文档库 最新最全的文档下载
当前位置:文档库 › 角动量关于对称性物理力学答案

角动量关于对称性物理力学答案

角动量关于对称性物理力学答案
角动量关于对称性物理力学答案

第五章 角动量 关于对称性

思考题解答

5.1下面的叙述是否正确,试作分析,并把错误的叙述改正过来:

(1) 一定质量的质点在运动中某时刻的加速度一经确定,则质点所受的合力就可以确定

了,同时作用于质点的力矩也就确定了。

(2) 质点作圆周运动必定受到力矩的作用;质点作直线运动必定不受力矩的作用。

(3) 力1F 与z 轴平行,所以力矩为零;力2F

与z 轴垂直,所以力矩不为零。

(4) 小球与放置在光滑水平面上的轻杆一端连结,轻杆另一端固定在铅直轴上。垂直于

杆用力推小球,小球受到该力力矩作用,由静止而绕铅直轴转动,产生了角动量。所以,力矩是产生角动量的原因,而且力矩的方向与角动量方向相同。

(5) 作匀速圆周运动的质点,其质量m ,速率v 及圆周半径r 都是常量。虽然其速度方

向时时在改变,但却总与半径垂直,所以,其角动量守恒。 答:(1)不正确. 因为计算力矩, 必须明确对哪个参考点. 否则没有意义. 作用于质点的合力可以由加速度确定. 但没有明确参考点时, 谈力矩是没有意义的.

(2)不正确. 质点作圆周运动时, 有两种情况: 一种是匀速圆周运动, 它所受合力通过圆心; 另一种是变速圆周运动, 它所受的合力一般不通过圆心. 若对圆心求力矩, 则前者为零, 后者不为零.质点作直线运动, 作用于质点的合力必沿直线. 若对直线上一点求力矩, 必为零; 对线外一点求力矩则不为零.

(3)不正确. 该题应首先明确是对轴的力矩还是对点的力矩. 力与轴平行, 力对轴上某点的力矩一般不为零, 对轴的力矩则必为零.力与轴垂直, 一般力对轴的力矩不为零, 但力的作用线与轴相交, 对轴力矩应为零

(4)不正确. 因为一个物体在不受力的情况下, 保持静止或匀速直线运动状态, 它对直线外一点具有一定的角动量而并无力矩. 根据角动量定理, 力矩为物体对同一点角动量变化的原因. 力矩的方向与角动量变化的方向相同, 而与角动量的方向一定不相同.

(5)不正确. 因为作匀速圆周运动的质点, 所受合力通过圆心, 对圆心的力矩为零,对圆心的角动量守恒,但对其他点,力矩不为零,角动量不守恒。

5.2回答下列问题,并作解释:

(1) 作用于质点的力不为零,质点所受的力矩是否也总不为零? (2) 作用于质点系的外力矢量和为零,是否外力矩之和也为零? (3) 质点的角动量不为零,作用于该质点上的力是否可能为零

答(1)不一定。作用于质点的力矩不仅与力有关,还和所取得参考点有关。当力的作用线过参考点时,对该点的力矩就一定为零。

(2)不一定。作用质点系的外力矢量和为零0=∑i F ,但对某点的力矩之和∑?i

i F r

不一定为零。如一对力偶,因F F

-=',0=∑i F 。但对任一点的力矩之和等于力偶矩,并不等于零。

(3)可能为零。因为质点不受力时,保持静止或匀速直线状态。作匀速直线运动的质

点对线外一点的角动量为v m r

?,不为零,但质点受的力为零。

5.3试分析下面的论述是否正确:“质点系的动量为零,则质点系的角动量也为零;质点系的角动量为零,则质点系的动量也为零。”

答:不正确。以两个质点组成的最简单的质点系为例说明。

(1)两质点质量相同,运动速度等大反向,且不沿同一条直线质点的动量∑=0i i v m

。但对中心的角动量大小为dmv v m r

i i

2=?∑

,d 为两速度方向垂直距离的一半,并且不

为零

(2)两质点质量相同,运动速度等大同向,质点系的动量v m v m i i

2∑=,不为零。

但对中心的角动量0=?∑i i i v m r

5.4本章5.12图中题是否可以运用动量守恒定律来解释?为什么?

答:不能。将盘、重物、胶泥视为质点系,碰撞过程中受外力为绳的拉力和重力。由于冲击, 绳的拉力会增大,重力无变化,外力之和0)2(2'≠+-g m m T ,所以总动量不守恒。

5.5一圆盘内有冰,冰面水平,与盘面共同绕过盘中心的铅直轴转动。后来冰化成水,

问盘的转速是否改变?如何改变。不计阻力矩。

答:有变化。因为冰化为水,体积变小,各质元到轴的距离也变小。对轴的角动量 ∑=

ω2

i

i r

m L 守恒,其中,2

i i r m ∑变小,ω变大

5.7角动量是否具有对伽利略变换的对称性?角动量守恒定律是否具有对伽利略变换的对称性?

答:角动量对不同的参照系具有不同的值,所以角动量对伽利略变换不具对称性;但角动定理

F r v m r dt

d

?=?)(对不同的惯性系具有相同的形式,所以角动量定理对伽利略变换具

有对称性。同理,角动量守恒定理对伽利略变换也具有对称性。

5.8南北极的冰块溶化,使地球海平面升高,能否影响地球自转快慢?

