GTP生成cAMP——结合并

激活PKG——对底物蛋白磷酸实现信号转导

七、招募型受体介导的信号转导受体胞外域一旦与受体结合,其胞内

域即可在胞质侧招募激酶或转接蛋白,激活下游不涉及经典第二信使

的信号传导通路。如细胞因子受体介导的JAK-STAT信号通路等,它

主要调控造血细胞及免疫细胞的功能。招募型受体对信号转导的特异

性通常需要共受体或受体寡聚化来实现,招募型受体的配体主要是细

胞因子等。

八、核受体介导的信号转导类固醇激素进入胞质与受体结合形成激

素-受体复合物后,核受体便与热休克蛋白解离,核受体域内的核转

位信号暴露,激素-受体复合物即转位至核内,再以二聚体形式与核

内靶基因上HRE结合(DNA结合型受体),从而调节靶基因转录并表达

特定的蛋白质产物,引起细胞功能改变。位于核内的核受体不需要与

热休克蛋白结合,在未与配体结合前就与靶基因的HRE保持结合状态,也没有转录激活作用,只有在与相应配体结合后,才能激活转录过程。

九、受体介导的信号传导的不同点(1)离子通道型受体——路径简单,

速度快(2)G蛋白耦联受体——路径复杂,速度慢,需要多级信号

分子中继,作用范围广,能增强信号的放大作用胞质侧无酶活性(3)

酶联型受体——胞质侧具有酶活性

十、细胞信号转导异常与疾病

1)信息分子异常指细胞信息分子过量或不足。如胰岛素生成减

少,体内产生抗胰岛素抗体或胰岛素拮抗因子等,均可导致胰岛素的

相对或绝对不足,引起高血糖。

2)受体信号转导异常指受体的数量、结构或调节功能改变,使

其不能正确介导信息分子信号的病理过程。原发性受体信号转导异常,如家族性肾性尿崩症是ADH受体基因突变导致ADH的反应性降低,对

水的重吸收降低,引起尿崩症。继发性受体异常指配体的含量、PH、

磷脂环境及细胞合成与分解蛋白质等变化引起受体数量及亲和力的

继发性改变。如心力衰竭是,β受体对儿茶酚胺的刺激发生了减敏反

应,β受体下调,是促进心力衰竭发展的因素之一。

3)G蛋白信号转导异常如假性甲状旁腺机能减退症(PHP)是由于

靶器官对甲状旁腺(PTH)的反应性降低而引起的遗传性疾病。PTH

受体与Gs耦联。PHP1A型的发病机制是由于编码Gsa等位基因的单个

基因突变,患者GsamRNA可比正常人降低50%,导致PTH受体与腺苷

酸环化酶(AC)之间信号转导脱耦联。

4)细胞内信号的转导异常细胞内信号转导涉及大量信号分子和

信号蛋白,人一环节异常均可通过级联反应引起疾病。如Ca2+是细胞

内重要的信使分子之一。在组织缺血-再灌注损伤过程中,胞浆Ca2+

浓度升高,通过下游的信号转导途径引起组织损伤。

5)多个环节细胞信号的转导异常在疾病的发生和发展过程中,

可涉及多个信息分子影响多个信号转导途径,导致复杂的网络调节失

衡。以非胰岛素依赖性糖尿病(NIDDM)为例加以说明。胰岛素受体

属于TPK家族,受体后可激活磷脂酰肌醇3激酶(PI3K),启动与代

谢和生长有关的下游信号转导过程。NIDDM发病涉及胰岛素受体和受

体后多个环节信号转导异常:①受体基因突变使受体合成减少或结构

异常,受体与配体的亲和力降低或受体活性降低。②受体后信号转导

异常:PI3K基因突变可产生胰岛素抵抗,使胰岛素对PI3K的激活作

用减弱。

6)同一刺激引起不同的病理反应投以激素作用于不同的受体,从

而引起不同的反应。例如感染性休克发病过程中,在同一刺激源(内

毒素)作用下使交感神经兴奋,若作用于α受体,则引起动脉收缩表

现为冷休克;若交感神经兴奋激活β受体,使动、静脉短路开放,则表

现为暖休克。

7)不同刺激引起相同的病理反应不同的信号途径之间存在广泛

交叉,不同刺激常可引起相同的病理反应或疾病。例如心肌肥大的发

病过程中,心肌负荷过重引起的机械刺激,神经体液调节产生的去甲

肾上腺素、血管紧张等,可通过不同的信号转导蛋白的传递,最终引

起相同的病理反应——心肌肥大。

十一、细胞信号转导异常性疾病防治的病理生理学基础

1)调整细胞外信息分子的水平

2)调节受体的结构和功能

3)调节细胞内信使分子或信号转导蛋白

4)调节和核转录因子的水平

参考文献:

1.生理学朱大年,王庭槐主编.—8版.—北京:人民卫生出版社,2013 P19-P26

2.细胞信号转导异常与疾病

https://www.wendangku.net/doc/7a18853868.html,/link?url=sf29Kvt2D-WVlIczLWeHqVeMq_9rnPWiskIT392GsMhNGs9yUizl aCwgmC7p-UpkRnY-spXN5GXvxC00Cx0Qda

3.细胞信号转导及相关疾病

https://www.wendangku.net/doc/7a18853868.html,/link?url=9dBblCfzzf75K-xE2p_A2fqjdanZ3PtCxAond9pMsdN5g72P-9ltoB A9uSqt_bBHDgP3ouLTFtYT2zTamGAGz02DMPyCjzm-VjhO5H0smYa

第七章 细胞信号转导异常与疾病-卢建

总字数:19,361 图:5 表:0 第七章细胞信号转导异常与疾病 第一节细胞信号转导系统概述 一、受体介导的细胞信号转导通路 二、细胞信号转导通路调节靶蛋白活性的主要方式 第二节信号转导异常发生的环节和机制 一、细胞外信号发放异常 二、受体或受体后信号转导异常 第三节与信号转导异常有关的疾病举例 一、胰岛素抵抗性糖尿病 二、肿瘤 三、心肌肥厚和心衰

