文档库 最新最全的文档下载
当前位置:文档库 › 小学奥数6-1-17 盈亏问题(三).专项练习-精品

小学奥数6-1-17 盈亏问题(三).专项练习-精品

小学奥数6-1-17 盈亏问题(三).专项练习-精品
小学奥数6-1-17 盈亏问题(三).专项练习-精品

1. 熟练掌握盈亏问题的本质.

2. 运用盈亏问题的解题方法解决一些生活实际问题.

盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.

可以得出盈亏问题的基本关系式:

(盈+亏)÷两次分得之差=人数或单位数

(盈-盈)÷两次分得之差=人数或单位数

(亏-亏)÷两次分得之差=人数或单位数

物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.

注意:1.条件转换; 2.关系互换.

模块一、利用条件关系转换解盈亏问题——转化被分配物质

【例 1】 王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;

苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?

【巩固】 学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组

分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?

【例 2】 有若干个苹果和若干个梨.如果按每1个苹果配2个梨分堆,那么梨分完时还剩2

个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨.苹果和梨各有多少个?

知识精讲

教学目标

6-1-7.盈亏问题(三)

【巩固】有若干梨和苹果,如果1个梨和3个苹果分成一堆,则多2个梨,如果2个梨和5个苹果分成一堆,则少2个苹果,则梨有个,苹果有个。

【巩固】有红球和绿球若干个,如果按每组1个红球2个绿球分组,绿球恰好够用,但剩5个红球;如果按每组3个红球5个绿球分组,红球恰好够用,但剩5个绿球,

则红球和绿球共有_____________个。

【巩固】有若干个苹果和梨,如果按1个苹果配3个梨分一堆,那么苹果分完时,还剩2个梨;如果按半个苹果配2个梨分一堆,那么梨分完时,还剩半个苹果.问梨有多

少个?

【巩固】四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以

便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;

如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共

买了多少块橡皮?多少支铅笔?

【巩固】小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,

小白兔恰好放完,小灰兔还多12只.那么小白兔和小灰兔共有多少只?

【例3】幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶

糖的3倍.那么共有_____________个小朋友.

模块二、盈亏问题的综合运用

【例4】“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球

的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?

【例5】一盒咖啡中有若干袋,一包方糖中有若干块.小唐喝前两盒咖啡时每袋咖啡都放3块方糖,结果共用了1包方糖和第2包中的24块;小唐喝后三盒咖啡时每袋咖啡

都只放1块方糖,最后第3包方糖还剩下36块,那么每盒咖啡有多少袋?

【例6】巧克力每盒9块,软糖每盒11块,要把这两种糖分发给一些小朋友,每种糖每人一块,由于又来了一位小朋友,软糖就要增加一盒,两种糖分发的盒数就一样多,

现在又来了一位小朋友,巧克力还要增加一盒,则最后共有多少个小朋友?

【例7】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么

每人3本,有剩余;每人4本,书不够.问第二组有多少人?

【例8】有若干盒卡片分给一些小朋友,如果只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张.现在把所有卡片都分完,每人分到60张,而且还

多出4张.问:共有多少个小朋友?

【例9】一班和二班的学生一起出去划船,要求一班和二班的学生不能坐同一艘船,但每船都按要求尽量坐满,如果7人一船,则共需15船;如果要求8人一船,则恰好

全部坐满;如果要求10人一船,则一班比二班多3船,那么一班和二班分别有

_____、______人.

【例10】幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人,老师给小孩分枣,甲班每个小孩比乙班每个小孩少分3个枣,乙班每个小孩比丙班每个小孩少分5个

枣,结果甲班比乙班共多分3个枣,乙班比丙班总共多分5个枣.问:三个班总共

分了多少个枣?

