文档库 最新最全的文档下载
当前位置:文档库 › 短焦矩大视场光学系统的畸变校正

短焦矩大视场光学系统的畸变校正

短焦矩大视场光学系统的畸变校正
短焦矩大视场光学系统的畸变校正

鱼眼图像畸变校正算法

鱼眼图像畸变校正算法 司 磊 朱学玲 (安徽新华学院 信息工程学院 安徽 合肥 230088) 摘 要: 根据鱼眼镜头成像的特点,选择合适的图像畸变校正算法,标定鱼眼图像的中心和半径,用标定得到的参数进行校正,推出校正模型,方法简单,易于实现,并对鱼眼图的畸变矫正问题提出意见与看法。 关键词: 鱼眼图像;畸变矫正;图像预处理;图像增强 中图分类号:TP391 文献标识码:A 文章编号:1671-7597(2012)1110166-02 鱼眼图像的畸变矫正是以某种独特的变换方式将一副鱼眼 2 有关鱼眼图片的粗略校正 图像转换为理想图像的操作,这种操作在全方位视觉导航中具1)求取鱼眼图像行和列的比值 有重要的作用,是系统自动识别、跟踪和定位目标所必须的基将投射生成标准圆变换为鱼眼图片并求取图片中心点的方础操作。 法与普通相机照相原理不同,对于提取出来的鱼眼图片的轮1 畸变图像的校正原理 廓,我们先假定一个阈值,比如设一个灰度值30,用软件勾勒描绘出校正鱼眼图片大概的轮廓,然后先求出该轮廓的中心点根据畸变图像特点标定坐标图,求取标定点像素的理想值坐标,根据轮廓的图形和鱼眼图像的中心点的坐标,可计算出和实际值,同时生成坐标映射表,再把坐标映射表用于畸变图畸变图像的圆半径,从而求取鱼眼图像的中心点坐标和鱼眼图像的校正程序后,即可得到无畸变图像,具体处理过程如下: 像的粗略轮廓的图像的半径相对比,以便于将鱼眼图像的大概1)标定坐标 轮廓重新调整处理,变的更为精确和直观。假定畸变校正的鱼镜头中心的畸变可以忽略为零,以镜头为中心,离镜头越眼图片的半径中的行坐标曲线和列坐标曲线不相等,则我们需远的地方畸变越大。以镜头为中心标定坐标图,对图像进行坐要将畸变校正的鱼眼图像中的园的半径的曲线与下面的公式相标的标定,按正方形均匀排列圆点,如图1所示。 乘,然后就可以变换为普通的标准圆的图像。下面公式中(u,v)是畸变校正的鱼眼图片的中心点,β为畸变校正的鱼眼图像行和列的比值。 图1 2)图像预处理 先通过图像的、突出边缘细节;然后再用二值化处理增强调节对比度的图像,但部分样板点和背景的对比的差值较大,所以是设定一个阈值对整幅图像进行二值化,最后再对二值化后的图像再次进行中值滤波的方法处理,再次使用中值滤波方法可以有效的去除畸变图像中的部分椒盐噪声的影响。二值化的主要作用是可以提高畸变校正图像的质量,预处理图像可以为点阵样板圆点中心的确定提供重要的作用。 3)圆点中心的确定 由于图像畸变的影响,经过图像预处理后的畸变校正图像仍然是不规则的实心圆,然而样板中的确定的圆点却是规则排列的,所以可以在畸变校正的样板图像上把各个圆点的重心近似的2)鱼眼图片的粗略扭曲校正 替换为圆点中心,找出一个圆点的重心作为理想畸变校正样板图在得到中心点的坐标和校正形状之后,把扭曲的鱼眼图像像上与之对应的点,并找出该点处于二维平面坐标之中与之距离通过投射降低图像的扭曲程度变为正常的四方形的图像。 之和最大的圆点,从各个圆点的坐标之中找出与之距离之和最大在图2中,假设在没有扭曲的背景图像中,存在两个具有的圆点坐标,该点坐标即为畸变图像中与之相对应的点的坐标。相同x坐标的点,即k点和h点,并且在背景图像中随着圆上曲线再找出理想的点阵样板图像和该畸变校正图像中各圆点中心的位的经纬度的变大,扭曲程度也就越大,但是三维球面的整体从置,计算出点与点之间的垂直距离,即可得到点阵样板图像中各左到右的各个面的角度的差值全部都是相等的,而且在x轴方向点之间的偏移量,从而可以描绘和构建畸变校正图像上的各个点上与二维畸变校正图像相对应的线段dx的均匀分割经度或是纬之间偏移量的曲面。最后经过图像预处理过程的样板圆点中心的度也是相等的。因此在二维图像的X轴方向上任意点坐标经度或 确定,可计算出其它圆点中心的坐标位置。 图2

