文档库 最新最全的文档下载
当前位置:文档库 › 声光效应实验2

声光效应实验2

声光效应实验2
声光效应实验2

5

实验一 声光效应实验

声光效应是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象是光波与介质中声波相互作用的结果。早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光现象的研究提供了理想的光源,促进了声光效应理论和应用研究的迅速发展。声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。

【实验目的】

1.了解声光效应的原理。

2.了解喇曼-纳斯衍射和布喇格衍射的实验条件和特点。

3.测量声光偏转和声光调制曲线。 4.完成模拟通信实验仪器的安装及调试。 【实验原理】

当超声波在介质中传播时,将引起介质的弹性应变作时间和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。有超声波传播的介质如同一个相位光栅。

声光效应有正常声光效应和反常声光效应之分。在各项同性介质中,声-光相互作用不导致入射光偏振状态的变化,产生正常声光效应。在各项异性介质中,声-光相互作用可能导致入射光偏振状态的变化,产生反常声光效应。反常声光效应是制造高性能声光偏转器和可调滤波器的基础。正常声光效应可用喇曼-纳斯的光栅假设作出解释,而反常声光效应不能用光栅假设作出说明。在非线性光学中,利用参量相互作用理论,可建

立起声-光相互作用的统一理论,并且运用动量匹配和失配等概念对正常和反常声光效应都可作出解释。本实验只涉及到各项同性介质中的正常声光效应。

设声光介质中的超声行波是沿y 方向传播的平面纵波,其角频率为s w ,波长为s λ,波

图1 声光衍射

6 矢为s k 。入射光为沿x 方向传播的平面波,其角频率为w ,在介质中的波长为λ,波矢为k 。介质内的弹性应变也以行波形式随声波一起传播。由于光速大约是声速的510倍,在光波通过的时间内介质在空间上的周期变化可看成是固定的。

由于应变而引起的介质的折射率的变化由下式决定

PS n

=?)1(

2

(1)

式中,n 为介质折射率,S 为应变,P 为光弹系数。通常,P 和S 为二阶张量。当声波在各项同性介质中传播时,P 和S 可作为标量处理,如前所述,应变也以行波形式传播,所以可写成

)sin(0y k t w S S s s -= (2)

当应变较小时,折射率作为y 和t 的函数可写作

)sin(),(0y k t w n n t y n s s -?+= (3)

式中,0n 为无超声波时的介质的折射率,n ?为声波折射率变化的幅值,由(1)式可求出

03

2

1PS n n -

=?

设光束垂直入射(k ⊥s k )并通过厚度为L 的介质,则前后两点的相位差为

)

sin(),(0000y k t w nL k L n k L

t y n k s s -?+==?Φ (4)

0sin()s s w t k y δ=?Φ+Φ-

式中,0k 为入射光在真空中的波矢的大小,右边第一项0?Φ为不存在超声波时光波在介质前后两点的相位差,第二项为超声波引起的附加相位差(相位调制),0k nL δΦ=?。可见,当平面光波入射在介质的前界面上时,超声波使出射光波的波振面变为周期变化的皱折波面,从而改变出射光的传播特性,使光产生衍射。 设入射面上2

L x =-的光振动为it

i E Ae =,A 为一常数,也可以是复数。考虑到在出射

面2

L x =

上各点相位的改变和调制,在xy 平面内离出射面很远一点的衍射光叠加结果为

00[((,)sin ]

22

b

i w t k n y t k y b E A e

dy θ---∝?

写成等式时,

7

0sin()

sin 22

s s b

i k y w t ik y iw t

b E C e

e

e

dy δθ

Φ---=?