【例 1】动物园里猩猩比狒狒多,猴子比猩猩多。一天,饲养员拿了10箱香蕉分给它们。

每只猩猩比每只狒狒多分1根,每只猴子比每只猩猩多分1根。分完后,只剩下

2根香蕉。如果每箱香蕉数量相同,都是40多个,而且猴子比狒狒多6只,猩猩

16只。那么,动物园里有_______________只猴子。

A. 18

B. 19

C. 20

D. 17

小学奥数盈亏问题

盈亏问题 课前预习 儿歌:鸟儿飞来了,落在大树梢,每树落一只,一鸟没树找,每树落2只,一树没有鸟,请问几棵树?又有几只鸟? 考试要求 一、在理解的基础上掌握盈亏问题的三种类型 二、能灵活运用盈亏问题的基本公式解题 三、理解盈亏中的“总量”和“份数”,灵活应用盈亏法解决问题 知识框架 一、盈亏问题的三种类型 1.直接计算型盈亏问题 【举例】朝阳小学买来一批小足球分给各班:如果每班分个,就差个;如果每班分个,则正好分完,朝阳小学一共有多少个班?买来多少个足球? 2.条件转换型盈亏问题 【举例】幼儿园把一袋糖果分给小朋友,如果分给大班的小朋友,每人粒就缺粒;如果分给小班的小朋友,每人粒就余粒.已知大班比小班少个小朋友,这袋糖果共有多少粒? 3.关系互换型盈亏问题 【举例】小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱? 二、基本公式 1.(盈+亏)÷两次分得之差=人数或单位数 2.(盈-盈)÷两次分得之差=人数或单位数 3.(亏-亏)÷两次分得之差=人数或单位数 三、基本思想方法 1.实质 分配中的余缺问题

2.三种类型的综合处理 简单问题的处理:量的差别 单位差别 3.遇到陌生、复杂的盈亏问题,可以用转换的思想 用假设法,把陌生问题、复杂问题转化为熟悉问题、简单问题 重难点 重点:在理解的基础上,掌握盈亏问题的基本类型并能灵活运用公式解决问题 难点:盈亏问题中份数与总量的区分(这是学生能够灵活运用盈亏法解决问题的前提) 例题精讲 【例1】小朋友分糖果,若每人分10粒则多9粒;若每人分11粒则刚好.问:有多少个小朋友分多少粒糖?【考点】直接计算型盈亏问题【难度】☆【题型】填空题;应用题;结合方程的应用题【解析】在这个例题中,主要让学生体会到分10粒则多9粒,而分11粒则刚刚好!那么可以说"这九粒糖的任务”就是给每一位小朋友再发一个糖,那么九粒糖每人发一个?是多少个小朋友?九个.这道题的目的在于让学生体会盈亏的思想,数量上都不用做太高要求,这是学习盈亏问题之前的预热! 【答案】(1)9个小朋友(2)99颗糖 【巩固】北京某校三年级一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完.问:有多少位同学分多少个小玩具? 【答案】(1)9个小朋友(2)36个玩具 【例2】小朋友分糖果,若每人分10粒则多9粒;若每人分11粒则差6粒.问:有多少个小朋友分多少粒糖?总共有多少粒糖果? 【考点】直接计算型盈亏问题【难度】☆【题型】填空题;应用题;结合方程的应用题【解析】与上题相比,这题有了变化,本来9粒糖就可以分了,但是现在呢?要几粒糖?15粒?小朋友的人数(份数)与糖的粒数(总数)是不变的.比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒).相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒).每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为:4×15+9=69(粒). 通过上述两道例题主要是让学生体会盈亏的思想,这对于后面公式的总结比较有帮助.教师可以酌情考虑,假如学生的情况比较好,那就不需要上述预热. 【答案】(1)15 (2)69