答:南北极的冰块溶化,地球海平面升高,南北极的水质元向赤道方向移动,到轴的距离增大,角动量∑=ω2

i

i r

m L 守恒。其中,2

i i r m ∑变大,ω变小,而地球对轴的转动会变慢。

习题

5.1.1我国发射的第一颗人造地球卫星近地点高度d 近=439km ,远地点d 远=2384km ,地球半径R=6370km ,求卫星在近地点和远地点的速度之比。

解:人造卫星绕地心转动,受地球的吸引力过地心,所以吸引力对地心的力矩等于零,故卫

星的角动量守恒。近地点、远地点的速度与矢径垂直。设近地点的速度为v 1,矢径为r 1;远地点的速度为v 2,矢径为r 2,根据角动量守恒定律

2211mv r mv r ?=?

29.16370

4396370

2384121

2

2

1

=++=

++==R

d R

d r r v v

5.1.2 一个质量为m 的质点沿着一条由j t bsim i t a r

ωω+=cos 定义的空间曲线运动,

其中a 、b 及ω皆为常数。求此质点所受的对原点的力矩。

解:已知 j t b s i m i t a r

ωω+=c o s

所以 j t b i t a s i m dt

r d v

ωωωωcos +-==

r j t b s i m i t a j t b i t a dt

v d a

2222

)cos (sin cos ωωωωωωωω-=+-=--==

根据牛顿第二定律,r m a m F

2ω-==

有心力对原点的力矩:0)(2=-?=?=r m r F r

ωτ

5.1.3 一个具有单位质量的质点在力场j t i t t a m F )612()43(2

-+-==中运动,其

中t 是时间。设该质点在t=0时位于原点,且速度为零。求t=2时该质点所受的对原点的力矩。所受的对原点的力矩。

解:因单位质量 m=1 且

j t i t t a m F )612()43(2-+-==

j t i t t dt

v d a

)612()43(2

-+-==∴ 又 t=0时 00=r

00=v

?-+-=-+-=v j t t i t t dt j t i t t v

2

232)66()2(])612()43[(

j t t i t t dt j t t i t t r r

)32()3241(])66()2[(2

334022

3

-+-=-+-=

?

当t=2s 时 j i r

43

4+-= j i F 184+=

对原点的力矩 k j i j i F r

40)184()434(-=+?+-=?=τ

5.1.4地球质量为

6.0?1024kg ,地球与太阳相距2414910?km ,视地球为质点,它绕太阳作圆周运动。求地球对于圆轨道中心的角动量。

解:地球绕太阳的速率 T

r r v π

ω2?==

角动量 2

24

4

2

223.146.010(149

10)

36524

3600

mr L mv r T

π?=?=

=

???

??

? =2.654010?kg.m 2

/s

5.1.5根据5.1.2题所给的条件,求该质点对原点的角动量。

解:由 j t b s i m i t a r

ωω+=c o s 得 j t b i t sim a dt

r d v

ωωωωcos +-==

对原点的角动量

k mab j t b i t sim a m j t bsim i t a v m r L

ωωωωωωω=+-?+=?=)cos ()cos (

5.1.6解:根据5.1.3题所给的条件,求该质点在t=2s 时对原点的角动量。

解:由 j t i t t a m F )612()43(2

-+-== m=1 00v = 00r =

j t i t t dt

v d a

)612()43(2

-+-==∴ 积分:322

(2)(66)t v adt t t i t t j ==-+-?

t=2s 时 212v j =

2443

r i j =-

+

224(4)12163

L r m v m i j j k ∴=?=-+?=-

5.1.7 水平光滑桌面中间有一光滑小孔,轻绳一端伸入孔中,另一端系一质量为10g 的小球,沿半径为40cm 的圆周作匀速圆周运动,这时从孔下拉绳的力为10-3N 。如果继续向下拉绳,而使小球沿半径为10cm 的圆周作匀速圆周运动,这时小球的速率是多少?拉力所做的功是多少?

解:小球受力:重力、桌面的支持力,二者相等;拉力,通过圆心,力矩为零。所以小球的

角动量守恒。

2211v mr v mr = 12

1

2

v r r v = 根据牛顿第二定律 1

2

1

1r v m

F = s m m

r F v /2.001

.04

.010

3

111=?=

=

-

s m v /8.02.01

.04

.02=?= 由动量定理拉力F

作的功

2

2

223

211110.01(0.80.2)310

2

2

2

A m v m v j -

=

-

=

??-=?

5.1.8 一个质量为m 的质点在0-xy 平面内运动,其位置矢量为

j t bsim i t a r

ωω+=cos

其中a 、b 和ω是正常数。试以运动方程及动力学方程观点证明该质点对于坐标原点角动量守恒。 证明:(1)运动学方法

j t bsim i t a r

ωω+=cos j t b i t s i m a dt

r d v

ωωωωcos +-==

角动量

k m a b j t b i t s i m a m j t b s i m i t a v m r L

ωωωωωωω=+-?+=?=)c o s ()c o s ( 为常矢量,所以守恒。 (2)动力学方法

r j t b s i m i t a j t b i t a dt v d a

2222)cos (sin cos ωωωωωωωω-=+-=--==

r m a m F

2ω-== 0)(2=-?=?=r m r F r ωτ

所以对原点角动量守恒。

5.1.9 质量为200g 的小球B 以弹性绳在光滑水平面与固定点A 相连。弹性绳的劲度系数为8N/m ,其自由伸展长度为600mm 。最初小球的位置及速度0v 如图所示,当小球的速率为v 时,它与A 点的距离最大,且等于800mm ,求此时的速率v 及初速率0v 。