图像畸变校正

数字音视频处理大作业(一) 题目:图像畸变校正 班级:021212 学号:02121128 姓名:文威威

目录 第一章图像畸变概述.................................. - 1 - 第一节图像畸变的概念........................... - 1 - 第二节图像畸变形成原因......................... - 1 - 第二章通过算法去除图像畸变.......................... - 2 - 第一节引言..................................... - 2 - 第二节基于网格图像的图像畸变修正............... - 2 - 第三节基于现场定标的图像畸变校正............... - 3 - 第四节基于畸变等效曲面的图像畸变校正 ........... - 3 -

第一章图像畸变概述 第一节图像畸变的概念 图像畸变是指成像过程中所产生的图像像元的几何位置相对于参照系统(地面实际位置或地形图)发生的挤压、伸展、偏移和扭曲等变形,使图像的几何位置、尺寸、形状、方位等发生改变。 第二节图像畸变形成原因 造成图像畸变的原因包括:传感器性能误差,如摄像机的焦距变动、像主点偏移、镜头光学畸变、多光谱扫描仪扫描速度的非线性、扫描线首尾点成像的时间差引起的扫描线偏斜、采样和记录速度不均匀等;成像时的透视误差,如遥感成像系统投影方式主要有中心投影(摄像机)、斜距投影(侧视雷达)、全景投影(多光谱扫描)和多中心投影(胶带摄影机)等。除框幅式中心投影外,其它的投影方式都产生不同类型的畸变;飞行器姿态变化引起图像平移、旋转、扭曲和缩放;地球自转对扫描图像的影响;地形和地物高度变化,引起像点位移和比例尺改变;地球曲率的影响;大气折射,改变了光的传播方向、路径和雷达波的传播时间。

数码相机设计中图像几何畸变校正的实现

—191— 数码相机设计中图像几何畸变校正的实现 万 峰,杜明辉 (华南理工大学电信学院,广州 510641) 摘 要:由于光学镜头的生产工艺等原因,数码相机拍摄图像常常会出现非线性的几何畸变。针对这一常见问题,采用基于MSE 拟合、双线性插值的方法对拍摄图像进行校正。实验结果表明,该方法能够在保证无颜色失真的条件下获得较为理想的校正结果。 关键词:几何畸变;MSE ;双线性插值 Correction of Lens Distortion in Digital Camera Design WAN Feng, DU Minghui (Department of Communication and Electronic Engineering, South China University of Technology, Guangzhou 510641) 【Abstract 】 Nonlinear geometry distortion is an general problem in digital camera design because of arts and crafts of optical lens. This paper gives a solution which is based on MSE and bilinear interpolation. Experiments show that this method is efficient and accurate. 【Key words 】Geometry distortion; MSE; Bilinear interpolation 计 算 机 工 程Computer Engineering 第31卷 第17期 Vol.31 № 17 2005年9月 September 2005 ·工程应用技术与实现·文章编号:1000—3428(2005)17—0191—02 文献标识码:A 中图分类号:TP391.4 为了真实再现拍摄者观察到的景像,图像几何畸变的校正一直以来都是数码相机开发中重要的研究题目。 导致拍摄图像出现几何畸变最常见的原因是光学镜头的变形。要进行校正首先应给出描述畸变的数学模型。可以从光学成像原理及镜头物理特性的角度给出这一模型[4],也可以从拍摄图像本身对畸变进行描述。对后者而言,通常通过在空域里寻找畸变前后像素的空间映射关系进行校正。近期则出现了在频域中进行几何校正的研究。 本文采用在空域里确定畸变前后像素空间映射关系的方法进行几何校正。它包括两个独立的算法:空间变换和灰度级插值。空间变换描述输入输出图像中对应像素的映射关系,灰度级插值则确定输出像素的灰度值。通过检测控制点坐标进行MSE 拟合的方法实现空间变换,灰度级插值则采用双线性插值的方法,整个过程采用向后映射法完成。为了使这一方法能够满足实际需要,要进一步考察了算法的运行时间。 1 图像几何校正的算法 假设未畸变图像的像素位置坐标为),(y x ,畸变图像中对应像素位置坐标为),(y x ′′。则其空间映射关系可以采用下面的多项式来近似: ∑∑∑∑=?==?==′=′N i i N j j i ij N i i N j j i ij y x b y y x a x 00 00 (1) 其中N 为多项式的阶数,ij a 和ij b 分别是多项式的系数。 N i ,,2,1,0L =;i N j ?=,,2,1,0L ;N j i ≤+。 在一定程度上,多项式的阶数越高,校正效果就越好,但相应的运算量也会显著增加。另一方面,图像畸变得越严重,校正所需要的多项式阶数也会越高。 1.1 MSE 拟合 式(1)中的多项式系数可以通过MSE 拟合的方法得到。 MSE 拟合的基本思想是,对于一个集合),(i i y x ,寻找函数f (x ) 使拟合的均方误差ε达到最小。对于式(1)中的x 坐标,则 ∑∑∑∑∑∑==?===?=?′= ?′=L l N i N j j l i l ij l y L l N i N j j l i l ij l x y x b y L y x a x L 12010 1201 0)(1)(1εε (2) 应达到最小。其中L 为控制点个数。式(2)的上式两边对ij a 求导并置等式值为零,下式两边对ij b 求导并置等式值为0,可得方程 ∑∑∑∑∑∑∑∑===?====?=′=??? ?? ???′=??? ?????L l t l s l l t l s l L l N i i N j j l i l ij L l t l s l l t l s l L l N i i N j j l i l ij y x y y x y x b y x x y x y x a 11001100 (3) N s ,,2,1,0L =;s N t ?=,,2,1,0L ;N t s ≤+。对于N 阶多项式,其系数个数为)2)(1(++=N N M 。即式(3)应 有M 个,从而可以组成两个线性方程组。将这两个方程组写成矩阵形式为 a b K X K Y == (4) 其中a 、b 、X 和Y 为M 维向量。K 为M 阶方阵,其行标由 s 和t 的排列组成,记为u ;列标由i 和j 的排列组成,记为v 。则 ∑=++=L l t j l s i l uv y x k 1 (5) 在图像中选择合适的控制点,将控制点的位置坐标代入上面的矩阵,可求解出所有的系数,从而得到空间映射的函 作者简介:万 峰(1976—),男,博士生,主研方向为数字图像与图像处理;杜明辉,教授、博导 收稿日期:2004-06-04 E-mail :f.wan@https://www.wendangku.net/doc/7c19095045.html,