(5)

式中,b 为光束宽度,θ为衍射角,C 为与A 有关的常数,为了简单可取为实数。利用一与贝塞耳函数有关的恒等式

sin ()ia im m m e

J a e

θ

θ

=-∞

=

式中()m J a 为(第一类)m 阶贝塞耳函数,将(5)式展开并积分得

()[]

()2

/sin 2/sin sin )(00)(θθδφk mk

b k mk b e

J Cb

E s

s

t

mw w i m m s --=-∞

-∞

=∑

(6)

上式中与第m 级衍射有关的项为

()0s i w m w t

m E E e

-= (7)

000sin[(sin )/2]()

(sin )/2s m s b m k k E C bJ b m k k θδθ-=Φ- (8)

因为函数sin /x x 在0x =取极大值,因此有衍射极大的方位角m θ由下式决定:

00

sin s m s

k m

m

k λθλ== (9)

式中,0λ为真空中光的波长,s λ为介质中超声波的波长。与一般的光栅方程相比可知,超声波引起的有应变的介质相当于一光栅常数为超声波长的光栅。由(7)式可知,第m 级衍射光的频率m w 为

m s w w m w =- (10)

可见,衍射光仍然是单色光,但发生了频移。由于s w w ,这种频移是很小的。

第m 级衍射极大的强度m I 可用(7)式模数平方表示:

*222

0020()()

m m m

I E E C b J I J δδ==Φ=Φ (11)

式中,*0E 为0E 的共轭复数,22

0I C b =

第m 级衍射极大的衍射效率m η定义为第m 级衍射光的强度与入射光的强度之比。 0

I I m m =

η (12)

由(11)式可知,m η正比于2()m J δΦ。当m 为整数时,()(1)()m

m m J a J a -=-。由(9)

式和(11)式表明,各级衍射光相对于零级对称分布。

当光束斜入射时,如果声光作用的距离满足2

/2s L λλ<,则各级衍射极大的方位角m θ由下式决定

0sin sin m s

i m

λθλ=+ (13)

8 式中i 为入射光波矢k 与超声波波面的夹角。上述的超声衍射称为喇曼-纳斯衍射,有超声波存在的介质起一平面相位光栅的作用。

当声光作用的距离满足22/s L λλ>,而且光束相对于超声波波面以某一角度斜入射时,在理想情况下除了0级之外,只出现1级或-1级衍射。如图2所示。这种衍射与晶体对X 光的布喇格衍射很类似,故称为布喇格衍射。能产生这种衍射的光束入射角称为布喇格角。此时有超声波存在的介质起体积光栅的作用。可以证明,布喇格角满足

图2 布喇格衍射

sin 2B s

i λ

λ=

(14)

式中(14)称为布喇格条件。因为布喇角一般都很小,故衍射光相对于入射光的偏转角

02B s s s i f nv λλ

λΦ=≈= (15)

式中,s v 为超声波的波速,s f 为超声波的频率,其它量的意义同前。在布喇格衍射条件下,一级衍射光的效率为

2

sin η=] (16)

式中, s P 为超声波功率,L 和H 为超声换能器的长和宽,2M 为反映声光介质本身性质的

一常数,622/s M n p v δ

ρ=,ρ为介质密度,p 为光弹系数。在布喇格衍射下,衍射光的效

率也由(12)式决定。理论上布喇格衍射的衍射效率可达100%,喇曼-纳斯衍射中一级衍

9

射光的最大衍射效率仅为34%,所以使用的声光器件一般都采用布喇格衍射。

由(15)式和(16)式可看出,通过改变超声波的频率和功率,可分别实现对激光束方向的控制和强度的调制,这是声光偏转器和声光调制器的基础。从(10)式可知,超声光栅衍射会产生频移,因此利用声光效应还可以制成频移器件。超声频移器在计量方面有重要应用,如用于激光多普勒测速仪。

以上讨论的是超声行波对光波的衍射。实际上,超声驻波对光波的衍射也产生喇曼-纳斯衍射和布喇格衍射,而且各衍射光的方位角和超声频率的关系与超声行波的相同。不过,各级衍射光不再是简单地产生频移的单色光,而是含有多个傅立叶分量的复合光。

【实验仪器】

一套完整的SO2000声光效应实验仪配有:已安装在转角平台上的100MHz 声光器件、半导体激光器、100MHz 功率信号源、LM601CCD 光强分布测量仪及光具座。每个器件都带有φ10的立杆,可以安插在通用光具座上。