解:以小球为隔离体,受重力W

,水平面支持力N ,W N -=;弹性绳的张力T ,T

向A 点。设A 、B 两点距离为d

当d ≤0.6m 时, T=0; 当d>0.6时 T=K(d- 0.6) K=8N/m

小球受到的对A 点的合力矩为零,所以小球B 对A 点的角动量守恒。 初始:0

000001sin 302

L m v d m v d ==

A 和

B 距离最大时,速度v 垂直AB ,角动量 L=mvd

m v d d mv =002

1 041v v =

在此过程中只有保守力作功,所以物体系的机械能守恒

2

2

2

0)6.0(2

12

121-+

=

d K mv

mv

解得:0 1.306/v m s =; 0.33/v m s =

5.1.10 一条不可伸长的细绳穿过铅直放置的、管口光滑的细管,一端系一质量为0.5g

的小球,小球沿水平圆周运动。最初12l m =,130θ=

,后来继续向下拉绳使小球以260θ=

沿水平圆周运动。求小球最初的速度1v 、最后的速度2v 以及绳对小球做的功。

解:以小球为隔离体。受重力,绳的张力,如图所示

(1)求1

v

由牛顿定律得 12

111

1cos 0

sin sin 30

T m g v

T m

l θθθθ-===

所以 1

2111

(s i n )2.38/

v l g t g m s θθ== (2 ) 求2v :因拉动过程对轴的角动量守恒

222111sin sin mv l mv l θθ= 0

260=θ

则 2

1123l l v l =

由牛顿定律

2

22

2

2'

2'

c o s θθθs i m l v m

s i m T mg T ==- 消去'T

2

22

112222

23θθθθtg gsim v l v tg gsim l v =

=

35.4022

38.28.973.12

3113

2=???=

=

l gv v

s

m v /43.32=

m

v l v l 80.043

.332

38.232112=??=

=

(3)求A 由动能定理

J m g l mv mgl mv A 3

11

2

1222

21004.8)cos 2

1

()cos 2

1

(-?=---=θθ

5.2.1 离心调速器模型如图所示。由转轴上方向下看,质量为m 的小球在水平面内

绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角。杆长为l ,杆与转轴在B 点相交。求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩。(2)小球在图示位置对对A 点、B 点及AB 轴的角动量。杆质量不计。

解:作用于小球上的力对A 、B 、J 及AB 轴的矩

右球g m

s i n A m g l τα= 向外 ατs i n m g l B = 向里

0=AB τ

右球T 1s i n c o s s i n 22

A T l T l τααα

== 向里

0==AB B ττ

(2)角动量(右球)22

sin cos sin A L m l m l ωααωα== 平行轴向上 2

s i n s i n B L m l l m l ωαωα=?= 纸面内向右上 22

sin A B L m l ωα= 向上为正

5.2.2 理想滑轮悬挂两质量为m 的砝码盘。用轻绳栓住轻弹簧两端使它处于压缩状态将此弹簧竖直放在一砝码盘上,弹簧上端放一质量为m 的砝码。另一砝码盘上也放置质量为m 的砝码,使两盘静止。燃断轻绳,轻弹簧达到自由伸展状态即与砝码脱离,求砝码

升起的高度。已知弹簧劲度系数为k ,被压缩的长度为l 0。 解:(1)弹开过程(假定0l 很小),角动量守恒 o r mv rmv =-213 得213v v =

机械能守恒

202

22

12

1)3(2

121kl v m mv =

+

得2

02

143l m

k v =

(2)砝码上抛过程,机械能守恒 2

121mv mgh =

得 gm

kl v

g

h 83212

2

1

=

=

说明:计算中因假定0l 很小,所以(1)中忽略了系统整体势能的变化。

5.2.3 两个滑冰运动员的质量个为70kg ,以6.5m/s 的速率沿相反方向滑行,滑行

路线间的垂直距离为10m 。当彼此交错时,各抓住10m 绳索的一端,然后相对旋转。(1)在抓住绳索一端之前,各自对绳中心的角动量是多少?抓住之后是多少?(2)他们各自收拢绳索,到绳长为5m 时,各自的速率如何?(3)绳长为5m 时,绳内张力多大?(4)二人在收拢绳索时,各做了多少功?(5)总动能如何变化? 解:(1)抓绳前后各自对绳中心的角动量 s m kg r mv L /227555.6702

111?=??==

抓绳前后速率不变,角动量相等。

(2)收绳后的速率:因收绳过程对中心角动量守恒 L 1=L 2

2211r mv r mv = s m v r r v /135.65

.251212=?==

(3)绳长5米时,绳的张力 N r v m F 47325

.213

702

2

2

2=?

==

(4)收绳过程各做了多少功 A=

J mv mv 4436)5.613

(702

12

1212

2

2

12

2=-??=

-

(5)总动能增加 J A E K 88722==?