第七章细胞信号转导异常与疾病 细胞信号转导系统(signal transduction system或cell signaling system)由能接收信号的特定受体、受体后的信号转导通路以及其作用的靶蛋白所组成。细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 信号转导过程包括细胞对信号的接受,细胞内信号转导通路的激活和信号在细胞内的传递。激活的信号转导通路对其靶蛋白的表达或活性/功能的调节,如导致如离子通道的开闭、蛋白质可逆磷酸化反应以及基因表达改变等,导致一系列生物效应。 一、受体介导的细胞信号转导通路 细胞的信号包括化学信号和物理信号,物理信号包括射线、紫外线、光信号、电信号、机械信号(摩擦力、压力、牵张力以及血液在血管中流动所产生的切应力等)以及细胞的冷热刺激等。已证明物理信号能激活细胞内的信号转导通路,但是与化学信号相比,目前多数物理信号是如何被细胞接受和启动细胞内信号转导的尚不清楚。 化学信号又被称为配体(ligand),它们包括:①可溶性的化学分子如激素、神经递质和神经肽、细胞生长因子和细胞因子、局部化学介质如前列腺素、细胞

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

第15章--细胞信号转导习题

第十五章细胞信号转导 复习测试 (一)名词解释 1. 受体 2. 激素 3. 信号分子 4. G蛋白 5. 细胞因子 6. 自分泌信号传递 7. 蛋白激酶 8. 钙调蛋白 9. G蛋白偶联型受体 10. 向上调节 11. 细胞信号转导途径 12. 第二信使 (二)选择题 A型题: 1. 关于激素描述错误的是: A. 由内分泌腺/细胞合成并分泌 B. 经血液循环转运 C. 与相应的受体共价结合 D. 作用的强弱与其浓度相关 E. 可在靶细胞膜表面或细胞内发挥作用 2. 下列哪种激素属于多肽及蛋白质类: A. 糖皮质激素 B. 胰岛素 C. 肾上腺素 D. 前列腺素 E. 甲状腺激素 3. 生长因子的特点不包括: A. 是一类信号分子 B. 由特殊分化的内分泌腺所分泌 C. 作用于特定的靶细胞 D. 主要以旁分泌和自分泌方式发挥作用 E. 其化学本质为蛋白质或多肽 4. 根据经典的定义,细胞因子与激素的主要区别是: A. 是一类信号分子 B. 作用于特定的靶细胞 C. 由普通细胞合成并分泌 D. 可调节靶细胞的生长、分化 E. 以内分泌、旁分泌和自分泌方式发挥作用 5. 神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号:

A. 形成动作电位 B. 使离子通道开放 C. 与受体结合 D. 通过胞饮进入细胞 E. 自由进出细胞 6. 受体的化学本质是: A. 多糖 B. 长链不饱和脂肪酸 C. 生物碱 D. 蛋白质 E. 类固醇 7. 受体的特异性取决于: A. 活性中心的构象 B. 配体结合域的构象 C. 细胞膜的流动性 D. 信号转导功能域的构象 E. G蛋白的构象 8. 关于受体的作用特点,下列哪项是错误的: A. 特异性较高 B. 是可逆的 C. 其解离常数越大,产生的生物效应越大 D. 是可饱和的 E. 结合后受体可发生变构 9. 下列哪项与受体的性质不符: A. 各类激素有其特异性的受体 B. 各类生长因子有其特异性的受体 C. 神经递质有其特异性的受体 D. 受体的本质是蛋白质 E. 受体只存在于细胞膜上 10. 下列哪种受体是催化型受体: A. 胰岛素受体 B. 甲状腺激素受体 C. 糖皮质激素受体 受体 D. 肾上腺素能受体 E. 活性维生素D 3 11. 酪氨酸蛋白激酶的作用是: A. 使蛋白质结合上酪氨酸 B. 使含有酪氨酸的蛋白质激活 C. 使蛋白质中的酪氨酸激活 D. 使效应蛋白中的酪氨酸残基磷酸化 E. 使蛋白质中的酪氨酸分解 12. 下列哪种激素的受体属于胞内转录因子型: A. 肾上腺素 B. 甲状腺激素 C. 胰岛素 D. 促甲状腺素 E. 胰高血糖素

细胞信号转导

植物Ca2+信号的研究进展 摘要 为了适应环境,调节自身代谢和生长, 在植物的生长发育过程中,需要对各种外界环境刺激以及植物内部生理信息做出反应,因此,植物产生了自己的信号系统。Ca2+作为一种信号分子,它几乎参与了生命体所有的生理生化活动,在植物细胞的信号系统中也起着举足轻重的作用。钙是植物生长发育必需的大量元素之一,在细胞水平上, 钙在细胞分裂、极性形成、生长、分化、凋亡等过程中均有重要的调节功能, 能维持细胞壁, 细胞膜及膜结合蛋白的稳定性并参与调节和控制植物的许多生理生化反应, 是植物代谢的重要调节者。针对国内外对植物Ca2+信号的研究情况,综述了Ca2+信号的产生、Ca2+信号参与的各种植物生理过程、Ca2+信号的检测以及其研究的最新进展。 关键词:植物; Ca2+信号; 检测; 研究进展