图像畸变校正程序一

图像畸变校正OPENCV 使用USB摄像头,采集一副图像,然后对图像畸变校正。摄像头事先标定好 #include "cv.h" #include "highgui.h" #include "cxcore.h" #include "cvcam.h" //图像的像素直接提取 #define _I(img,x,y) ((unsigned char*)((img)->imageData + (img)->widthStep*(y)))[(x)] //亚像素级灰度值 #define _IF(image,x,y) ( ((int)(x+1)-(x))*((int)(y+1)-(y))*_I((image),(int)(x),(int)(y)) + ((int )(x+1)-(x))*((y)-(int)(y))*_I((image),(int)(x),(int)(y+1)) + ((x)-(int)(x))*((int)(y+1)-(y))*_I((imag e),(int)(x+1),(int)(y)) + ((x)-(int)(x))*((y)-(int)(y))*_I((image),(int)(x+1),(int)(y+1)) )//插值后的像素值(IN表示interpolation),x、y可以为小数 void callback(IplImage* image); void main() { int ncams = cvcamGetCamerasCount( );//返回可以访问的摄像头数目 HWND mywin; cvcamSetProperty(0, CVCAM_PROP_ENABLE, CVCAMTRUE); cvcamSetProperty(0, CVCAM_PROP_RENDER, CVCAMTRUE); mywin = (HWND)cvGetWindowHandle("cvcam window"); cvcamSetProperty(0, CVCAM_PROP_WINDOW, &mywin); cvcamSetProperty(0, CVCAM_PROP_CALLBACK, callback); //cvcamGetProperty(0, CVCAM_VIDEOFORMA T,NULL); cvNamedWindow( "径向矫正1", 1 );//创建窗口 cvNamedWindow( "径向矫正2", 1 );//创建窗口 cvcamInit( ); cvcamStart( ); cvWaitKey(0); cvcamStop( ); cvcamExit( ); cvDestroyWindow( "径向矫正1" );//销毁窗口 cvDestroyWindow( "径向矫正2" );//销毁窗口

6-图像畸变校正

实验五 图像形状及颜色畸变的校正 一、 实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、 问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1. 数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为M 个,每列像素为N 个,则图像大小为M ?N 个像素。例如,一幅640?480的图像,就表示这幅连续图像在长、宽方向上分别分成640个和480个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数f(x,y),其中x,y 是空间坐标。对任何一对空间坐标(x,y)上的幅值f(x,y),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素f(i,j)的坐标含义是i 为行坐标,j 是列坐标。而像素f(x,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色0 列坐标(j) 行坐标(i) 矩阵元素 f (i ,j) 0 纵坐标(y) 横坐标(x) 像素f(x,y) 图 1.1 矩阵坐标系与直角坐标系