大学物理D-03流体力学

练习三 流体力学 一、填空题 1.水平放置的流管通内有理想流体水,在某两截面上,已知其中一截面A 面积是另一截面B 的两倍,在截面A 水的速度为 2.0m/s ,压强为10kPa,则另截面的水的速度为 4.0m/s ,压强为 4kPa 。 2.雷诺数是判断生物体系内液体是做层流还是湍流流动状态的重要依据,许多藤本植物内水分流动雷诺数约为 3.33,说明一般植物组织中水分的流动是 层流 。 3.如果其它条件不变,为使从甲地到乙地圆形管道流过的水量变为原来的16倍,则水管直径需变为原来的 2 倍。 4.圆形水管的某一点A ,水的流速为1.0m/s ,压强为3.0×105 Pa 。沿水管的另一点B ,比A 点低20米,A 点截面积是B 点截面积的三倍,忽略水的粘滞力,则B 点的压强为 4.92×105 Pa 。(重力加速度 2 9.8/g m s ) 5.某小朋友在吹肥皂泡的娱乐中,恰好吹成一个直径为2.00cm 的肥皂泡,若在此环境下,肥皂液的表面张力系数为0.025N/m ,则此时肥皂泡内外压强差为 10.0 Pa 。 二、选择题 1.水管的某一点A ,水的流速为1.0米/秒,计示压强为3.0×105Pa 。沿水管的另一点B ,比A 点低20米,A 点面积是B 点面积的三倍.则B 点的流速和计示压强分别为( A )。 (A)3.0m/s,4.92×105Pa (B)0.33m/s, 4.92×105Pa (C)3.0m/s,5.93×105Pa (D )1.0m/s,5.93×105Pa 2.在如图所示的大容器中装有高度为H 的水,当在离最低点高度h 是水的高度H 多少时,水的水平距离最远。( C ) (A) 1/4 (B)1/3 (C)1/2 (D)2/3 3.如图所示:在一连通管两端吹两半径不同的肥皂泡A 、B ,已知R A >R.B ,(B ) 开通活塞,将出现的现象为? (A)A 和B 均无变化; (B)A 变大,B 变小; (C)A 变小,B 变大; (D) )A 和B 均变小 4.下列事件中与毛细现象有关的是?( D ) (1)植物水分吸收;

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ D ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ B ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ D ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ D ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运 动. [ B ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ D ] 1 4.5432.52-112 t (s) v (m/s) O c b a p

大学物理 CH4.1 流体力学

大学物理 CH4.1 流体力学 第四章流体力学 流动性 静止流体在任何微小的切向力作用下都要发生连续不断的变形,不断的变形,即流体的一部分相对另一部分运动,即流体的一部分相对另一部分运动,这种变形称为流动。这种变形称为流动。连续介质模型 设想流体是由连续分布的流体质点组成的的连续介质,流体质点具有宏观充分小,流体质点具有宏观充分小,微观充分大的特点。微观充分大的特点。描述流体的物理量可以表示成空间和时间的连续函描述流体的物理量可以表示成空间和时间的连续函数。 内容提要 流体的主要物理性质 连续性方程、连续性方程、伯努利方程及其应用 粘性流体的两种流动状态、粘性流体的两种流动状态、哈根-哈根-泊肃叶定律斯托克斯定律 一、惯性 惯性是物体保持原有运动状态的性质,惯性是物体保持原有运动状态的性质,表征某一流体的惯性大小可用该流体的密度。 m 均质流体:均质流体:ρ= V ?m d m ρ(x , y , z )=lim = ?v →0?V d V 液体的密度随压强和温度的变化很小,液体的密度随压强和温度的变化很小,气体的密 度随压强和温度而变化较大。度随压强和温度而变化较大。 二、压缩性

流体受到压力作用后体积或密度发生变化的特性称为压缩性。为压缩性。通常采用体积压缩率表示流体的压缩性。 d V κ=?单位:单位:m 2/N d p 体积弹性模量: d p E V ==? κd V 1 单位:单位:N / m2或Pa 不可压缩流体即在压力作用下不改变其体积的流体。即在压力作用下不改变其体积的流体。 三、粘性 粘性是运动流体内部所具有的抵抗剪切变形的特性。粘性是运动流体内部所具有的抵抗剪切变形的特性。它表现为运动着的流体中速度不同的流层之间存在着沿切向的粘性阻力(着沿切向的粘性阻力(即内摩擦力)。即内摩擦力)。 x d u 速度梯度d y d u F =μA 牛顿粘性公式 d y μ为动力黏度,为动力黏度,单位Pa ?s d u 黏滞切应力τ=μ d y d u x d u d t

大学物理力学一、二章作业答案

第一章 质点运动学 一、选择题 1、一质点在xoy 平面内运动,其运动方程为2 ,ct b y at x +==,式中a 、b 、c 均为常数。当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。 A .a ; B .a 2; C .2c ; D .224c a +。 2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。 3、一质点的运动方程是j t R i t R r ωωsin cos +=,R 、ω为正常数。从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。 A .2R ; B .R π; C . 0; D .ωπR 。 4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v =2j m/s 的速度通 过坐标原点,该质点任意时刻的位置矢量是[ B ]。 A .22 t i +2j m ; B . j t i t 23 23+m ; C .j t i t 343243+; D .条件不足,无法确定。 二、填空题 1、一质点沿x 轴运动,其运动方程为2 25t t x -+=(x 以米为单位,t 以秒为单位)。质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。 2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22 m /5 s π 。 3、一质点沿半径为0.1m 的圆周运动,其运动方程为2 2t +=θ(式中的θ以弧度计, t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。 4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。