配件:模拟通信收发器,频率计,示波器。 1. 声光器件

声光器件的结构示意如图3所示。它由声光介质、压电换能器和吸声材料组成。

图3 声光器件的结构 图4 转角平台

本实验采用的声光器件中的声光介质为钼酸铅,吸声材料的作用是吸收通过介质传播到端面的超声波以建立超声行波。将介质的端面磨成斜面或成牛角状,也可达到吸声的作用。压电换能器又称超声换能器,由妮酸锂晶体或其它压电材料制成。它的作用是将电工率换成声功率,并在声光介质中建立起超声场。压电换能器既是一个机械振动系统,又是一个与功率信号源相联系的电振动系统,或者说是功率信号源的负载。为了获得最佳的电声能量转换 效率,换能器的阻抗与信号源的内阻应当匹配。

波前进方向

声光器件安装在一个透明塑料盒内,置于转角平台上,见图4。盒上有一插座,用于和功率信号源的声光插座相连。透明塑料盒两端各开一个小孔,激光分别从这两个小孔射入和射出声光器件,不用时用贴纸封住以保护声光器件。旋转转角平台的旋转手轮可以转动转角平台,从而改变激光射入声光器件的角度。声光器件有一个衍射效率最大的工作频率,此频率称为声光器件的中心频率,记为f c。对于其它频率的超声波,其衍射效率将降低。规定衍

射效率(或衍射光的相对光强)下降3db

(即衍射效率降到最大值的

间隔为声光器件的带宽。

2.功率信号源

SO2000功率信号源专为声光效应实验配套,输出频率范围为80~120MHz,最大输出功率为1W。面板上各输入/输出信号和表头含义如下:

等幅/调幅:做基本的声光衍射实验,要打在“等幅”位置,否则信号源无输出;做模拟通讯实验时要打在“调幅位置”。

调制:输入信号插座。等幅/调幅开关处于“调幅”位置时,此位置接上“模拟通信发送器”,从“调制”端口输入一个TTL电平的数字信号,就可以对声功率进行幅度调制,频率范围0~20KHz。调制波的解调可用光电池加放大电路组成的“光电池盒”来实现。具体方法是,移去CCD光强分布测量仪,安置上“光电池盒”,“光电池盒”再与“模拟通信接收器”相连。将1级衍射光对准“光电池盒”上的小孔,适当调节半导体激光器的功率,就可以用喇叭或示波器还原调制波的信号,进行模拟通信实验。模拟通信收发器的介绍见下文。

声光:输出信号插座。用于连接声光器件,将功率信号源的电信号传给声光器件,经压电换能器转换为声波后注入声光介质。

测频:输出信号插座。接频率计,用于测量功率信号源输出的频率。

频率旋钮:用于改变功率信号源的输出频率,可调范围80~120MHz。逆时针旋到底是80MHz,顺时针选到底是120MHz。

功率旋钮:用于调节功率信号源的输出功率,逆时针减小,顺时针变大。面板上的毫安表读数作为功率指示用,读数值×10约等于功率毫瓦数。﹡使用时,为保证声光器件的安全,不要长时间处于功率最大位置!

https://www.wendangku.net/doc/8011383067.html,D光强分布测量仪:

其核心是线阵CCD器件。CCD器件是一种可以电扫描的光电二级管列阵,有面阵(二维)和线阵(一维)之分。LM601CCD光强仪所用的是线阵CCD器件,性能参数如下表。

10

11

LM601CCD 光强仪机壳尺寸为150mm×100mm×50mm ,CCD 器件的光敏面至光强仪前面板距离为4.5mm 。

LM601光强仪后面板各插孔含义如下,波形图见图5:

“示波器/微机”:当光强仪配接的是CCD 数显示波器或通用示波器时,将此开关打 在“示波器”位置,“同步”脉冲频率为50Hz ;当配接的是按装有CCD 采集卡的微机系统时,把开关打在“微机”位置,“同步”脉冲频率为 1~5Hz ,“采样”脉冲频率为10~15KHz 左右。

“信号”:CCD 器件接收的空间光强分布信号的模拟电压输出端,送往示波器的测量 信号通道;送往微机时,接电缆线的红色插头。

“同步”:启动CCD 器件扫描的触发脉冲,“同步”的含意是“同步扫描”,主要供 示波器X 轴外同步触发和采集卡同步用;送往微机时,接电缆线的黄色插头。

“采样”:每一个脉冲对应于一个光电二极管,脉冲的前沿时刻表示外接设备可以读 取光电管的光电压值,“采样”信号是供CCD 采集卡“采样”同步和供SB14 CCD 专用数显示波器作X 位置计数。此脉冲也可作为几何形状测量时的计数脉冲。接通用示波器时此信号空置;接微机时,接电缆线的蓝色插头。