钙元素广泛存在于自然界和各种生物体内, 而游离态的Ca2+更是在生命活动中扮演着举足轻重的角色, 它几乎参与了生命体所有的生理生化活动。作为一种信号分子, Ca2+在受精、胚胎发育、基因表达、细胞分化、组织形成、代谢调控等过程中都有参与, 可以说, Ca2+信号无处不在[1]。1967年, Ridg-wang和Ashley通过向藤壶肌纤维中微注射水母发光蛋白, 第一次测定静息态胞内钙离子浓度[Ca2+]以来, 对于Ca2+信号的研究即风生水起。虽然植物Ca2+信号的研究起步较动物细胞晚, 但依然取得了一些成果。对植物Ca2+信号的研究, 不但能揭示生命的奥秘, 同时能帮助我们更加清楚地了解各种生命活动。为此, 针对国内外对植物Ca2+信号的研究情况, 笔者对Ca2+信号的生理功能、信号的产生、Ca2+信号参与的各种植物生理过程、以及其研究的最新进展进行了综述。 1.Ca2+的功能 Heilbrunn在1937~1952年发表的著作中, 提出了Ca2+在生物系统中复杂和多功能性的观点。认为利用Ca2+是所有活细胞的基本特征。在他提出的“细胞刺激理论”中认为:当细胞受到各种刺激时, 细胞内原来浓度很低的Ca2+水平明显增高。Heilbrunn提出Ca2+的一些细胞效应有:(1)促进细胞黏合和胞间通讯;(2)影响酶活性, 如ATP酶酯酶等;(3)调节细胞分裂;(4)控制细胞的代谢活动;(5)调节细胞溶质中溶胶-凝胶状态转变;(6)高浓度Ca2+可能造成细胞死亡, 溶质中Ca2+浓度如果太高, 会与细胞内的磷酸根产生沉淀, 而磷酸根是细胞能量及物质代谢所必须的;(7)调节细胞膜的透性。钙在维持细胞膜方面有着重要作用, 电镜观察表明, 缺钙导致细胞膜解体, 加钙又恢复常态。可见钙有稳定细胞膜结构, 防止细胞膜损伤的作用。有机酸是植物代谢的中间产物, 钙能和有机酸结合成为可溶性的钙盐结晶, 其中最为普遍的就是草酸钙。据报道, 在外源Ca2+诱导下, 细胞内可形成草酸钙结晶移去外源Ca2+, 结晶会消失。草酸钙的形成有以下生理作用:(1)消除有机酸在植物体内的过多积累。(2)草酸钙的形成过程是可逆的,植物体内钙离子过多形成草酸钙, 消除过量钙对植物的伤害, 当钙离子浓度不能满足植物需要时,草酸钙释放出Ca2+以满足植物的需要。 2.植物Ca2+信号的产生和终止 高度区域化的植物细胞内结构中, 在质膜液泡膜内质网膜上都存在着跨膜的钙离子电化学梯度, 细胞质和细胞核内游离钙离子也呈现不均匀分布, 这些梯度分布在静止状态是相对稳定的, 在受到刺激时会发生变化。钙离子梯度是钙信号产生的基础,即植物细胞Ca2+空间分布的不均衡性是产生Ca2+信号的生物基础。植物细胞中, 静息态的胞内Ca2+浓度([Ca2+] i)为100~200nM, 而细胞外(细胞壁)和细胞内(内质网、液泡、线粒体、高尔基体、细胞核)钙离子库中钙离子浓度却是胞内的数十倍, 达到了1~10mM[2,3]。当细胞受到信号刺激时, Ca2+从钙离子库中释放, 使胞内Ca2+浓度瞬间升高,激活Ca2+依赖蛋白和激酶CPKs引起细胞代谢以及基因表达的改变。当Ca2+重新进入细胞内钙离子库或流出细胞进入胞外钙离子库时, 信号得以终止。钙离子浓度的调节是通过各种钙离子通道, 钙离子泵和钙离子转运来实现的[4]。 3.植物Ca2+信号的多样性 Ca2+信号几乎参与了各种植物生理过程, 包括花粉管生长、细胞分裂、受精等;同时, Ca2+信号还参与植物的抗逆反应和对光线的感知。由此可见, Ca2+

细胞信号转导练习题集

细胞信号转导练习题 选择题:正确答案可能不止一个 1. NO直接作用于(B) A.腺苷酸环化酶 B.鸟苷酸环化酶 C.钙离子门控通道D.PKC 2.以下哪一类细胞可释放NO( B) A.心肌细胞 B.血管内皮细胞 C.血管平滑肌细胞 3.硝酸甘油作为治疗心绞痛的药物是因为它( C) A.具有镇痛作用 B.抗乙酰胆碱 C.能在体内转换为NO 4.胞内受体(A B) A.是一类基因调控蛋白 B.可结合到转录增强子上 C.是一类蛋白激酶 D.是一类第二信使 5.受体酪氨酸激酶RPTK( A B C D) A.为单次跨膜蛋白 B.接受配体后发生二聚化 C.能自磷酸化胞内段 D.可激活Ras 6. Sos属于(B) A.接头蛋白(adaptor protein) B.Ras的鸟苷酸交换因子(GEF) C.Ras的GTP酶活化蛋白(GAP)D:胞内受体 7.以下哪些不属于G蛋白(C)

A.Ras B.微管蛋白β亚基 C.视蛋白 D. Rho 8. PKC以非活性形式分布于细胞溶质中,当细胞之中的哪一种离子浓度升高时,PKC转位到质膜内表面(B) A.镁离子 B.钙离子 C.钾离子 D.钠离子 9.Ca2+载体——离子霉素(ionomycin)能够模拟哪一种第二信使的作用(A) A.IP3 B.IP2 C.DAG D.cAMP 10.在磷脂酰肌醇信号通路中,质膜上的磷脂酶C(PLC-β)水解4,5-二磷酸磷脂酰肌醇(PIP2),产生哪两个两个第二信使(A B) A.1,4,5-三磷酸肌醇(IP3) B.DAG C.4,5-二磷酸肌醇(IP2) 11.在磷脂酰肌醇信号通路中,G蛋白的直接效应酶是(B) A.腺苷酸环化酶 B.磷脂酶C-β C.蛋白激酶C D. 鸟苷酸环化酶 12.蛋白激酶A(Protein Kinase A,PKA)由两个催化亚基和两个调节亚基组成,cAMP能够与酶的哪一部分结合?(B) A.催化亚基 B.调节亚基 13.在cAMP信号途径中,环腺苷酸磷酸二酯酶(PDE)的作用是 (C) A.催化ATP生成cAMP B.催化ADP生成cAMP C.降解cAMP生成5’-AMP 14.在cAMP信号途径中,G蛋白的直接效应酶是(B)