大学物理讲稿(第4章流体力学)第一节

第4章流体力学 前面讨论过刚体的运动,刚体是指形状大小不变的物体.只有固体才可以近似地认为是刚体.气体和液体都是没有一定形状的,容器的形状就是它们的形状.固体的分子虽然可以在它们的平衡位置上来回振动或旋转,但活动范围是很小的.然而气体或液体的分子却可以以整体的形式从一个位置流动到另一个位置,这是它们与固体不同的一个特点,即具有流动性.由于这种流动性,把气体和液体统称为流体.流体是一种特殊的质点组,它的特殊性主要表现为连续性和流动性.因而仍可用质点组的规律处理流体的运动情况.研究静止流体规律的学科称为流体静力学,大家熟悉的阿基米德原理、帕斯卡原理等都是它的内容.研究流体运动的学科叫流体动力学,它的一些基本概念和规律即为本章中要介绍的内容. 流体力学在航空、航海、气象、化工、煤气、石油的输运等工程部门中都有广泛的应用,研究流体运动的规律具有重要的意义. §4.1 流体的基本概念 一、理想流体 实际流体的运动是很复杂的.为了抓住问题的主要矛盾,并简化我们的讨论,即对实际流体的性质提出一些限制,然而这些限制条件并不影响问题的主要方面.在此基础上用一个理想化的模型来代替实际流体进行讨论.此理想化的模型即为理想流体. 1. 理想流体 理想流体是不可压缩的.实际流体是可压缩的,但就液体来说,压缩性很小.例如的水,每增加一个大气压,水体积只减小约二万分之一,这个数值十分微小,可忽略不计,所以液体可看成是不可压缩的.气体虽然比较容易压缩,但对于流动的气体,很小的压强改变就可导致气体的迅速流动,因而压强差不引起密度的显著改变,所以在研究流动的气体问题时,也可以认为气体是不可压缩的. 理想流体没有粘滞性.实际流体在流动时都或多或少地具有粘滞性.所谓粘滞性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力(粘滞力).例如瓶中的油,若将油向下倒时,可看到靠近瓶壁的油几乎是粘在瓶壁上,靠近中心的油流速最大,其它均小于中心的流速.但有些实际流体的粘滞性很小,例如水和酒精等流体的粘滞性很小,气体的粘滞性更小,对于粘滞性小的流体在小范围内流动时,其粘滞性可以忽略不计. 为了突出流体的主要性质——流动性,在上述条件下忽略它的次要性质——可压缩性和粘滞性,我们得到了一个理想化的模型:不可压缩、没有粘滞性的流体,此流体即为理想流体.

大学物理习题集力学试题

练习一 质点运动的描述 一. 选择题 1. 以下四种运动,加速度保持不变的运动是( ) (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动. 2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: ( ) (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2. 3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为( ) (A) 12 m/s . (B) 11.75 m/s . (C) 12.5 m/s . (D) 13.75 m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1,则以下说法正确的是( ) (A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示; (B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示; (C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零. 5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为( ) (A) 0秒和3.16秒. (B) 1.78秒. (C) 1.78秒和3秒. (D) 0秒和3秒. 二. 填空题 1. 一小球沿斜面向上运动,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为 t = 秒. 2. 一质点沿X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点. 则质点的加速度a = (SI);质点的运动方程为x = (SI). 3. 一质点的运动方程为r=A cos ω t i+B sin ω t j , 其中A , B ,ω为常量.则质点的加速度矢量 为 图1.1

大学物理考试题目及答案2

1.1下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 22484dx v t dt d x a dt ==+== t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。因加速度为正所以是加速的 1.3 一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求: (1) 第2秒内的平均速度;(2)第2秒末的瞬时速度; (3) 第2秒内的路程. 解:(1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) 由v =9t - 6t 2 可得:当t<1.5s 时,v>0; 当t>1.5s 时,v<0. 所以 S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m

1.8 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 3 4t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 70551021102s m 190102310432101 210=+?+?=?=?+?=-x v 2.8 一颗子弹由枪口射出时速率为10s m -?v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位: (1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量;(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有 0)(=-=bt a F ,得b a t = (2)子弹所受的冲量

23313007 流体力学答案

23313007 流体力学答案 一、单项选择题 1. 当空气中的温度从0℃增加至20℃,其运动粘度υ增加15%,密度减少10%,其运动粘度μ将( A ) A、增加3.5% B、降低3.5% C、增加5% D、降低5% 2. 一封闭容器盛有水,在地球上静止时,以竖直向上为正向,其单位质量力为(A ) A、-g B、g C、0 D 无法确 3. 单位质量力的量纲与( B )的量纲相同。 A 速度 B 加速度 C 粘性力 D 重力 4. A、1 kPa B、2 kPa C、8 kPa D、10 kPa 绝对压强P abs 、相对压强p、真空值p v、当地大气压强a p之间的关系是( C )。 5. A、水平面B、斜平面C、旋转抛物面D、球面静止流体各点的( B )等于常数。 6. g a A arctan . a g B arctan .2 2 arcsin . g a a C +2 2 arccos . g a g D + 在等角速度旋转液体中,一下说法正确的是( C ) 7. 理想流体的总水头线沿程的变化是( C ) 。 A. 沿程下降 B. 沿程上升 C. 保持水平 D. 前三种情况都有可能 8. 在总流伯努利方程中,压强P是渐变流过流断面上的(A) A.某点压强B.平均压强 C.最大压强D.最小压强 9. 流体流动时,流场各空间点的参数不随时间变化,仅随空间位置而变,这种流动称为( A ) A.恒定流 B.非恒定流 C.非均匀流 D.均匀流 10. 压强的量纲为( A ) A、L-1MT-2 B、L-2MT-2 C、L-1MT-1 D、LMT2 11. 加速度的量纲为(A ) A、LT-2 B、L-2MT-2 C、L-1MT-1 D、L1MT2 12. 速度v、长度l、时间t的无量纲组合是(D)。