小学奥数知识点:盈亏问题、巧妙求和、画图显示法

小学奥数知识点:盈亏问题、巧妙求和、画图显示法 专题简析:一定数量的物品,平均分给一定数量的人。每人少分,则物品有余(盈);每人多分,则物品不足(亏)。解答盈亏问题的关键是要求出总差额和两次分配的数量差。 基本解法是:份数=(盈+亏)÷两次分配数的差,由其中一种分法的份和盈亏数求出物品数。 例题1:小明的妈妈买回一篮梨,分给全家。如果每人分 5 个,就多出10个;如果每人分6 个,就少2个。 小明全家有多少人?这篮梨有多少个? 解答: 思路:根据题目中的条件,我们可知: 第一种分法:每人分5 个,多10 个(盈) 第二种分法:每人分6 个,少2 个(亏) 全家人数:(10 +2)÷(6-5)=12 (人) 梨的个数:5×12 +10=70 (个) 试一试1 : (1 )有一根绳子绕树4 圈,余2 米;如果绕树5 圈,则差6 米。树周长是多少米?绳子长多少米? (2 )幼儿园买来一些玩具,如果每班分8 个玩具,则多出2 个玩具;如果每班分10 个玩具,则少12 个玩具。幼儿园有几个班?这批玩具有多少个? 例题2:老师买来一些练习本分给优秀少先队员,如果每人分 5 本,则多了14 本;如果每人分7 本,则多了2 本。优秀少先队员有几人?买来多少本练习本? 解答: 思路:根据题目中的条件,我们可知: 第一种分法:每人5 本,多了14 本(多盈); 第二种分法:每人7 本,多了2 本(少盈)。 每份相差:7-5=2 本 人数:(14 -2)÷(7-5)=6 人练习本数:5×6+14=44 本。

试一试2:把一袋糖分给小朋友们,如果每人分4粒,则多了12 粒;如果每人分6粒,则多了2 粒 有小朋友几人?有多少粒糖? 例题3: 学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18 棵。学生有几人?这 批树苗有多少棵? 解答: 思路:根据题意,我们可知搬树苗的两种方案: 第一种方案:每人搬 6 棵,差4 棵(少亏); 第二种方案:每人搬8 棵,差18 棵(多亏) 棵树苗, 每人多搬了8 -6=2 人数= (18 -4)÷(8 -6)7 人 树苗棵数:6×7-4=38 棵。 试一试3:数学兴趣小组的同学做数学题,如果每人做6 道,则少4 道;如果每人做8 道,则少16 道。有几个学生?多少道数学题? 例题4:三(1)班学生去公园划船,如果每条船坐 4 人,则少一条船;如果每条船坐6人,则多出4 条船。 公园里有多少条船?三(1)班有多少学生? 解答 思路:先把题目中的条件进行转化。“每条船坐4 人,少一条船”则多4 人;“每条船坐6 人,多4 条船”则少6 ×4=24 人再用例1 的方法计算。 船数:(4 +6×4 )÷(6-4)=14 条 学生人数:4×(14+1)=60 人。 试一试4:小明从家到学校,如果每分钟走40 米,则要迟到2 分钟;如果每分钟走50 米,则早到4 分钟。小明家到学校有多远?

小学生必备数学公式盈亏问题公式

小学生必备数学公式——盈亏问题公式 随着社会的发展、科学的进步,在今后2l世纪的信息社会,人人都需要数学。这篇小学生必备数学公式盈亏问题公式,希望可以加强你的基础。 小学数学公式大全盈亏问题公式 (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)(两次每人分配数的差)=人数。 例如,小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子? 解(7+9)(10-8)=162 =8(个)人数 108-9=80-9=71(个)桃子 或88+7=64+7=71(个)(答略) (2)两次都有余(盈),可用公式: (大盈-小盈)(两次每人分配数的差)=人数。 例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发? 解(680-200)(50-45)=4805 =96(人) 4596+680=5000(发) 或5096+200=5000(发)(答略)

(3)两次都不够(亏),可用公式: (大亏-小亏)(两次每人分配数的差)=人数。 例如,将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子? 解(90-8)(10-8)=822 =41(人) 1041-90=320(本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式: 亏(两次每人分配数的差)=人数。 (例略) (5)一次有余(盈),另一次刚好分完,可用公式: 盈(两次每人分配数的差)=人数。 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。(例略) “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知

小学奥数盈亏问题题库学生版

盈亏问题 盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式: (盈+亏)÷两次分得之差=人数或单位数 (盈-盈)÷两次分得之差=人数或单位数 (亏-亏)÷两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”. 注意1.条件转换2.关系互换 板块一、直接计算型盈亏问题 【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块? 【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元. 那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?

【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢? 【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群 猴子中,大猴(不包括猴王)比小猴多只. 【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书? 【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?