4.模拟通信收发器

模拟通信收发器由三件仪器组成:模拟通信发送器、模拟通信接收器和光电池盒。 a) 模拟通信发送器的各接口及开关描述如下:

“调制”:输出信号插座。当功率信号源的等幅/调幅开关处于“调幅”位置时(即做模拟通信实验时),此位置接上功率信号源的调制插座,即向功率信号源输出TTL电平的数字调制信号,用于对声功率进行幅度调制。

“示波器”:如果要在双踪示波器上对比观察本模拟通信实验中发送和接收到的音乐TTL电平的数字信号,则此插座接示波器的一路通道,并作为触发信号;模拟通信接收器的示波器插座接示波器的另一路通道。

“喇叭开关”:用于选择是否监听发送器送出的音乐TTL信号。

“选曲开关”:发送器可以送出的音乐TTL信号有两首乐曲,用于开关选择。

b)模拟通信接受器的各接口描述如下:

“光电池”:接光电池盒。

“示波器”:如果要在双踪示波器上对比观察本模拟通信实验中发送和接收到的音乐TTL电平的数字信号,则此插座接示波器的一路通道;模拟通信发送器的示波器插座接示波器的另一路通道,并作为触发信号。

“音量旋钮”:调节模拟通信接收器还原出来的TTL信号的音量的大小。

c)光电池盒

取代LM601CCD光强分布测量仪,与模拟通信接收器的光电池插座连接并向模拟通信接收器传送接收到的带调制信号的衍射光信号。

5.半导体激光器

半导体激光器输出光强稳定,功率可调,寿命长。在后面板上有一只调节激光强度的电位器,在盒顶和盒侧各有一只做X-Y方向微调的手轮。性能参数见激光器外壳上的铭牌。

6.光具座

0.8m长,配三只马鞍座,其中一只可横向移动,一般用于安置CCD光强仪或光电池盒用。SO2000的各部件的底端都有螺口用以旋入直径为10mm的立杆,拧紧后插入各马鞍座里,旋紧马鞍座的立杆旋钮,在将马鞍座置于光具座上,待各部件位置调好后,旋紧马鞍座侧面的旋钮即可完成固定。

7.示波器和频率计

声光效应实验只需一台单踪示波器即可,而模拟通信实验需要一台双踪示波器。频率计的量程需大于150MHz。

【实验内容】

一、基本声光效应实验:

12

13

1. 按图7所示安装仪器。完成安装后,开启除功率信号源之外的各部件的电源。

2. 仔细调节光路,使半导体激光器射出的光束准确地由声光器件外塑料盒的小孔射 入、穿过声光介质、由另一端的小孔射出,再透过偏振减光器,照射到CCD 采集窗口上,这时衍射尚未产生(声光器件尽量靠近激光器)。

3. 用示波器进行测量,将光强仪的“信号”接至示波器的Y 轴,电压档置0.1~1V/ 格档,扫描频率一般置2ms/格档;光强仪的“同步”插孔接至示波器的外触发端口,极性为“+”。适当调节“触发电平”,在示波器上可以看到一个稳定的类似图5所示的单峰波形。

4. 调节到满意的波形后,打开功率信号源的电源。

5. 微调转角平台旋钮,改变激光束的入射角,获得布喇格衍射和喇曼-纳斯衍射,并 比较两种衍射的实验条件和特点。(实际调节时,可在CCD 窗口前置一白纸,在纸上看到正确的图形后再让光射入采集窗口。)

6. 声光偏转测量:在布喇格衍射条件下,将功率信号源的功率旋钮固定于中间值,旋

图7.声光效应实验安装图

14 图8:布喇格衍射的0级光和1级光

转频率旋钮来改变输出信号频率,用示波器测量不同超声波频率(即电信号频率)f s 下,衍射光相对于入射光的偏转角Φ,测出6-8组(f s ,Φ)值,做Φ- f s 关系曲线,并由直线斜率求声速v s 。用示波器测量衍射角时,先要解决“定标”的问题,即示波器X 方向上的1格等于CCD 器件上多少象元,或者示波器上1格等于CCD 器件位置X 方向上的多少距离。方法是调节示波器的“时基”档及“微调”,使信号波形一帧正好对应于示波器上的某个刻度数。以图8为例,波形一帧正好对应于示