大学物理力学一、二章作业答案

大学物理力学一、二章 作业答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 质点运动学 一、选择题 1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。 A .a ; B .a 2; C .2c ; D .224c a +。 2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。 3、一质点的运动方程是j t R i t R r ωωsin cos +=,R 、ω为正常数。从t = ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。 A .2R ; B .R π; C . 0; D .ωπR 。 4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v =2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。 A .22 t i +2j m ; B .j t i t 23 23+m ; C .j t i t 343243+; D .条件不足,无法确定。 二、填空题 1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。

2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。该质点在5s 内 的平均速度的大小为 2m/s ,平均加速度的大小为 22 m /5 s π 。 3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。 4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45 o角时角位移是 3 8 rad 。 5、飞轮半径0.4m ,从静止开始启动,角加速度β=0.2rad/s 2。t =2s 时边缘各点的速度为 0.16m/s ,加速度为 0.102m/s 2 。 6、如图1-2所示,半径为R A 和R B 的两轮和皮带连结,如果皮带不打滑,则两轮的角速度=B A ωω: R R A B : ,两轮边缘A 点和B 点的切向加速度 =B A a a ττ: 1:1 。 三、简述题 1、给出路程和位移的定义,并举例说明二者的联系和区别。 2、给出瞬时速度和平均速度的定义,并举例说明二者的联系和区别。 3、给出速度和速率的定义,并简要描述二者的联系和区别。 4、给出瞬时加速度和平均加速度的定义,并简要描述二者的联系和区别。 四、计算题 图1-2

流体力学—习题答案

一、选择题 1、流体传动系统工作过程中,其流体流动存在的损失有( A ) A、沿程损失和局部损失, B、动能损失和势能损失, C、动力损失和静压损失, D、机械损失和容积损失 2、液压千斤顶是依据( C )工作的。 A、牛顿内摩擦定律 B、伯努力方程 C、帕斯卡原理 D、欧拉方程 3、描述液体粘性主要是依据( D ) A、液体静力学原理 B、帕斯卡原理 C、能量守恒定律 D、牛顿内摩擦定律 4、在流场中任意封闭曲线上的每一点流线组成的表面称为流管。与真实管路相比(C )。 A、完全相同 B、完全无关 C、计算时具有等效性 D、无边界性 5、一般把( C )的假想液体称为理想液体 A、无粘性且可压缩, B、有粘性且可压缩, C、无粘性且不可压缩, D、有粘性且不可压缩 6、进行管路中流动计算时,所用到的流速是( D ) A、最大速度 B、管中心流速 C、边界流速 D、平均流速 7、( A )是能量守恒定律在流体力学中的一种具体表现形式 A、伯努力方程, B、动量方程, C、连续方程, D、静力学方程 8、( A )是用来判断液体流动的状态 A、雷诺实验 B、牛顿实验 C、帕斯卡实验 D、伯努力实验 9、黏度的测量一般采用相对黏度的概念表示黏度的大小,各国应用单位不同,我国采用的是( D ) A、雷氏黏度 B、赛氏黏度 C、动力黏度 D、恩氏黏度 10、流体传动主要是利用液体的( B )来传递能量的 A、动力能 B、压力能, C、势能, D、信号 11、静止液体内任一点处的压力在各个方向上都( B ) A、不相等的, B、相等的, C、不确定的 12、连续性方程是( C )守恒定律在流体力学中的一种具体表现形式 A、能量, B、数量, C、质量 D、动量 13、流线是流场中的一条条曲线,表示的是( B ) A、流场的分布情况, B、各质点的运动状态 C、某质点的运动轨迹, D、一定是光滑曲线 14、流体力学分类时常分为( A )流体力学 A、工程和理论, B、基础和应用 C、应用和研究, D、理论和基础 15、流体力学研究的对象( A ) A、液体和气体 B、所有物质, C、水和空气 D、纯牛顿流体 16、27、超音速流动,是指马赫数在( B )时的流动 A、0.7 < M < 1.3 B、1.3 < M ≤5 C、M > 5 D、0.3 ≤M ≤0.7 17、静压力基本方程式说明:静止液体中单位重量液体的(A )可以相互转换,但各点的总能量保持不变,即能量守恒。 A、压力能和位能, B、动能和势能, C、压力能和势能 D、位能和动能 18、由液体静力学基本方程式可知,静止液体内的压力随液体深度是呈( A )规律分布的 A、直线, B、曲线, C、抛物线 D、不变 19、我国法定的压力单位为( A ) A、MPa B、kgf/cm2 C、bar D、mm水柱 20、理想液体作恒定流动时具有( A )三种能量形成,在任一截面上这三种能量形式之间可以相互转换。 A压力能、位能和动能,B、势能、位能和动能, C、核能、位能和动能, D、压力能、位能和势能 21、研究流体沿程损失系数的是(A) A、尼古拉兹实验 B、雷诺实验 C、伯努力实验 D、达西实验 22、机械油等工作液体随温度升高,其粘度( B ) A、增大, B、减小, C、不变 D、呈现不规则变化