鱼眼图像畸变校正算法

据《硅谷》杂志2012年第21期刊文称,根据鱼眼镜头成像的特点,选择合适的图像畸变校正算法,标定鱼眼图像的中心和半径,用标定得到的参数进行校正,推出校正模型,方法简单,易于实现,并对鱼眼图的畸变矫正问题提出意见与看法。 关键词:鱼眼图像;畸变矫正;图像预处理;图像增强 鱼眼图像的畸变矫正是以某种独特的变换方式将一副鱼眼图像转换为理想图像的操作,这种操作在全方位视觉导航中具有重要的作用,是系统自动识别、跟踪和定位目标所必须的基础操作。 1畸变图像的校正原理 根据畸变图像特点标定坐标图,求取标定点像素的理想值和实际值,同时生成坐标映射表,再把坐标映射表用于畸变图像的校正程序后,即可得到无畸变图像,具体处理过程如下:1)标定坐标 镜头中心的畸变可以忽略为零,以镜头为中心,离镜头越远的地方畸变越大。以镜头为中心标定坐标图,对图像进行坐标的标定,按正方形均匀排列圆点,如图1所示。 2)图像预处理 先通过图像的、突出边缘细节;然后再用二值化处理增强调节对比度的图像,但部分样板点和背景的对比的差值较大,所以是设定一个阈值对整幅图像进行二值化,最后再对二值化后的图像再次进行中值滤波的方法处理,再次使用中值滤波方法可以有效的去除畸变图像中的部分椒盐噪声的影响。二值化的主要作用是可以提高畸变校正图像的质量,预处理图像可以为点阵样板圆点中心的确定提供重要的作用。 3)圆点中心的确定 由于图像畸变的影响,经过图像预处理后的畸变校正图像仍然是不规则的实心圆,然而样板中的确定的圆点却是规则排列的,所以可以在畸变校正的样板图像上把各个圆点的重心近似的替换为圆点中心,找出一个圆点的重心作为理想畸变校正样板图像上与之对应的点,并找出该点处于二维平面坐标之中与之距离之和最大的圆点,从各个圆点的坐标之中找出与之距离之和最大的圆点坐标,该点坐标即为畸变图像中与之相对应的点的坐标。再找出理想的点阵样板图像和该畸变校正图像中各圆点中心的位置,计算出点与点之间的垂直距离,即可得到点阵样板图像中各点之间的偏移量,从而可以描绘和构建畸变校正图像上的各个点之间偏移量的曲面。最后经过图像预处理过程的样板圆点中心的确定,可计算出其它圆点中心的坐标位置。 2有关鱼眼图片的粗略校正 1)求取鱼眼图像行和列的比值 将投射生成标准圆变换为鱼眼图片并求取图片中心点的方法与普通相机照相原理不同,对于提取出来的鱼眼图片的轮廓,我们先假定一个阈值,比如设一个灰度值30,用软件勾勒描绘出校正鱼眼图片大概的轮廓,然后先求出该轮廓的中心点坐标,根据轮廓的图形和鱼眼图像的中心点的坐标,可计算出畸变图像的圆半径,从而求取鱼眼图像的中心点坐标和鱼眼图像的粗略轮廓的图像的半径相对比,以便于将鱼眼图像的大概轮廓重新调整处理,变的更为精确和直观。假定畸变校正的鱼眼图片的半径中的行坐标曲线和列坐标曲线不相等,则我们需要将畸变校正的鱼眼图像中的园的半径的曲线与下面的公式相乘,然后就可以变换为普通的标准圆的图像。下面公式中(u,v)是畸变校正的鱼眼图片的中心点,β为畸变校正的鱼眼图像行和列的比值。 2)鱼眼图片的粗略扭曲校正 在得到中心点的坐标和校正形状之后,把扭曲的鱼眼图像通过投射降低图像的扭曲程度变为正常的四方形的图像。

反射式数字全息显微镜光学系统

数字全息显微镜的光学系统设计 摘要 数字全息显微术是把数字全息和全息显微相结合,用CCD代替传统的全息干板来实现全息显微的过程。 本文通过理论的分析和计算,完成了以下工作: 1)在数字全息的方法上,介绍和比较了几种记录和再现的方法;并选择了无透镜傅里叶变换与同轴全息相结合的光路,可以最大利用CCD分辨率和简化光路。在系统光路中加入相移技术,消除零级和共轭像。 2)在1/2英寸CCD情况下,利用干涉仪原理设计出了基本光路;分析并选择了各个部件的具体参数;分析计算了系统中需要满足的条件。计算出在几种物镜预放大情况下,系统的分辨率和放大率。 在对微小物体做近距离显微时,本文的显微系统极限分辨率理论长度可以达到0.8μm左右。 关键词:全息术;数字全息显微;预放大技术。