小学奥数盈亏问题及答案

1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学原有树苗多少棵 2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员共挖了多少树坑 3、学校安排学生到会议室听报告。如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。问听报告的学生有多少人 4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱 ( 5、幼儿园将一筐苹果分给小朋友。如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。已知大班比小班多3个小朋友,问这筐苹果共有多少个 6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人 7、幼儿园老师给小朋友分糖果。若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。那么糖果最多有多少块 ~ 8、有48本书分给两组小朋友,已知第二组比第一组多5人。如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。问第二组有多少人 9、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人 10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米绳长多少米

最新小学奥数盈亏问题及答案

盈亏问题 1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵? 2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑? 3、学校安排学生到会议室听报告。如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。问听报告的学生有多少人? 4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱? 5、幼儿园将一筐苹果分给小朋友。如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。已知大班比小班多3个小朋友,问这筐苹果共有多少个? 6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人? 7、幼儿园老师给小朋友分糖果。若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。那么糖果最多有多少块?

8、有48本书分给两组小朋友,已知第二组比第一组多5人。如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。问第二组有多少人? 9、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米?绳长多少米? 11、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米? 12、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学? 13、张宇上午7时20分从家里出发到校上课。如果每分钟走50步,离上课还有7分钟;如果每分钟走35步,就要迟到5分钟。求学校的上课时间。 14、"六一"儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 15、苹果和梨各有若干只。如果5只苹果和3只梨装一袋,苹果还多4只,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只。那么苹果和梨共有多少只?

小学数学盈亏问题公式大全

小学数学盈亏问题公式大全 盈亏问题公式大全 (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)(两次每人分配数的差)=人数。 例如,小朋友分桃子,每人10个少9个,每人8个多7个。 问:有多少个小朋友和多少个桃子? 解(7+9)(10-8)=162 =8(个)人数 108-9=80-9=71(个)桃子 或88+7=64+7=71(个)(答略) (2)两次都有余(盈),可用公式: 小学数学盈亏问题公式大全:(大盈-小盈)(两次每人分配数的差)=人数。 例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发? 解(680-200)(50-45)=4805 =96(人) 4596+680=5000(发) 或5096+200=5000(发)(答略) (3)两次都不够(亏),可用公式: (大亏-小亏)(两次每人分配数的差)=人数。例如,将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?

解(90-8)(10-8)=822 =41(人) 1041-90=320(本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式: 亏(两次每人分配数的差)=人数。 (例略) (5)一次有余(盈),另一次刚好分完,可用公式: 与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。 与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师” 一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。 盈(两次每人分配数的差)=人数。 (例略) “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

小学数学常用公式84261知识讲解

小学数学常用公式 84261

小学数学常用公式 小学数学公式:和差倍及平均数问题 什么是和差问题?已知大小两个数的和,以及了们的差,求这两个数各是多少的应用题叫做和差问题。 什么是和倍问题?已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题叫做和倍问题。 什么是差倍问题?已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题叫做差倍问题。 什么是平均数?平均数是指在一组数据中所有数据之和再除以数据的个数。和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数+1)=大数 小数×倍数=大数 (或小数+差=大数) 平均数问题公式 总数量÷总份数=平均数。

相遇问题公式: 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 浓度问题公式: 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 小学数学公式:植树问题公式 什么是植树问题?这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。 植树问题公式: 1、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1= 全长÷株距+1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

小学奥数 经典应用题 盈亏问题(一).学生版

1. 熟练掌握盈亏问题的本质. 2. 运用盈亏问题的解题方法解决一些生活实际问题. 盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称 之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”. 可以得出盈亏问题的基本关系式: (盈+亏)÷两次分得之差=人数或单位数 (盈-盈)÷两次分得之差=人数或单位数 (亏-亏)÷两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”. 注意:1.条件转换; 2.关系互换. 模块一、利用盈亏公式直接计算 (一)盈+亏型 【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2 块砖.这个班少先队有几个人?要搬的砖共有多少块? 【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共 有 人。 【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒, 问:有多少位同学分多少粒糖果? 知识精讲 教学目标 6-1-7.盈亏问题(一)

【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天? 【巩固】幼儿园的老师给小朋友们发梨。每人6个就剩12个,每人7个便少11个。共有位小朋友个梨。 【巩固】幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有______ 个,小朋友共______ 组。 【巩固】一盘草莓约20个左右,几位小朋友分。若每人分3个,则余下2个;若每人分4个,则差3个。 这盘草莓有______个。 【巩固】把一堆糖果分给几位小朋友,若每人2块,将剩余12块;每人3块,将缺少5块,那么小朋友共_ 位。 【例2】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱? 【巩固】小明的妈妈去买苹果,想买3千克,付钱时发现还少3元,结果买了2千克,又剩下7元,小明妈妈一共带了钱.