细胞信号转导及与相关疾病综述

细胞信号转导及与相关疾病综 ——广医大雪银孔颖诗郭欣仪淑珍谭丞茵小组 摘要:由于细胞的信号转导功能就是机体生理功能调节的细胞和分子机制,所以信号转导通路及信号分子、信号分子间的以及信号通路间的相互 作用的改变,是许多人类疾病的分子基础,这已在癌症、动脉硬化、 心肌肥大、炎症疾病以及神经退行性疾病等发展的病理机制研究中取 得了显著进展。 关键词:信号转导,受体,配体,介导等 一、信号传导的概念:是指生物学信息(兴奋或抑制)在细胞间或细胞转 换和传导,并产生生物效应的过程。信号转导的核心在于通过特定信 号通路进行生物信息的细胞转换与传递过程并涉及对相关蛋白质基 因表达过程的调控。 二、信号转导的生理意义:1)其本质上就是细胞核分子水平的功能调节, 是机体生命活动中的生理功能调节的基础。2)信号转导中的信号指 的是生物学信号,可以是物理信号,如电、声光等,更多的是以化学 物质为载荷物体的化学信号,如激素、神经递质等。3)信号转导的 结果即生物效应是各式各样的,可为对靶细胞功能的硬性,或为对靶 细胞代、分化和生长发育的影响,甚至是对靶细胞形态结构和生存状 态等方面的影响。 三、与信号转导作用有关物质的概念与性质 1)受体:是指细胞中具有接受和转导信息功能的蛋白质,分布于细胞膜中的受体称为膜受体,位于细胞质和核的受体则称 之为胞质受体和核受体①离子通道型受体:是一种同时具有 受体和离子通道功能的蛋白质分子,属于化学门控通道,他 们接受的化学信号绝大多数是神经递质,激活后可引起离子 的跨膜流动。②G蛋白耦联受体:是指激活后作用于之耦联 的G蛋白,然后一发一系列以信号蛋白为主的级联反应而完 成跨膜信号转导的一类受体。③酶联型受体:是指自身就具 有酶的活性或能与酶结合的膜受体。④招募型受体:也是单 个跨膜受体,受体分子的胞域没有任何酶的活性,故不能进 行生物信号的放大。⑤核受体:实质上是激素调控特定蛋白 质转录的一大类转录调节因子,包括类固醇激素,维生素D3 受体,甲状腺激素受体和维甲酸受体等。 2)配体:凡能与受体发生特异性结合的活性物质称之为配体 3)G蛋白耦联受体:是指激活后作用于与之耦联的G蛋白,然后引发一系列以信号为主的级联反应而完成跨膜信号转导的一类 受体。 4)G蛋白:是鸟苷酸结合蛋白的简称,是G蛋白耦联受体联系胞信号通路的关键蛋白。 5)G蛋白效应器:是指G蛋白直接作用的靶标,包括效应器酶、膜离子通道以及膜转运蛋白等。 6)第二信使:是指激素、神经递质、细胞因子等细胞外信号分子(第一信使)作用于膜受体后产生的细胞信号分子。

七细胞信号转导异常与疾病版

第七章细胞信号转导异常与疾病 一.选择题 (一).A型题 1.下列关于细胞信号转导的叙述哪项是不正确的? A.不同的信号转导通路之间具有相互联系作用 B.细胞受体分为膜受体和核受体 C.酪氨酸蛋白激酶型受体属于核受体 D.细胞信号转导过程是由细胞内一系列信号转导蛋白的构象、活性或功能变化来实现的E.细胞内信使分子能激活细胞内受体和蛋白激酶 2.下列关于细胞信号转导的叙述哪项是错误的? A.机体所有生命活动都是在细胞信号转导和调控下进行的 B.细胞通过受体感受胞外信息分子的刺激,经细胞内信号转导系统的转换而影响生物学功能 C.不溶性信息分子需要与膜表面的特殊受体相结合,才能启动细胞信号转导过程 D.脂溶性信息分子需与胞外或核内受体结合,启动细胞信号转导过程 E.G蛋白介导的细胞信号转导途径中,其配体以生长因子为代表 3.有关G蛋白叙述哪项是不正确的? A.G蛋白是指与鸟嘌呤核苷酸可逆性结合的蛋白质家族 B.G蛋白是由αβγ亚单位组成的异三聚体 C.Gα上的GTP被GDP取代,这是G蛋白激活的关键步骤 D.小分子G蛋白只具有G蛋白α亚基的功能 E.G蛋白偶联受体由单一肽链7次穿越细胞膜

4.信号转导通路对靶蛋白调节最重要的方式是 A.通过G蛋白调节B.通过可逆性磷酸化调节C.通过配体调节 D.通过受体数量调节E.通过受体亲和力调节 5.迄今发现的最大受体超家族是 A.GPCR超家族B.细胞因子受体超家族C.酪氨酸蛋白激酶型受体家族 D.离子通道型受体家族E.PSTK型受体家族 6.调节细胞增殖与肥大最主要的途径是 A. DG-蛋白激酶C途径 B. 受体酪氨酸蛋白激酶途径 C. 腺苷酸环化酶途径 D. 非受体酪氨酸蛋白激酶途径 E. 鸟氨酸环化酶途径 7.下列关于PI-3K-PKB通路的叙述错误的是 A.活化的PI-3K产物可激活磷脂酰肌醇依赖性激酶PKD1 B.在胰岛素调节糖代谢中发挥重要作用 C.在PI-3K-PKB通路中有PLCγ的激活 D.可促进细胞存活和抗凋亡 E.可参与调节细胞的变形和运动 8.下列关于信号转导异常原因的叙述哪项是不正确的? A.通过Toll样受体家族成员激活细胞内信号转导通路,在病原体感染引起的免疫和炎症反应中起重要作用 B.体内某些信号转导成分是致癌物作用的靶点 C.TSHR的失活性突变可造成TSH抵抗征,患者表现为甲状腺功能减退 D.常染色体显性遗传的甲亢患者常常伴有TSHR的失活性突变 E.自身免疫性受体病是由于患者体内产生了抗某种自身受体的抗体所致