波器上的8大格,则每格对应实际空间距离为2592个像元÷8大格×11μm = 3564μm = 3.564 mm ,每小格对应实际空间距离为3.564 mm ÷5 = 0.7128 mm ,0级光与1级光的偏转距离为 0.7128 mm × 12.5小格 = 8.91 mm 。注意式(14)和(15)中布喇格角i B 和偏转角Φ都是指介质内的角度,而直接测出的角度是空气中的角度,应进行换算,声光器件n =2.386。由于声光器件的参数不可能达到理论值,实验中布喇格衍射不是理想的,可能会出现高级次衍射光等现象。调节布喇格衍射时,使1级衍射光最强即可。 实验数据记录表1

L 是声光介质的光出射面到CCD 线阵光敏面的距离,注意不要忘了加上CCD 器件光敏面至光强仪前面板的距离4.5mm ;v s 的计算见式(15)。

7. 在布喇格衍射下,固定超声波功率,测量衍射光相对于零级衍射光的相对强度与超声波频率的关系曲线,并定出声光器件的带宽和中心频率。自行设计记录表格。

8. 测定布喇格衍射下的最大衍射效率,衍射效率=I 1/I 0,其中,I 0为未发生声光衍射时 “0级光”的光强度,I 1为发生声光衍射后1级光的强度。

9. 声光调制测量:在布喇格衍射下,将功率信号源的超声波频率固定在声光器件的中 心频率上,旋转功率旋钮来改变输出信号功率,用示波器测量不同超声波功率(即电信号功率)P 下各级衍射光的光强,并在同一个坐标系上做各级衍射光强度与超声波功率的关系曲线。

实验数据记录表2

注意:为获得理想波形,有时需反复调节激光束、声光器件、CCD光强分布测量仪等之间的几何关系与激光器的功率。

10.(选做)完成声光模拟通信实验的仪器安装和调试:改变超声波功率,注意观察模拟通信接收器发出的音乐的变化,分析原因。

【注意事项】

1.实验仪器娇贵,调节过程中不可操之过急,应耐心认真调节。声光器件尤为贵重,注意保护。

2.不能将功率信号源的输出功率长时间处于最大输出功率状态,以免烧坏。

3.在观察和测量以前,应将整个光学系统调至共轴。

4.实验结束后,应先关闭各仪器电源,再关闭总电源,以免损坏仪器。

【思考题】

1.为什么说声光器件相当于相位光栅?

2.声光器件在什么实验条件下产生喇曼-纳斯衍射?在什么实验条件下产生布喇格衍射?两种衍射的现象各有什么特点?

3.调节喇曼-纳斯衍射时,如何保证光束垂直入射?

二、声光模拟通信实验:

本实验需要下列电线和电缆:

1.功率信号源和转角平台上的声光器件:1根。其一头为Q9插头,连接声光器件,一头为莲花插头,连接功率信号源的“声光”插座,此时,功率信号源要打在“调幅”上。当做声光效应实验时,要打在“等幅”上;

2.功率信号源和模拟通信发送器:1根。其一头为Q9插头,连接模拟通信发送器调制插孔,另一头为Q9插头,连接功率信号源调制插座。

3.模拟通信发送器和示波器:1根。其一头为Q9插头,连接模拟通信发送器插座,另一头为Q9插头,接示波器Y1和以Y1为同步(Y1置于1V/格档);

4.模拟通信接收器和光电池盒:由光电池盒引出一个莲花插头,接模拟通信接收器的光电池插座;

15

5.模拟通信接收器和示波器:1根。其一头为Q9插头,接模拟通信接收器的示波器插座,一头为Q9插头,接示波器Y2输入信号端口(Y2置0.1~0.5V/格档)使用过程如下:

1.完成安装后,开启各部件的电源;功率信号源的输出功率不要太大;

2.仔细调节光路,使半导体激光器射出的光束准确地由声光器件外塑料盒的小孔射入、穿过声光介质、由另一端的小孔射出,仔细调节转角平台旋钮,满足布喇格衍射,并将1级衍射光射入光电池盒的接受圆孔。