小学数学盈亏问题练习及参考答案

盈亏问题 把若干物体平均分给一定数量的对象,并不是每次都能正好分完。如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。已知两个分配方案,一次分配有余,一次分配不足,求参加分配的人数及被分配的总量。这样的问题通常叫做盈亏问题。 知识背景:盈亏的问题曾记载在我国古代数学名著《九章算术》中的第六章 --------“盈不足章”中,盈,就是有余;亏,就是不足的意思。 典型的盈亏问题一般以下列的形式表述: 把若干个苹果(未知数)分给若干个人(未知数),如果每人分2个还多20个,如果每人分3个则少5个。问总共有多少人?有多少个苹果? 题目中的不变量是人数和苹果数,比较两种不同的分配方法,可知苹果相差:20 + 5 = 25 (个);相差25个苹果,是由于每人相差苹果3 - 2 = 1 (个)而做成的, 事实上,只有唯一一种情况才会导至上述情形,那就是有25人分苹果! 求得人数后,进而可以根据题意,求得苹果的数目:2×25+20=70(个)或3×25-5=70(个)。 一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数、一盈一平或一亏一平=盈数或亏数÷两次分配的差=份数、再求总数量。每次分的数量*份数+盈=总数量或。每次分的数量*份数-亏=总数量。物品数可由其中一种分法的份数和盈亏数求出。有些则不能用公式求出,需要用其他公式。 解盈亏问题的公式

【一盈一亏的解法】 (盈数+亏数)÷两次每人分配数的差 【双盈的解法】 (大盈-小盈)÷两次每人分配数的差 【双亏的解法】 (大亏-小亏)÷两次每人分配数的差 盈亏问题练习及参考答案 1、将一些糖果分给幼儿班的小朋友。如果每人分3粒,还多17粒;每人分5粒,又少13粒。则有多少小朋友?有多少粒糖? 【分析与解】由题设可知道,每人分3粒,还多17粒,若再给每个小朋友分5-3=2粒,则需要17+13=30粒。 所以小朋友有30÷2=15人。 糖果有3×15+17=62粒或15×5-13=62粒。 2、把一筐桃分给一些小猴。每只小猴分5个桃,最后多16个;每只小猴分7个,又缺12个桃不够分。小猴有多少只?桃有多少只? 【分析与解】由题设可知道,每只小猴分5个,还多16个,若再给每只小猴分7-5=2个,则需要16+12=28个桃。 所以小猴有28÷2=14只。 桃有5×14+16=86只或7×14-12=86只。 3、学校最近买来一批电风扇,分给初中班。若有两个班每班分到4台,其余每班只能分2台;若有一个班分6台,其余每班分4台,还差12台。共买来多少

小学生数学盈亏问题公式

必备的小学生数学盈亏问题公式怎样掌握好每门课程这个问题被很多学生频繁的问起,小编特地为大家整理了小学生数学盈亏问题公式,希望对大家学习公式有所帮助。 盈亏问题公式: (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次每人分配数的差)=人数。 例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?” 解(7+9)÷(10-8)=16÷2 =8(个)……人数 10×8-9=80-9=71(个)……桃子 或8×8+7=64+7=71(个)(答略) (2)两次都有余(盈),可用公式: (大盈-小盈)÷(两次每人分配数的差)=人数。 例如,“士兵背子弹作行军训练,每人背45发,多680发; 若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?” 解(680-200)÷(50-45)=480÷5 =96(人) 45×96+680=5000(发) 或50×96+200=5000(发)(答略)