细胞信号转导异常与疾病

细胞信号转导异常与疾病 【简介】 细胞通过受体感受胞外信号分子的刺激,经复杂的细胞内信号转导系统的转换而影响其生物学功能,该过程称为细胞信号转导。水溶性信号分子及某些脂溶性信号分子不能穿过细胞膜,通过与膜表面受体相结合而激活细胞内信号分子,经信号转导的级联反应将细胞外信号传递至胞浆或核内,调节靶细胞功能,该过程称为跨膜信号转导。脂溶性信号分子能穿过细胞膜,与位于胞浆或核内的受体相结合并激活之,活化的受体作为转录因子,改变靶基因的转录活性而诱导细胞特定的应答反应。在病理情况下,细胞信号转导途径中一个或多个环节异常,可导致细胞代谢及功能紊乱或生长发育异常。近年来,人们已经认识到大多数疾病与细胞外或细胞内的信号转导异常有关。信号转导治疗的概念进入了现代药物研究的最前沿。 【要求】 掌握细胞信号转导的概念、跨膜信号转导的概念,掌握细胞信号转导的主要途径 熟悉细胞信号转导障碍与疾病的关系 了解细胞信号转导调控与疾病防治措施 细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等多方面的作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。某些信号转导蛋白的基因突变或多态性虽然并不能导致疾病,但它们在决定疾病的严重程度以及疾病对药物的敏感性方面起重要作用。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 生物的细胞每时每刻都在接触着来自细胞内或者细胞外的各种各样信号。细胞通过位于胞膜或胞内的受体感受胞外信息分子的刺激,经复杂的细胞内信号转导系统的转换而影响其生物学功能,这一过程称为细胞信号转导(cell signal transduction)。典型的细胞信号转导过程通常包括①信号发放:细胞合成和分泌各种信号分子;②接受信号:靶细胞上的特异受体接受信号并启动细胞内的信号转导;③信号转导:通过多个信号转导通路调节细胞代谢、功能及基因表达;④信号的中止:信号的去除及细胞反应的终止。 一、信号以及细胞转导信号的要素 (一)细胞信号的种类 一般说来,能够介导细胞反应的各种刺激都称为细胞信号。细胞信号按照其形式不同可分为物理信号、化学信号和生物信号。生物细胞所接受的信号有多种多样,从这些信号的自然性质来说,可以分为物理信号、化学信号和生物学信号等几大类,它们包括光、热、紫外线、X-射线、离子、过氧化氢、不稳定的氧化还原化学物质、生长因子、分化因子、神经递质和激素等等。在这些信号中,最经常、最普遍、最广泛的信号应该说是化学信号。 化学信号种类繁多,包括激素(hormone)、神经递质(nerve mediator)、细胞因子

第七章 细胞信号转导异常与疾病

第七章细胞信号转导异常与疾病 一、单选题 1.下列哪项不属于典型的膜受体 ( ) A.乙酰胆碱受体 B.异丙肾上腺素受体 C.胰岛素受体 D.γ干扰素受体 E.糖皮质激素受体 2.介导去甲肾上腺素作用的受体属于 ( ) A.离子通道受体 B.G蛋白偶联受体 C.受体酪氨酸蛋白激酶 D.核受体 E.细胞粘附受体 3.核受体本质是配体激活的 ( ) A.丝/苏氨酸蛋白激酶 B.酪氨酸蛋白激酶 C.离子通道受体 D.转录因子 E.效应器 4.信号转导系统对靶蛋白调节的最重要方式是通过 ( ) A.DNA的甲基化 B.蛋白质的糖基化 C.DNA的乙酰化 D.蛋白质可逆的磷酸化 E.蛋白质的磷酸化 5.激素抵抗综合征是由于 ( ) A.激素合成减少 B.激素降解过多 C.靶细胞对激素反应性降低 D.靶细胞对激素反应性过高 E.以上都不是 6.毒性甲状腺肿(Graves病)的主要信号转导异常是 ( ) A.促甲状腺素分泌减少 B.促甲状腺素受体下调或减敏 C.Gs含量减少 D.促甲状腺激素(TSH)受体刺激性抗体的作用 E.TSH受体阻断性抗体的作用 7.霍乱毒素对G蛋白的作用是 ( ) A.促进Gs与受体结合 B.刺激Gs生成 C.使Gs的GTP酶活性增高

D.使Gs的GTP酶活性抑制或丧失 E.抑制Gi与受体结合 8.下列哪项不是激活NF- KB的因素 ( ) A.TNF B.病毒 C.糖皮质激素 D.活性氧 E.内毒素 9.肿瘤中小G蛋白Ras最常见的突变可导致 ( ) A.Ras的表达减少 B.Ras的失活 C.Ras与GDP解离障碍 D.Ras自身的GTP酶活性降低 E.Ras激活ERK通路的能力降低 10.家族性肾性尿崩症发病的关键环节是 ( ) A.腺垂体合成和分泌ADH减少 B.肾髓质病变使肾小管上皮细胞对ADH反应性降低 C.基因突变使ADH受体介导的信号转导障碍 D.基因突变使腺苷酸环化酶含量减少 E.肾小管上皮细胞上的水通道增多 11.肿瘤的细胞信号转导异常有 ( ) A.生长因子分泌过多 B.生长因子受体过度激活 C.Ras持续激活 D.抑制细胞增殖的信号减弱 E.以上都是 12.死亡受体(如I型TNFa受体)介导细胞凋亡主要通过激活 ( ) A.蛋白激酶A(PKA) B.Ca2+/钙调素依赖性蛋白激酶 C.蛋白激酶C(PKC) D.NF-kB E.caspases 二、问答题 1.简述细胞信号转导系统的组成、生理作用及异常的病理意义。 2.试述信号转导通路的异常与肿瘤发生发展的关系。 3.何谓自身免疫性受体病,举例说明受体自身抗体的种类和作用。 4.试述激素抵抗综合征的发生机制。 5.信号转导障碍在疾病发生和发展中起什么作用? 6.简述糖皮质激素的抗炎机制。 7.试从激素、受体以及信号转导通路调节的靶蛋白这几个不同层次阐述尿崩症的发生机制。 8.简述受体调节的类型和生理病理意义。 9.试述信号转导改变在高血压心肌肥厚发生中的作 用。 10.以LPS的信号转导为例,简述信号转导与炎症启动和放大的关系。