Optical system design of digital holographic microscopy Abstract Digital holographic microscopy digital holography and holographic microscopy combined with CCD, instead of the traditional holographic plate to realize the process of holographic microscopy. In this paper, through the theoretical analysis and calculation, completed the following works: 1)Introduced and compared several recording and reproducing methods in the selection of digital holographic method,and chooses the lens-less Fourier transform and coaxial holographic to be the light path which can use CCD resolution and simplified the optical path. In the optical system with phase shifting technique to eliminate the effect of zero order and conjugate image. 2)In 1/2 inch CCD cases, using an interferometer principle to design the basic light path; Analysis and select the specific parameters of components;Calculate the conditions to meet the system. Calculate the system resolution and magnification in several objectives. In the short distance microscopic, the microscopic system can reach 1μm resolution lenth, Key Words: Holography;Digital holography microscopy;Preamplification -technology;

参数可调图像畸变校正技术

参数可调图像畸变校正技术 [摘要] 随着数字图像畸变校正处理的应用领域的不断扩大,其处理技术也成为研究的热点.大视场成像光学系统中的畸变会降低图像质量,必须预以校正。本文提出了一种新的校正方法,根据畸变率的定义推导出畸变校正公式, 给出了建立畸变模型的方法。实践证明,这种模型可以满足大多数镜头的畸变校正要求。 [关键字] 几何畸变畸变模型畸变校正 一、畸变的产生 图像几何畸变就是在不同的摄入条件下得到图像时,一个物体的图像常会发生几何畸变出现歪斜变形的现象。例如从太空宇航器拍摄的地球上等距平行线,其图像会变为歪斜或虽平行而不等间距,用光学和电子扫描仪摄取的图像常常会有桶形畸变和枕型畸变,用普通的光学摄影与测试雷达拍摄的同一地区的景物在几何形状上有较大的差异。以上这类现象统称为几何畸变。实际工作中常需以某一幅图像为基准,去校正另一种摄入方式的图像,以期校正其几何畸变,这就叫做图像的几何畸变复员或几何畸变校正。 图1畸变的产生 数字图像的畸变是由于采用了广角镜头而引入的, 一般来说,随着视场的改变,畸变值也改变,越接近视场的边缘,畸变值就越大。例如一个垂直于光轴的物体,如图1中(a)所示,它经过有畸变的光学系统成像后,会出现如图(b)或图(c)所示的成像情况。其中(b)称为枕形畸变,(c)称为桶形畸变。枕形畸变又称为正畸变,桶形畸变称为负畸变。畸变产生的原因是由于系统的实际放大率随视场而变化,不再是一个常数。对于正畸变,实际放大率大于理想的放大率,而负畸变则相反。畸变对成像的影响使像产生较为严重的失真。 二、畸变的校正及发展现状 从数字图像处理的观点来看: 畸变校正实际上是一个图像恢复的问题,即对一幅退化图像的恢复。畸变主要表现在图像中像素点发生位移,从而使图像中物体扭曲变形。畸变校正分为两步,第一步是对原图像进行像素坐标空间的几何变换,这样做的目的是使像素点落在正确的位置上;第二步是重新确定新像素点的灰度值。因为经过上面的坐标变换后,有些像素点可能会被挤压在一起,有时又分散开,使校正的像素不落在离散的整数坐标位置上,因此需要确定这些像素点的灰度值。 目前,国内外关于畸变校正算法的研究已经比较多,具体来讲主要分为二大类:利用标准样板校正和拟合镜头畸变曲线校正方法。其中拟合镜头畸变曲线的方法是对几个不同视场进行畸变计算,通过这些计算值拟合出视场角随畸变变化的曲线,然后通过这条曲线计算出镜头在CCD上所成图形的每一点的畸变值,进而计

数字图像管理组织-畸变校正

数字图像处理

图像畸变及校正 1 图像畸变介绍 从数字图像处理的观点来考察畸变校正, 实际上是一个图像恢复的过程, 是对一幅退化了的图像进行恢复。在图像处理中,图像质量的改善和校正技术,也就是图像复原,当初是在处理从人造卫星发送回来的劣质图像的过程中发展、完善的。目前,图像畸变校正的应用领域越来越广,几乎所有涉及应用扫描和成像的领域都需要畸变校正。图像在生成和传送的过程中,很可能会产生畸变,如:偏色、模糊、几何失真、几何倾斜等等。前几种失真主要是体现在显示器上,而后一种失真则多与图像集角度有关。不正确的显影,打印、扫描,抓拍受反射光线的影响等方式,都会使图像产生偏色现像。模糊、几何畸变主要是在仪器采集图片过程中产生,大多是因机器故障或操作不当影响导致,如在医学成像方面。而几何空间失真广泛存在于各种实际工程应用中,尤其是在遥感、遥测等领域。 2 畸变产生的原因 在图像的获取或显示过程中往往会产生各种失真(畸变):几何形状失真、灰度失真、颜色失真。引起图像失真的原因有:成像系统的象差、畸变、带宽有限、