《大学物理学》第二版上册课后答案

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相 等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什 么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一 定保持不变? (5) r ?和r ?有区别吗?v ?和v ?有区别吗? 0dv dt =和0d v dt =各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求 出22r x y = + dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a =你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此 其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均

流体力学 课后答案

流体力学课后答案 一、流体静力学实验 1、同一静止液体内的测压管水头线是根什么线? 答:测压管水头指,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、当时,试根据记录数据确定水箱的真空区域。 答:以当时,第2次B点量测数据(表1.1)为例,此时,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。(3)在测压管5中,自水面向下深度为的一段水注亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为。 3、若再备一根直尺,试采用另外最简便的方法测定。 答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度和,由式,从而求得。 4、如测压管太细,对测压管液面的读数将有何影响? 答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容重;为测压管的内径;为毛细升高。常温()的水,或,。水与玻璃的浸润角很小,可认为。于是有 一般说来,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时。相互抵消了。 5、过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平是不是等压面?哪一部分液体是同 一等压面? 答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面: (1)重力液体; (2)静止; (3)连通; (4)连通介质为同一均质液体; (5)同一水平面 而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 ※6、用图1.1装置能演示变液位下的恒定流实验吗? 答:关闭各通气阀,开启底阀,放水片刻,可看到有空气由C进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与C点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。 ※7、该仪器在加气增压后,水箱液面将下降而测压管液面将升高H,实验时,若以时的水箱液面作为测量基准,试分析加气增压后,实际压强()与视在压强H的相对误差值。本仪器测压管内径为0.8cm,箱体内径为20cm。

大学物理力学作业分析(5)

大学物里作业分析(5)(2007/04/24) 5.4 求下列刚体对定轴的转动惯量 (1) 一细圆环,半径为R ,质量为m 但非均匀分布,轴过环心且与环面垂直; (2) 一匀质空心圆盘,内径为R 1,外径为R 2,质量为m ,轴过环中心且与环面垂直; (3) 一匀质半圆面,半径为R ,质量为m ,轴过圆心且与圆面垂直。 解:(1) 取质元dm ,质元对轴的转动惯量dJ =R 2 dm 园环转动惯量为各质元转动惯量之和 m R dm R dm R dJ J 222=?=?=?= (2) 园盘的质量面密度为) (2122 R R m - = πσ 若是实心大园盘,转动惯量为 4 2 22222222R 2 1R R 21R m 21J πσπσ=??== 挖去的空心部分小园盘的转动惯量为 4121212 2112 12121R R R R m J πσπσ=??== 空心园盘转动惯量为 )(2 1)() (21)(2122214 142212 2414212R R m R R R R m R R J J J +=--=-=-=πππσ (3) 若为完整的园盘,转动惯量为 220221 mR R m J =??= 半园盘转动惯量为整个园盘的一半,即 202 1 21mR J J == 注:只有个别同学做错了! 5.5如图5-31所示,一边长为l 的正方形,四个顶点各有一质量为m 的质点,可绕过一顶点且与正方形垂直的水平轴O 在铅垂面内自由转动,求如图状态(正方形有两个边沿着水平方向有两个边沿着铅垂方向)时正方形的角加速度。 O 题5.5图 图5-31 解:正方形的转动惯量 2224)2(2ml l m ml J =+?= 正方形受到的重力矩 mgl m 2= 由转动定律 M =J 得到转动角加速度 l g ml mgl J M 2422=== α 注:此题做得很好! 5.6如图5-32所示,一长度为l ,质量为m 的匀质细杆可绕距其一端l /3的水平轴自由

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1) 22 mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302 mv f s mgh f s mgs -=-?-=-?- 20 (2) (31) s g u ∴= - 把式(2)代入式(1)得, () 22 2 20 0.198 3u v v = + 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取

如图所示的自然坐标系,由牛顿定律得 2 2 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-= 由,,1ds rd rd v dt dt dt v αα = ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 90 2 n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g r r v mg mg r mg α αα αωααα α=-===+==-=-? ?得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向 2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放 一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止, 求斜面的加速度a 应满足的条件。 解:如图所示

流体力学标准化作业答案

流体力学标准化作业(三) ——流体动力学 本次作业知识点总结 1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。 2.流体流动的加速度、质点导数 流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即 流体质点的加速度等于速度对时间的变化率,即 投影式为 或 ()du u a u u dt t ?==+??? 在欧拉法中质点的加速度du dt 由两部分组成, u t ??为固定空间点,由时间变化引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。()u u ??为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度,由流场的不均匀性引起。 欧拉法描述流体运动,质点的物理量不论矢量还是标 量,对时间的变化率称为该物理量的质点导数或随体导数。例如不可压缩流体,密度的随体导数 3.流体流动的分类 (1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线 流线微分方程 迹线微分方程 (2)流管、流束与总流 (3)过流断面、流量及断面平均流速