细胞信号转导

细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜 上的磷脂激酶C,使质膜上的PIP 2分解成IP 3 和DAG两个第二信使,将胞外信号转导为胞内信号, 两个第二信使分别激活两种不同的信号通路,即IP 3 -Ca2+和DAG-PKC途径,实现对胞外信号的应 答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。 受体酪氨酸激酶(RTK):能将自身或者胞质中底物上的酪氨酸残基磷酸化的细胞表面受体,主要参与细胞生长和分化的调控。 细胞膜表面受体主要有三类,即离子通道偶联受体、G蛋白偶联受体和酶联受体。 信号分子也统称为配体,可分为疏水性信号分子、亲水性信号分子和气体性信号分子。 由G蛋白介导的信号通路主要包括 cAMP-PKA信号通路和磷脂酰肌醇信号通路。 Ras蛋白在RTK介导的信号通路中起着关键作用,具有GTPase活性,当结合GTP时为活化状态,当结合GDP时为失活状态。(GTP酶活性) G蛋白由三个亚基组成,β和γ亚基以异二聚体的形式存在,G α 亚基本身具有GTPase活性,是 分子开关蛋白。当配体与受体结合,三聚体G蛋白解离,并发生GDP与GTP交换,游离的G α - GTP处于活化的开启状态,当G α-GTP水解形成G α -GDP时,则处于失活的关闭状态。 细胞转导系统的的主要特性:特异性、放大效应、网络化与反馈调节、整合作用。

细胞受体及重要的细胞信号转导途径

细胞受体类型、特点 及重要的细胞信号转导途径 学院:动物科学技术学院 专业:动物遗传育种与繁殖 姓名:李波

学号:2015050509

目录 1、细胞受体类型及特点 (4) 1.1离子通道型受体 (4) 1.2 G蛋白耦联型受体 (4) 1.3 酶耦联型受体 (5) 2、重要的细胞信号转导途径 (5) 2.1细胞内受体介导的信号传递 (5) 2.2 G蛋白偶联受体介导的信号转导 (6) 2.2.1激活离子通道的G蛋白偶联受体所介导的信号通路 (7) 2.2.2激活或抑制腺苷酸环化酶的G蛋白偶联受体 (7) 2.2.3 激活磷脂酶C、以lP3和DAG作为双信使 G蛋白偶联受体介导的信号通 路 (8) 2.2 酶联受体介导的信号转导 (9) 2.2.1 受体酪氨酸激酶及RTK-Ras蛋白信号通路 (10) 2.2.2 P13K-PKB(Akt)信号通路 (10) 2.2.3 TGF-p—Smad信号通 (11) 2.2.4 JAK—STAT信号通路 (12)

1、细胞受体类型及特点 受体(receptor)是一种能够识别和选择性结合某种配体(信号分子)的大分子物质,多为糖蛋白,一般至少包括两个功能区域,与配体结合的区域和产生效应的区域,当受体与配体结合后,构象改变而产生活性,启动一系列过程,最终表现为生物学效应。受体与配体问的作用具有3个主要特征:①特异性;②饱和性;③高度的亲和力。 根据靶细胞上受体存在的部位,可将受体分为细胞内受体(intracellular receptor)和细胞表面受体(cell surface receptor)。细胞内受体介导亲脂性信号分子的信息传递,如胞内的甾体类激素受体。细胞表面受体介导亲水性信号分子的信息传递,膜表面受体主要有三类:①离子通道型受体(ion—channel—linked receptor);②G蛋白耦联型受体(G—protein —linked receptor);③酶耦联的受体(enzyme—linked recep—tor)。第一类存在于可兴奋细胞。后两类存在于大多数细胞,在信号转导的早期表现为激酶级联事件,即为一系列蛋白质的逐级磷酸化,借此使信号逐级传送和放大。 1.1离子通道型受体 离子通道型受体是一类自身为离子通道的受体,即配体门通道(1igand—gated channel),主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道。 1.2 G蛋白耦联型受体 三聚体GTP结合调节蛋白(trimeric GTP—binding regulatory protein)简称G蛋白,位于质膜胞质侧,由a、p、-/三个亚基组成,a和7亚基通过共价结合的脂肪酸链尾结合在膜上,G蛋白在信号转导过程中起着分子开关的作用,当a亚基与GDP结合时处于关闭状态,与GTP结合时处于开启状态,“亚基具有GTP酶活性,能催化所结合的ATP 水解,恢复无活性的三聚体状态,其GTP酶的活性能被RGS(regulator of G protein signaling)增强。RGS也属于GAP(GTPase activating protein)。 G蛋白耦联型受体为7次跨膜蛋白(图10—6),受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内