拍摄姿态、扫描非线性、相对运动等;传感器件自身非均匀性导致响应不一致、传感器件工作状态、非均匀光照条件或点光源照明等;显示器件光电特性不一致;图像畸变的存在影响视觉效果,也是影响图像检测系统的形状检测和几何尺寸测量精度的重要因素之一。 3 图像畸变校正过程所用到的重要工具 灰度直方图是关于灰度级分布的函数,是对图象中灰度级分布的统计。灰度直方图是将数字图象中的所有像素,按照灰度值的大小,统计其所出现的频度。通常,灰度直方图的横坐标表示灰度值,纵坐标为想像素个数。直方图上的一个点的含义是,图像存在的等于某个灰度值的像素个数的多少。这样通过灰度直方图就可以对图像的某些整体效果进行描述。从数学上讲,图像的灰度直方图是图像各灰度值统计特征与图像灰度值出现的频率。从图形上来讲,它是一个一维曲线,表征了图像的最基本的统计特征。 作为表征图像特征的信息而在图像处理中起着重要的作用。由于直方图反映了图像的灰度分布状况,所以从对图像的观察与分析,到对图像处理结果的评价,灰度直方图都可以说是最简单、最有效的工具。 4 图像颜色畸变校正介绍 图像颜色畸变现象可以是由摄像器材导致,也可以是由于真实环境本身就偏色导致,还有的是由于图像放置过久氧化、老化导致。无论其产生的原因如何,其校正方法都是类似的。 如果用Matlab显示颜色畸变的图像RGB基色直方图,发现相对正常图像,颜色畸变的图像的直方图的三种基色的直方图中至少有一个直方图的像素明显集中集中在一处,或则集中在0处或则集中在255处,而另一部分有空缺,或则集

三反射式柱面光学系统设计及优化

第28卷 第7期光 学 学 报 Vol.28,No.72008年7月 ACTA OP TICA SINICA J uly ,2008 文章编号:025322239(2008)0721359205 三反射式柱面光学系统设计及优化 梁敏勇 廖宁放 冯 洁 林 宇 崔德琪 (北京理工大学信息科学技术学院颜色科学与工程国家专业实验室,北京100081) 摘要 针对传统单片柱透镜和柱面反射镜成像光束不理想以及视场通常小于1°,提出并设计了一种三反射式柱面结构。对柱面光线追迹及单片柱面镜成像进行了深入分析,分别设计了三反射式圆柱面和二次曲线柱面系统,提出了一种基于抛物柱面镜理想线聚焦的新型像差优化方法,使其在子午面方向各视场调制传递函数得到最佳优化,并达到成像光谱仪等在狭缝方向上高空间分辨率要求。其子午面总视场均达到了3°,在45lp/mm 分辨率条件下,边缘视场子午面方向的调制传递函数分别优于0.2和0.6。关键词 光学设计;三反射式柱面;线聚焦;光线追迹;二次曲线柱面 中图分类号 O433.1 文献标识码 A doi :10.3788/AOS20082807.1359 Des i g n a n d Op t i miz a t i on of Th ree Cyli n d rical Ref lect ors Op t ical S ys t e m Liang Minyong Liao Ningfang Feng J ie Lin Yu Cui Deqi (Nat ion al L abor ator y of Color Scie nce a n d Engi neeri ng ,School of I nf or m a tion Science a n d Tech nology , Beiji ng I nstit ute of Tech nology ,Beiji ng 100081,Chi n a ) Abs t r act A single cylindrical reflector usually has defects of distortional imaging beam and limited field of view usually less than 1°.A three cylindrical reflectors system is p resented to overcome these defects.Based on the ray t racing of cylindrical reflector ,a three circularly cylindrical reflectors and a three conic 2cylindrical reflectors system have been designed.The f ull field of view (FOV )has reached 3°in tangential plane ;on the edge of FOV ,the modulation t ransfer f unction (M TF )of the former design at 45lp/mm is better than 0.2and the latter is better than 0.6.A new optimization method using parabolic 2cylindrical reflector is p resented.This method can be used to optimize the M TF in tangential plane ,and the final M TF satisfies the requirement of the high spatial resolution in imaging spect rometer field. Key w or ds optical design ;three cylindrical reflectors ;line focusing ;ray t racing ;conic 2cylindrical reflector 收稿日期:2007210211;收到修改稿日期:2008201215 基金项目:国家863计划(2006AA12Z124)和国家自然科学基金(60377042)资助课题。 作者简介:梁敏勇(1981-),男,博士研究生,主要从事成像光谱技术、高光谱技术等方面的研究。 E 2mail :L my @https://www.wendangku.net/doc/7c19095045.html, 导师简介:廖宁放(1960-),男,教授,博士生导师,主要从事成像光谱技术、颜色与图像技术等方面的研究。 E 2mail :Liaonf @https://www.wendangku.net/doc/7c19095045.html, 1 引 言 随着光学加工工艺的日益发展,包含各种新型光学表面的光学系统不断涌现。柱面光学面形结构已广泛应用到各种光学系统中。例如在宽银幕电影的摄影镜头和放映镜头中,在希望获得变形图像(影像在两个相互垂直的方向上具有不同的缩放比例)等实用场合,都可以采用圆柱面透镜或圆柱面反射镜系统。在需要进行长狭缝聚光的仪器中和一些激光应用中,需要把圆激光束变换成线光束,例如激光 柱面波干涉仪、光切法三维面形测量、X 射线激光线 聚焦等[1~5]。此外,在遥感领域的推扫型成像光谱仪光路系统中,包括萨尼亚克(Sagnac )透射型[6]和菲涅耳全反射型傅里叶成像光谱仪[7],高通量干涉型计算层析成像光谱仪光路中也使用柱面光学系统实现投影功能[8,9]。柱面系统成像性能的优劣直接影响成像光谱仪系统的空间分辨率[10]。 针对传统单片柱透镜和柱面反射镜的成像光束不能产生理想线聚焦[11],且视场小等缺点,本文提