体积流量 3(/)A Q udA m s =? 质量流量 (/)m A Q udA kg s ρ=? 断面平均流速 A udA Q v A A ==? (4)渐变流与急变流 5. 连续性方程 (1)不可压缩流体连续性微分方程 (2)元流的连续性方程 (3)总流的连续性方程 6. 运动微分方程 (1)理想流体的运动微分方程(欧拉运动微分方程) 矢量表示式 (2)粘性流体运动微分方程(N-S 方程) 矢量表示式 21()u f p u u u t νρ?+?+?=+??? 7.理想流体的伯努利方 (1)理想流体元流的伯努利方程 (2)理想流体总流的伯努利方程 8.实际流体的伯努利方程 (1)实际流体元流的伯努利方程 (2)实际流体总流的伯努利方程 10.恒定总流的动量方程 投影分量形式

大学物理第二章质点动力学习题答案

大学物理第二章质点动 力学习题答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

习题二 2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。 [解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律t v m ma f d d == 即t v m kv d d ==- 所以t m k v v d d -= 对等式两边积分??-=t v v t m k v v 0 d d 0 得t m k v v -=0ln 因此t m k e v v -=0 (2)由牛顿第二定律x v mv t x x v m t v m ma f d d d d d d d d ==== 即x v mv kv d d =- 所以v x m k d d =- 对上式两边积分??=- 000d d v s v x m k 得到0v s m k -=- 即k mv s 0= 2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水

的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 即t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =-- 对上式两边积分? ? =--t v m t kv F mg v 00 d d 得m kt F mg kv F mg -=---ln 即??? ? ??--= -m kt e k F mg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时2 T kv mg = 即k mg v = T 有牛顿第二定律t v m kv mg d d 2=- 整理得 m t kv mg v d d 2=-

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

中科大流体力学试卷及答案

流体力学基础期末考试试卷 姓名__________ 学号__________ 班级__________ 得分__________ 一、简答题(30分) 1. 什么是粘性?气体与液体的粘性随温度变化趋势有什么不同?为什么? 答:相邻两层流体做相对运动时存在内摩擦作用,称为粘性力。粘性是流体抵抗剪切变形能力的一种量度。 液体间粘性力主要由分子内聚力形成,气体间粘性力主要由分子动量交换形成的,所以导致气体与液体粘性随温度变化趋势不同,具体表现为:液体粘性随温度升高而降低(温度升高,分子间距增大,内聚力降低),气体粘性随温度升高而升高(温度升高,分子运动加剧,动量交换加剧)。 2. 简述单位与量纲的联系与区别,简述Re, Fr的物理意义 答:单位是某一物理参数的量度,包含了物理量的物理特性与尺度。量纲表示物理量的物理特性。 R e是惯性力与粘性力的比较,Fr 是惯性力与重力的比较。 3. 什么是边界层厚度,位移厚度及动量厚度? 答:边界层厚度是速度等于外流速度的99%时的厚度;位移厚度--将由于不滑移条件造成的质量亏损折算成无粘性流体的流量相应的厚度,又称为质量亏损厚度;动量厚度--将由于不滑移条件造成的动量流量亏损折算成无粘性流体的动量流量相应的厚度。 4. 什么是流线,迹线及烟线? 答:流线:流场中的一条曲线,曲线上各点的速度矢量方向和曲线在该点的切线方向相同。 迹线:流体质点在空间运动时描绘出来的曲线。 烟线:从流场中的一个固定点向流场中连续地注入与流体密度相同的染色液,该染色液形成一条纤细色线,称为脉线。或另定义如下,把相继经过流场同一空间点的流体质点在某瞬时连接起来得到的一条线。 5. 简述层流与湍流的区别 答:层流:是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,其流动行为可以预测。 湍流:是流体的一种流动状态。流体运动具有随机性,强混合性与有旋性,其流动行为不可预测,本质上是三维,非定常的。 二、运算题 1. (15分)拉格朗日变数 (a, b, c ) 给出的流体运动规律为: 2222)1(,)1(,--+=+==t ce z t b y ae x t t 1)求以欧拉方法描述的速度 2)流动是否定常? 3)求加速度 答:1)设速度场三个分量为 u,v,w 消去拉氏变数: 222, , 11y zt u x v w t t =-= = ++22t x u ae t -?==-?2 2(1)2(1)1y b t v b t t t ?+= =+=?+22223 2(1)2[(1)(1)]1t t z ce t t w ce t t t t ---?+==+-+=?+

大学物理复习题答案(力学)

大学物理力学复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.下列运动中,加速度a 保持不变的是 ( D ) A .单摆的摆动 B .匀速率圆周运动 C .行星的椭圆轨道运动 D .抛体运动。 2.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 ( D ) A .匀加速直线运动,加速度沿x 轴正方向 B .匀加速直线运动,加速度沿x 轴负方向 C .变加速直线运动,加速度沿x 轴正方向 D .变加速直线运动,加速度沿x 轴负方向 3. 某物体作一维运动, 其运动规律为 dv kv t dt =-2, 式中k 为常数. 当t =0时, 初速为v 0,则该物体速度与时间的关系为 ( D ) A .v kt v =+2012 B .kt v v =-+2011 2 C . kt v v =-+201112 D .kt v v =+20 1112 4.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) ( C ) A .dv dt B .v R 2 C .dv v dt R -??????+?? ? ? ???????? 12 242 D . dv v dt R +2 5、质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度,对下列 表达式:(1) a dt dv =;(2) v dt dr =;(3) v dt ds =;(4) t a dt v d = ,下列判断正确的是 ( D ) A 、只有(1)(4)是对的; B 、只有(2)(4)是对的; C 、只有(2)是对的; D 、只有(3)是对的。

相关文档
相关文档 最新文档