细胞信号转导及与相关疾病综述

细胞信号转导及与相关疾病综 ——广医大李雪银孔颖诗郭欣仪张淑珍谭丞茵小组 摘要:由于细胞的信号转导功能就是机体生理功能调节的细胞和分子机制,所以信号转导通路及信号分子、信号分子间的以及信号通路间的相互 作用的改变,是许多人类疾病的分子基础,这已在癌症、动脉硬化、 心肌肥大、炎症疾病以及神经退行性疾病等发展的病理机制研究中取 得了显著进展。 关键词:信号转导,受体,配体,介导等 一、信号传导的概念:是指生物学信息(兴奋或抑制)在细胞间或细胞内 转换和传导,并产生生物效应的过程。信号转导的核心在于通过特定 信号通路进行生物信息的细胞内转换与传递过程并涉及对相关蛋白 质基因表达过程的调控。 二、信号转导的生理意义:1)其本质上就是细胞核分子水平的功能调节, 是机体生命活动中的生理功能调节的基础。2)信号转导中的信号指 的是生物学信号,可以是物理信号,如电、声光等,更多的是以化学 物质为载荷物体的化学信号,如激素、神经递质等。3)信号转导的 结果即生物效应是各式各样的,可为对靶细胞功能的硬性,或为对靶 细胞代谢、分化和生长发育的影响,甚至是对靶细胞形态结构和生存 状态等方面的影响。 三、与信号转导作用有关物质的概念与性质 1)受体:是指细胞中具有接受和转导信息功能的蛋白质,分布于细胞膜中的受体称为膜受体,位于细胞质内和核内的受体 则称之为胞质受体和核受体①离子通道型受体:是一种同时 具有受体和离子通道功能的蛋白质分子,属于化学门控通道, 他们接受的化学信号绝大多数是神经递质,激活后可引起离 子的跨膜流动。②G蛋白耦联受体:是指激活后作用于之耦 联的G蛋白,然后一发一系列以信号蛋白为主的级联反应而 完成跨膜信号转导的一类受体。③酶联型受体:是指自身就 具有酶的活性或能与酶结合的膜受体。④招募型受体:也是 单个跨膜受体,受体分子的胞内域没有任何酶的活性,故不 能进行生物信号的放大。⑤核受体:实质上是激素调控特定 蛋白质转录的一大类转录调节因子,包括类固醇激素,维生 素D3受体,甲状腺激素受体和维甲酸受体等。 2)配体:凡能与受体发生特异性结合的活性物质称之为配体 3)G蛋白耦联受体:是指激活后作用于与之耦联的G蛋白,然后引发一系列以信号为主的级联反应而完成跨膜信号转导的一类 受体。 4)G蛋白:是鸟苷酸结合蛋白的简称,是G蛋白耦联受体联系胞内信号通路的关键蛋白。 5)G蛋白效应器:是指G蛋白直接作用的靶标,包括效应器酶、膜离子通道以及膜转运蛋白等。 6)第二信使:是指激素、神经递质、细胞因子等细胞外信号分子(第一信使)作用于膜受体后产生的细胞内信号分子。

细胞信号转导综述

细胞信号转导及与相关疾病的关系 姓名:赵亦天 摘要:多细胞生物体中的每一个细胞都在一定的条件下执行各自的功能,而这些功能大多具有某种关联,为了使细胞的各种功能活动能够有序的完成,则完善的细胞间的信号传导是必不可少的。 关键词:信号转导,受体 一.信号转导的概念: 细胞外的信号物质(激素,递质和细胞因子等)作用于细胞表面或细胞内受体,将细胞外信号分子所携带的信号转到细胞内的过程。信号分子作用于细胞时,不进入细胞,也不影响细胞内的过程,而是作用于细胞(核)膜的特殊蛋白分子(受体),将外界环境变化信息以新的信号形式(第二信使)传到细胞内,再引发一系列反应,调控细胞功能活动。 二.与信号转导作用有关物质的概念与性质 (1)配体:与受体发生特异性结合的活性物质。如:A.体外刺激信号(物理性:光、声、电、温度;化学性:空气、环境中的各种化学物质)B. 体内刺激信号(激素、神经递质、细胞因子、生长因子、气体分子(NO、CO、H2S)等) (2)受体:存在于细胞表面或亚细胞组分中的天然分子,具有特异性,饱和性,高亲和力等特征,在细胞内放大,传递信号,启动一系列生化反应,最终导致特定的细胞反应。 1)G蛋白藕联受体:G蛋白的结合部位在胞浆侧,与配体结合后激

活G蛋白,其本身不具备通道结构,也无酶活性,是通过与脂质双层中以及膜内侧存在的包括G蛋白等一系列信号蛋白分子之间级联式的复杂的相互作用来完成信号跨膜转导的(也称促代谢型受体)2)酶耦联受体:与G蛋白耦联受体完全不同的分子结构和特性,这一跨膜信号转导过程不需要G蛋白的参与,也没有第二信使的产生。酶耦联受体分子的胞质一侧自身具有酶的活性,或者可直接结合并激活胞质中的酶,并由此实现细胞外信号对细胞功能的调节。分为酪氨酸蛋白激酶受体,受体丝氨酸/苏氨酸激酶,受体酪氨酸磷酸酯酶,受体鸟甘酸环化酶,酪氨酸蛋白激酶结合型受体。酪氨酸蛋白激酶受体(RTK)是细胞表面一大类重要的受体家族。RTK即是受体又是酶,能够与配体结合,并把靶蛋白的酪氨酸残基磷酸化,其对应的配体为可溶性的或膜结合的多肽和蛋白类激素,包括胰岛素和各种生长因子。RTK的主要功能是控制细胞生长、分化而不是调控细胞的中间代谢;酪氨酸蛋白激酶联系的受体本身不具有酶活性,但是可以结合非受体酪氨酸蛋白激酶。受体与配体结合以后通过与之联系的非受体酪氨酸蛋白激酶的活化,磷酸化各种靶细胞的酪氨酸残基,实现信号传导;鸟苷酸环化酶是一次性跨膜蛋白受体,胞外段是配体结合部分,胞内段为鸟苷酸环化酶催化结构域。受体的配体是心房肌肉细胞分泌的一组肽类激素,心房排钠肽和脑排钠肽。特点:受体本身就是鸟苷酸环化酶,其细胞外的部分有与信号分子结合的位点,细胞内的部分有一个鸟苷酸环化酶的催化结构域,可催化GTP生成cCMP。 3)离子通道型受体:是一种同时具有受体和离子通道功能的蛋白质