3.将模拟通信发送器的喇叭开关打在“关”上,以避免它对模拟通信接受器还原出的音乐的干扰。此时,模拟通信接受器的扬声器应发出模拟通信发送器的音乐;在示波器上应观察到两路信号波形相一致或相反;

16

大学物理实验之声光效应

声光效应电子教案 一、实验目的 ①了解声光效应原理 ②了解布拉格衍射现象的实验条件和特点 ③通过对声光器件衍射效率、中心频率和带宽的测量加深对其概念的理解 ④测量声光偏转和声光调制曲线 二、实验原理简述 声光效应就是研究光通过声波扰动的介质时发生散射或衍射的现象。由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播,当激光通过此介质时,就会发生光的衍射,即声光衍射。衍射光的强度、频率、方向等都随着超声波场而变化。其中衍射光偏转角随超声波频率的变化现象称为声光偏转;衍射光强度随超声波功率而变化的现象称为声光调制。主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 声光衍射可以分为拉曼-拉斯(Ranman-Nath)衍射和布拉格(Bragg)衍射两种情况。本实验室主要研究钼酸铅晶体介质中的布拉格衍射现象。 布拉格方程:θB=sinθB=λfs/2nvs ,其中θB 为布拉格角,λ为激光波长,n为介质折射率,vs 为超声波在介质中的速率。由此知不同的频率对应不同的偏转角φ=2θB,所以可以通过改变超声波频率实现声光偏转。 布拉格一级衍射效率为:η1=I1/Ii=sin2((π/λ).(LM2Ps/2H)1/2) ,其中Ps为超声波功率,M2为声光材料的品质因素,L、H分别表示换能器的长和宽。由此知当超声功率改变时,η1也随之改变,因而可实现声光调制。 三、实验仪器的结构或原理简图及仪器简介 主要实验仪器如图1所示:有半导体激光器、声光器件及转角平台(图2)、超声波功率信号源、频率计、光强仪、示波器、光具座、支架、导线等附件。各仪器原理、具体型号及参数见声光效应实验讲义。 图1 声光效应主要实验仪器 图2 转角平台和声光器件

塞曼效应观测实验

塞曼效应实验 1.实验目的 (1)学习观察塞曼效应的方法,用法布里-珀罗标准具观测汞546.1nm谱线的塞满分裂。 (2)掌握塞曼效应分裂谱线裂距的测量方法,并与理论值比较烦算某一激励电流下磁感应强度B的大小。 2.实验原理 (1)磁场中的能级分裂——塞曼效应 塞曼效应的产生是由于源自的总磁矩受到磁场作用的结果,其有如下关系: 总磁矩与总角动量不再一条线上,计算后得到有效为 其中g为朗德因子, 当原子处于外磁场中,μ绕外磁场B作旋进,原子获得附加能量: 说明在稳定磁场的作用下,原来的一个能级,分裂成(2J+1)个能级。 (2)塞曼跃迁的选择定则 在外磁场作用下,上下量能级附加能量分别为ΔE2,ΔE1,则

其中 为洛伦兹单位,B的单位是T,L的单位为cm-1. (3)汞546.1nm谱线在磁场中的分裂 汞546.1nm波是汞原子从到能级跃迁时产生的,在磁场中分 裂产生9条谱线,相邻谱线裂距为,垂直于磁场方向观察,中间三条为π线,两边各三条为σ线。 (4)F-P标准具 F-P标准具为多光束干涉装置,单色平行光在其中形成同心圆环等倾干涉。 自由光谱范围: 由此可以确定d,在实验中d取2mm。 设Δ是标准具能分辨的最小波长差,通常定义 为分辨率 Δ 一般为了比较高的精确度取,R为90%以上。 (5)塞曼效应测量公式 用透镜将F-P标准具的干涉环成像在焦平面的圆环直径为D,有 变化得到 对于同一波长相邻级次k,k-1级圆环直径分别为,,其直径平方差