畸变校正

畸变校正实现 1.相机标定 在计算机视觉中,通过相机标定能够获取一定的参数,其原理是基于三大坐标系(摄像机坐标系、图像坐标系和世界坐标系)之间的转换和摄像机的畸变参数矩阵。目前经常用张正友标定法,进行摄像机标定,获取到内参数矩阵和外参数矩阵以及畸变参数矩阵。 1.1三大坐标系 1)图像坐标系 在计算机系统中,描述图像的大小是像素,比如图像分辨率是1240*768.也就是以为图像矩阵行数1024,列数768。图像的原点是在图像的左上角。 以图像左上角为原点建立以像素为单位的坐标系u-v。像素的横坐标u与纵坐标v分别是在其图像数组中所在的列数与所在行数。这是像素坐标,而不是图像坐标系,为了后续的模型转换,有必要建立图像坐标系。 图像坐标系是以图像中心为原点,X轴和u轴平行,Y轴和v轴平行。dx和dy 表示图像中每个像素在X轴和Y轴的物理尺寸,其实就是换算比例。比如图像大小是1024*768,图像坐标系x-y中大小为19*17.那么dx就是19/1024。 2)相机坐标系 相机成像的几何关系可由图2.2表示。其中O点为摄像机光心(投影中心),Xc 轴和Yc轴与成像平面坐标系的x轴和y轴平行,Zc轴为摄像机的光轴,和图像平面垂直。光轴与图像平面的交点为图像的主点O1,由点O与Xc,Yc,Zc轴组成的直角坐标系称为摄像机的坐标系。OO1为摄像机的焦距。 3)世界坐标系 世界坐标系是为了描述相机的位置而被引入的,如图2.2中坐标系OwXwYwZw即为世界坐标系。平移向量t和旋转矩阵R可以用来表示相机坐标系与世界坐标系的关系。所以,假设空间点P在世界坐标系下的齐次坐标是(Xw,Yw,Zw,1)T,(这

图像畸变校正word版

实验五 图像形状及颜色畸变的校正 一、 实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、 问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1. 数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为M 个,每列像素为N 个,则图像大小为M ?N 个像素。例如,一幅640?480的图像,就表示这幅连续图像在长、宽方向上分别分成640个和480个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数f(x,y),其中x,y 是空间坐标。对任何一对空间坐标(x,y)上的幅值f(x,y),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素f(i,j)的坐标含义是i 为行坐标,j 是列坐标。而像素f(x,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色 列坐标(j) 行坐标(i) 矩阵元素 f (i ,j) 0 纵坐标(y) 横坐标(x) 像素f(x,y) 图 1.1 矩阵坐标系与直角坐标系