抑郁症与细胞信号转导进展

2012年12月第9卷第36期 ·综述· CHINA MEDICAL HERALD 中国医药导报抑郁症是严重危害人类健康的情感障碍疾病,以往人们对抑郁症发病机制的研究主要集中在神经生化方面,近年来,人们逐渐认识到抑郁患者在神经细胞信号转导分子水平也存在异常。信号转导途径具有级联放大作用,一个原始的化学信号,通过信号传递过程的级联反应,可以在下游引起成百上千个酶蛋白的活化,产生生物学效应。本文综述了信号转导机制在抑郁症中的研究进展,为阐明抑郁症的发病机制和研制新型抗抑郁药物提供参考。 1G 蛋白偶联的信号转导通路与抑郁症1.1G 蛋白与抑郁症 G 蛋白在信息转导通路中起广泛和重要的整合、调节及放大作用,早期抑郁症信号通路的研究集中在G 蛋白上。2002年国内学者研究发现慢性应激抑郁模型大鼠海马的Gi 蛋白表达量明显高于正常大鼠[1]。抑郁患者Gq α下降,并常伴随神经元去分化过程,抗抑郁药能上调Gq α从而发挥抗抑郁作用。研究表明,抑郁模型大鼠前额皮质、海马CA3区G αi 表达增高,西酞普兰抗抑郁作用靶点之一可能是调整前额皮质、海马CA3区的G αi 的表达[2]。1.2cAMP-PKA 通路与抑郁症 对抑郁症信号通路研究较多的是cAMP-PKA 通路。研究提示抑郁症存在cAMP 系统活性下调,抗抑郁治疗可使cAMP 通路上调。抑郁患者存在大脑去甲肾上腺素能β受体耦联的腺苷酸环化酶(AC )敏感性降低及PKA 通路的异常。国外有资料报道,抑郁症自杀死亡者脑前额叶AC 的活性明显下降,自杀行为及抑郁性疾病可能与AC 活性改变有关。邓沁涛等[3]建立小鼠重复应激抑郁模型,检测小鼠海马内cAMP 含量、PKA 活性及海马磷酸化反应元件结合蛋白(P-CREB )水平,发现cAMP-PKA-CREB 是咯利普兰发挥抗抑郁作用 信号转导途径之一。魏浩洁等[4]的研究显示黄精皂苷对慢性应激抑郁大鼠行为学有改善作用,可能是通过调节5-羟色胺1A 受体(5-HT 1A R )及其介导的5-HT 1A R/cAMP/PKA 通路发挥抗抑郁作用。 1.3转录因子反应元件结合蛋白(CREB )的研究 CREB 是转录调节因子之一,通过CREB 及其磷酸化介导信号转导通路调节,并最终调控基因的转录。Koch 等[5]对抑郁症患者在药物治疗前后进行测定,显示经治疗有效的患者CREB 磷酸化显著增加,首次提出P-CREB 可能是抗抑郁治疗的生物学标志。国外研究人员建立CREB 缺陷小鼠模型,采用同源重组的方法建立CREB 缺陷小鼠模型,给予氟西汀治疗后,CREB 缺陷小鼠在强迫游泳和悬尾实验等行为学效应上显示了抗抑郁作用,CREB 成为抗抑郁治疗的新的分子靶点[6]。 1.4神经营养因子与抑郁症 神经营养因子(NTFs )是一组对神经组织起特殊营养保护作用的蛋白质,是神经细胞生长、分化的依赖因子,也是神经元受损害或病变中保护其存活和促进其再生的必需因子。NTFs 受心理应激的影响可能发生异常。其中研究较多的是脑源性神经营养因子(BDNF )。BDNF 以大脑皮层和海马分布最为丰富,其通过靶源性、自分泌和旁分泌形式激发神经细胞上的高亲和力信号传导通路发挥作用,它能促进5-羟色胺(5-HT )、多巴胺(DA )能神经元的再生和发芽,促进海马神经元生成。这种神经发生有助于改善抑郁患者的认知功能。已有报道显示,长期给予抗抑郁药可提高额叶、海马等部位BDNF 及其受体TrkB 的表达。采用慢性应激法制作大鼠抑郁模型,检测大鼠脑脊液、海马和皮层BDNF 的含量,结果表明,模型组大鼠脑脊液、海马和皮层BDNF 的含量显著低于正常对照组[7]。有研究发现,血清素转运体(SERT )基因敲 抑郁症与细胞信号转导研究进展 徐向青1唐启盛2 1.山东中医药大学附属医院,山东济南250011; 2.北京中医药大学第三附属医院,北京 100029 [摘要]抑郁症是严重危害人类健康的情感障碍疾病,其发病机制至今尚不明确,近年来更多的研究指向受体的细胞 信号转导机制。通过查阅整理相关文献,本文综述了信号转导机制在抑郁症中的研究进展,为阐明抑郁症的发病机制和研制新型抗抑郁药物提供参考。[关键词]抑郁症;信号转导;研究进展[中图分类号]R749.4[文献标识码]A [文章编号]1673-7210(2012)12(c )-0049-02 Advance research in depression and cellular signal transduction pathway XU Xiangqing 1TANG Qisheng 2 1.The Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Shandong Province,Ji'nan 250011,China; 2.The Third Affiliated Hospital of Beijing University of Chinese Medicine,Beijing 100029,China [Abstract]Depression is a serious hazard to human health of affective disorders,its pathogenesis is still not clear.In re -cent years,more and more research is pointed to the receptor signal transduction mechanism.By referring to the related lit -erature review,this article reviews the research progress of the mechanism of signal transduction in depression,and it pro -vides reference for elucidating the pathogenesis of depression and the development of new antidepressant drugs.[Key words]Depression;Cellular signal transduction pathway;Research progress [基金项目]国家自然科学基金资助项目(项目编号:30572389)。 49

相关文档
相关文档 最新文档