,可见是一个与干涉级次k无关的常数。 对于同一级次有微小波长差的不同波长,而言可以得到 3.实验仪器装置 电磁铁,笔形汞灯,聚光镜,偏振光,滤光片,望远镜测微目镜 4.实验内容及操作 在垂直方向用F-P标准具定性观察Hg546.1nm谱线的塞曼分裂,分析谱线的偏振成分,定量测量塞曼分裂间隔并反算磁感应强度B。 (1)准备工作 (2)光路调节 1)调节聚光镜 2)放置干涉滤光片 3)调节聚光镜、滤光片,标准具与光源大致共轴 4)调整测量望远镜的高度 (3)塞曼效应观测 1)在加磁场前后观察 2)加装偏振片 (4)测量 1)在时,选择子谱线中一对合适的谱线圆环(最好不选相邻环线),和其中之一环对应的低一级次的环,并记录所测子谱线的间隔个数,测量直 径。算出波数差,依据间隔个数算出B。

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

实验一 声光调制实验

实验一 声光调制实验 早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。声光效应已广泛应用于声学、光学和光电子学。近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。 一、实验目的 1、掌握声光调制的基本原理。 2、了解声光器件的工作原理。 3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。 4、观察布拉格声光衍射现象。 二、实验原理 (一)声光调制的物理基础 1、弹光效应 若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。这种由于外力作用而引起折射率变化的现象称为弹光效应。弹光效应存在于一切物质。 2、声光栅 当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。这部分受扰动的介质等效为一个“相位光栅”。其光栅常数就是声波波长λs ,这种光栅称为超声光栅。声波在介质中传播时,有行波和驻波两种形式。特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。 当超声波传播到声光晶体时,它由一端传向另一端。到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。由于机械波的压缩和伸长作用,则在声光晶体中形成行波式的疏密相间的构造,也就是行波形式的光栅。 当超声波传播到声光晶体时,它由一端传向另一端。如果遇见反声物质,超声波将被反声物质反射,在返回途中和入射波叠加而在声光晶体中形成驻波。由于机械波压缩伸长作用,在声光晶体中形成驻波形式的疏密相同的构造,也就是驻波形式的光栅。 首先考虑行波的情况,设平面纵声波在介质中沿x 方向传播,声波扰动介质中的质点位移可写成 ()x k t u u s s -=ωcos 01 (1) μ0是质点振动的振幅,ωs 是声波频率,k s 是声波波矢量的模。相应的应变场是 ()x k t k u x u S s s s -=??-=ωsin 01 (2) 对各向同性介质,折射率分布为

实验一 声光效应实验

实验 声光效应实验 【学史背景】 声光效应就是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象就是光波与介质中声波相互作用的结果。早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光现象的研究提供了理想的光源,促进了声光效应理论与应用研究的迅速发展。声光效应为控制激光束的频率、方向与强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器、与可调谐滤光器等,在激光技术、光信号处理与集成光通讯技术等方面有着重要的应用。 【实验目的】 1.掌握声光效应的原理与实验规律; 2.了解喇曼-纳斯衍射与布喇格衍射的实验条件与特点; 3.测量不同激光(红光、蓝光、绿光)与红外线通过声光晶体发生布拉格衍射后的衍射角。 【实验原理】 当超声波在介质中传播时,将引起介质的弹性应变作时间与空间上的周期性的变化,并且导致介质的折射率也发生相应变化。当光束通过有超 声波的介质后就会产生衍射现象,这就就是声光效应。有 超声波传播的介质如同一个相位光栅。 声光效应有正常声光效应与反常声光效应之分。在 各项同性介质中,声-光相互作用不导致入射光偏振状 态的变化,产生正常声光效应。在各项异性介质中,声- 光相互作用可能导致入射光偏振状态的变化,产生反常 声光效应。反常声光效应就是制造高性能声光偏转器与 可调滤波器的基础。正常声光效应可用喇曼-纳斯的光 栅假设作出解释,而反常声光效应不能用光栅假设作出 说明。在非线性光学中,利用参量相互作用理论,可建立 起声-光相互作用的统一理论,并且运用动量匹配与失配等概念对正常与反常声光效应都可作出解释。本实验只涉及到各项同性介质中的正常声光效应。 图1 声光衍射