(3)两次都不够(亏),可用公式: (大亏-小亏)÷(两次每人分配数的差)=人数。 例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?” 解(90-8)÷(10-8)=82÷2 =41(人) 10×41-90=320(本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式: 亏÷(两次每人分配数的差)=人数。 (例略) (5)一次有余(盈),另一次刚好分完,可用公式: 盈÷(两次每人分配数的差)=人数。 (例略) “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构

小学奥数盈亏问题及答案

1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵? 2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑? 3、学校安排学生到会议室听报告。如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。问听报告的学生有多少人? 4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱? 5、幼儿园将一筐苹果分给小朋友。如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。已知大班比小班多3个小朋友,问这筐苹果共有多少个? 6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人? 7、幼儿园老师给小朋友分糖果。若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。那么糖果最多有多少块? 8、有48本书分给两组小朋友,已知第二组比第一组多5人。如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。问第二组有多少人?

9、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米?绳长多少米? 11、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米? 12、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐 6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学? 13、张宇上午7时20分从家里出发到校上课。如果每分钟走50步,离上课还有7分钟;如果每分钟走35步,就要迟到5分钟。求学校的上课时间。 14、"六一"儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量 相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 15、苹果和梨各有若干只。如果5只苹果和3只梨装一袋,苹果还多4只,梨 恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只。那么苹果和梨共有多少只? 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准 分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量. 基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

吉林省松原市小学数学小学奥数系列6-2-2盈亏问题

吉林省松原市小学数学小学奥数系列6-2-2盈亏问题 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共53题;共238分) 1. (5分)学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍? 2. (5分)学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少? 3. (5分)学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人? 4. (5分) (2019四上·龙华期中) 如图 (1)超市从工厂批发了80台学习机,每台150元,超市要付给工厂多少元? (2)超市在卖出70台后开始降价销售,如果这批学习机全部销售,你认为超市是盈利还是亏本?请用数据说明。 5. (5分)选择两个信息作为已知条件,然后提出一个问题,并试着解决。 ①某校计划购置图书1200册; ②实际购书比计划多20%; ③实际购书1440册; ④实际比计划多购书240册。

6. (5分)老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子? 7. (5分)猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼? 8. (5分)小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,小白兔恰好放完,小灰兔还多12只.那么小白兔和小灰兔共有多少只? 9. (1分)一次速算比赛共有20道题,答对1道给5分,答错一道倒扣1分,未答的题不计分,考试结束后,小梁共得了71分,那么小梁答对了________ 道题. 10. (5分)学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副? 11. (1分)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分个,小猴分个,猴王可留个.若大、小猴都分个,猴王能留下个.在这群猴子中,大猴(不包括猴王)比小猴多________只. 12. (5分)城关一中有男生450人,女生比男生少6%,城关一中一共有学生多少人? 13. (5分)某商店进了一批笔记本,按30%的利润定价。当售出这批笔记本的80%后,为了尽早销完,商店把余下的笔记本按定价的一半出售。销完后商店实际获得利润百分数是多少? 14. (5分)猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布? 15. (5分)学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人? 16. (5分) (2020六上·高新期末) 笑笑前年3月1日把3000元压岁钱存入银行,定期五年,年利率是3.60%.到期时,笑笑应得利息多少元? 17. (5分)智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果? 18. (5分)王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?

盈亏问题公式

盈亏问题公式 (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)+ (两次每人分配数的差)=人数。 盈亏问题公式 (盈+亏)+ (两次每人分配数的差)=人数。 例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子” 解(7+9)十(10-8 )=16- 2 =8 (个).......... 人数 10X 8-9=80-9=71 (个)................ 桃子 或8 X 8+7=64+7=71 (个)(答略) (2)两次都有余(盈),可用公式: (大盈-小盈)+ (两次每人分配数的差)=人数。 例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多 200发。问:有士兵多少人有子弹多少发” 解(680-200 )-(50-45 )=480 - 5 =96 (人) 45 X 96+680=5000 (发) 例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子” 解(90-8 )-(10-8 )=82 - 2 =41 (人) 10X 41-90=320 (本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式:

鸡兔问题公式 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数X总头数)+ (每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者是(每只兔脚数X总头数-总脚数)+ (每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只” 解一(100-2X 36) + (4-2 )=14 (只)... 兔; 36-14=22 (只)................... 鸡。 解二(4X 36 -100 ) + (4-2 )=22 (只).鸡; 36-22=14 (只).................. 兔。 (答略) (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数X总头数-脚数之差)+ (每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每只兔脚数X总头数+鸡兔脚数之差)+ (每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 (每只鸡的脚数X总头数+鸡兔脚数之差)+ (每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数X总头数-鸡兔脚数之差)十(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (4 )得失问题(鸡兔问题的推广题)的解法,可以用下面的公式: (1只合格品得分数X产品总数-实得总分数)+ (每只合格品得分数+每只不合格品扣 分数)=不合格品数。或者是总产品数-(每只不合格品扣分数X总产品数+实得总分数)+ (每只合格品得分数+每只不合格品扣分数)=不合格品数。 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每 生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分, 问其中有多少个灯泡不合格” 解一(4X 1000 -3525 ) + (4+15) =475+ 19=25 (个) 解二1000- (15X 1000+3525)+ (4+15) =1000-18525+ 19

【三年级数学】小学三年级奥数下册盈亏问题教案

小学三年级奥数下册盈亏问题教案 盈亏问题 解盈亏问题,常常用到比较法。 例1 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块? 分析比较两种搬砖法中各个量之间的关系: 每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。 第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块) 每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。 共有砖:4×9+7=43(块)。 解:(7+2)÷(5-4)=9(人) 4×9+7=43(块)或5×9-2=43(块) 答:共有少先队员9人,砖的总数是43块。 如果把例1中的“少2块砖”改为“多1块砖”,你能计算出有多少少先队员,有多少块砖吗? 由本题可见,解这类问题的思路是把盈余数与不足数之和看作采用两种不同搬法产生的总差数,被每人搬砖的差即单位差除,就可得出单位的个数,对这题来说就是搬砖的人数. 例2 妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天? 分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。 解:(48+8)÷(6-4) =56÷2

三级奥数盈亏问题例题及答案

三年级奥数盈亏问题例题及答案 板块一、直接计算型盈亏问题 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人】【例1搬5块,则少2块砖.这个班少先队有几个人要搬的砖共有多少块 明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7【巩固】元,就多出了4元.那么有多少个同学去买蛋糕这个蛋糕的价钱是多少【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子老猴子一共有多少个桃子【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢 学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,【巩固】每人发9本,还差2本,请问有多少老师多少本书 . 【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢 王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带【巩固】的钱还多30元,问儿童小提琴多少钱一把王老师一共带了多少钱【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个 【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍 【巩固】某学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果 【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个计划吃多少天 板块二、条件关系转换型盈亏问题 猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正2】【例好分完,那么一共有多少只小猫猫妈妈一共有多少条鱼 猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次【解析】分配之差是(条),由盈亏问题公式得,有小猫:(只),猫妈妈8?18?111?10?有(条)鱼.88??8?108【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,个正好分完,问:有多少位同学分多少个小玩具3如果每人分. 第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次【解析】分配之差是:(个),由盈亏问题公式得,参与分玩具的同学有:9?11?94?3?(人),有小玩具(个).27?9?3【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班买来多少个足球 第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分【解析】配之差是(个),由盈亏问题公式得,朝阳小学有:(个)班,买33?66?22?2?4

奥数盈亏问题详解

盈亏问题 知识点说明: 盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”. 可以得出盈亏问题的基本关系式: (盈+亏)÷两次分得之差=人数或单位数 (盈-盈)÷两次分得之差=人数或单位数 (亏-亏)÷两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”. 注意1.条件转换2.关系互换 板块一、直接计算型盈亏问题 【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块? 【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541 += -=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729(块),每人相差1块,结果总数就相差9块,所以有少先队员919 ÷=(人).共有砖:49743 ?+=(块). 【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少? 【解析】“多8元”与“多4元”两者相差844 ÷= -=(元),每个人要多出871 -=(元),因此就知道,共有414(人),蛋糕价钱是84824 ?-=(元).

相关文档
相关文档 最新文档