数字图像处理畸变校正

数字图像处理 图像畸变及校正 1 图像畸变介绍 从数字图像处理的观点来考察畸变校正, 实际上就是一个图像恢复的过程, 就是对一幅退化了的图像进行恢复。在图像处理中,图像质量的改善与校正技术,也就就是图像复原,当初就是在处理从人造卫星发送回来的劣质图像的过程中发展、完善的。目前,图像畸变校正的应用领域越来越广,几乎所有涉及应用扫描与成像的领域都需要畸变校正。图像在生成与传送的过程中,很可能会产生畸变,如:偏色、模糊、几何失真、几何倾斜等等。前几种失真主要就是体现在显示器上,而后一种失真则多与图像集角度有关。不正确的显影,打印、扫描,抓拍受反射光线的影响等方式,都会使图像产生偏色现像。模糊、几何畸变主要就是在仪器采集图片过程中产生,大多就是因机器故障或操作不当影响导致,如在医学成像方面。而几何空间失真广泛存在于各种实际工程应用中,尤其就是在遥感、遥测等领域。 2 畸变产生的原因 在图像的获取或显示过程中往往会产生各种失真(畸变):几何形状失真、灰度失真、颜色失真。引起图像失真的原因有:成像系统的象差、畸变、带宽有限、拍摄姿态、扫描非线性、相对运动等;传感器件自身非均匀性导致响应不一致、传感器件工作状态、非均匀光照条件或点光源照明等;显示器件光电特性不一致;图像畸变的存在影响视觉效果,也就是影响图像检测系统的形状检测与几何尺寸测量精度的重要因素之一。 3图像畸变校正过程所用到的重要工具 灰度直方图就是关于灰度级分布的函数,就是对图象中灰度级分布的统计。灰度直方图就是将数字图象中的所有像素,按照灰度值的大小,统计其所出现的频度。通常,灰度直方图的横坐标表示灰度值,纵坐标为想像素个数。直方图上的一个点的含义就是,图像存在的等于某个灰度值的像素个数的多少。这样通过灰度直方图就可以对图像的某些整体效果进行描述。从数学上讲,图像的灰度直方图就是图像各灰度值统计特征与图像灰度值出现的频率。从图形上来讲,它就是一个一维曲线,表征了图像的最基本的统计特征。 作为表征图像特征的信息而在图像处理中起着重要的作用。由于直方图反映了

平面几何测量中的图像畸变校正

第19卷 第1期2011年1月 光学精密工程 Optics and P recision Engineering V ol.19 N o.1 Jan.2011 收稿日期:2009-11-26;修订日期:2010-03-29. 基金项目:吉林省科技发展计划基金资助项目(N o.20070304) 文章编号 1004-924X(2011)01-0161-07 平面几何测量中的图像畸变校正 苏成志,王恩国,郝江涛,曹国华,徐洪吉 (长春理工大学机电工程学院,吉林长春130022) 摘要:针对图像畸变对平面图像几何线度精密测量精度的影响,提出一种直接利用标准网格板作为测量基准的畸变校正方法。根据待测物体与网格板处于相同物面时,其图像畸变与网格板图像畸变相同,待测点在网格板图像中相对网格的几何位置不变这一性质,提出直接使用发生畸变的网格板图像作为校正基准来代替通过建模将外部标准转换为摄像机内部基准的畸变校正思路。首先,确定待测点在网格板畸变图像中的初始位置;然后,根据平行线分线段成比例定理确定待测点在网格板畸变图像网格内的精确位置,对两者求和完成待测物体上任意两点的实际几何线度测量。实验证明,当校正网格板间距为1mm,精度为0.2L m 时,使用提出方法得到的畸变误差是现有校正方法的20%,校正精度可达4L m 。该方法省去了建模过程,其校正精度仅与网格板精度有关,具有更高的精度和适应性。关 键 词:平面图像测量;图像畸变;校正基准;建模校正 中图分类号:T P391.4 文献标识码:A doi:10.3788/O PE.20111901.0161 Distortion correction for images in planar metrology SU Cheng -zhi,WANG En -g uo ,H AO Jiang -tao,CA O Guo -hua,XU H ong -ji (College of M echanical and Electric E ng ineer ing ,Changchun Univer sity of Science and T echnology ,Chang chun 130022,China) Abstract:In consider ation of the effect of the distor tion error o f an im age on the accuracy of planar ge -o metr ical m easurement in the precise visual m etrolo gy,a metho d to correct the imag e disto rtio n by u -sing standard g rid bo ard dir ectly as measur em ent calibration is pro posed.As the position of an under -tested po int is unchanged relativ e to that of g rid board w hen an under -tested object and a grid board lay o n the sam e object plane,the g rid board is directly used as the co rrecting calibratio n of image dis -to rtio n instead of the w ay that converts the ex ternal standard into the intrinsic param eter o f a camera by modeling .Firstly,the pr im ar y po sition o f the under -tested po int in the imag e of grid board is deter -m ined;then,its fine distance is decided acco rding to the pr opo rtio n theorem of line segm ent divided by parallel line.Finally,planar geometrical m easurement is fulfilled by calculating the sum of both dis -tances.Ex perim ental results show that the distor tion er ror by the proposed m ethod has reduced to 20%that of the tr aditional m ethod and the co rrectoin accur acy of imag e has reached 4L m or higher,w hile the distance of intersection po int of the calibrated gr id bo ar d is 1m m and its accuracy is 0.2L m.The method is more applicable and has high accuracy,for it om its the mo deling and its accuracy o nly

相关文档