西安交大《塞曼效应实验报告》

应物31 吕博成学号:10

塞曼效应 1896年,荷兰物理学家塞曼()在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

霍尔效应实验数据及曲线

表1 测绘Vh-Is实验曲线数据记录表(Im=0.500A) Is(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is 0.50.64-0.370.37-0.630.5025 1 1.28-0.740.75-1.271 1.5 1.91-1.11 1.12-1.9 1.53 2 2.53-1.48 1.49-2.52 2.005 2.5 3.16-1.86 1.87-3.15 2.51 3 3.79-2.2 4 2.25-3.77 3.0125 3.5 4.42-2.61 2.62-4.39 3.51 4 5.03-2.99 3.01-5.01 4.01 Vh-Is实验曲线 表2 测绘Vh-Im实验曲线数据记录表 Im(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is

0.1 1.380.16-0.15-1.360.7625 0.2 1.980.44-0.43-1.96 1.2025 0.3 2.59 1.04-1.03-2.57 1.8075 0.4 3.18 1.64-1.63-3.16 2.4025 0.5 3.79 2.25-2.23-3.77 3.01 表3 测绘Vh-X实验曲线数据记录表 X V1(Mv)V2(Mv)V3(Mv)V4(Mv)Vh=(|V1|+|V2|+|V3|+|V4|)/4 Vh 0 2.12-0.570.59-2.09 1.3425 1 2.92-1.37 1.39-2.89 2.1425 2 3.38-1.82 1.85-3.35 2.6 3 3.58-2.03 2.06-3.56 2.8075 4 3.68-2.12 2.06-3.6 5 2.8775 5 3.73-2.17 2.2-3.7 2.95 6 3.76-2.2 2.23-3.73 2.98 8 3.77-2.21 2.24-3.74 2.99

声光效应实验

时间:2014年7月7日 ——声光效应实验 大学物理实验报告

课题解析: 声光效应:超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称为声光效应。 实验目的: 1、观察超声驻波场中光的衍射现象 2、观察超声驻波场的像,测量声波在晶体中的速度 实验器材: 仪器与用具光学实验导轨(1m)、633nm半导体激光器、声光晶体、光信号放大器、声光效应实验电源(驻波声光调制器)、OPT-1A功率指示计以及白屏、光拦探头、一维位移架、MP3及数据线、小孔屏、光电探头、透镜(f=100mm)、光具座、传输线、电源线 主机箱面板功能: 主机箱“声光效应试验电源”主要功能为声光晶体驱动电压的输出与输出电压的指示,频率调节,被调制信号的接受与放大和还原,各面板元器件作用于功能如下: 1.表头:3位半数字表头,用于指示声光晶体驱动电压的大小,该显示数值可通过电压旋钮进行调节。 2.电压旋钮:调整范围0-12V,实验一般调到最大。 3.频率旋钮:调整范围9-11MHz,调整至适当频率使衍射效果最佳,频率值可在示波器或频率上读出(均需自备)。 4.驱动输出:Q9插座,与声光晶体相连接。 5.波形插座:Q9插座,为输出驱动波形,一般与示波器1通道连接

6.音频插座:3.5mm耳机插座,用于输入音频信号。 实验原理: 1.声波是一种弹性波(纵向应力波),在介质中传播时,它使介质产生相应的弹性形变,从而激起介质中各介质点沿声波的传播方向振动,引起介质的密度呈疏密相间的交替变化,因此,介质的折射率也随着发生相应的周期性变化。超声场作用的这部分如同一个光学的“相位光栅”,该光栅间距(光栅常数)等于声波波长λ。当光波通过此介质时,就会产生光的衍射。其衍射光的强度、频率、方向等都随着超声场的变化而变化。声波在介质中传播分为行波和驻波两种形式。图1所示为某一瞬间超声行波的情况,其中深色部分表示介质受到压缩、密度增大,相应的折射率也增大,而白色部分表示介质密度减少,对应的折射率也减少。在行波声场作用下,介质折射率的增大或减小交替变化,并以声速v(一般为10^3m/s量级)向前推进。由于声速仅为光速的数十万分之一,所以对光波来说,运动的“声光栅”可以看作是静止的。 2.晶体声光效应实验:利用石英晶体/ZF6驻波声光调制器,它由两部分构成,一是声光晶体:声光晶体由压电换能器(XO0切石英晶体)和声光互作用介质(ZF6)组成。为了在声光介质中形成驻波,沿声传播方向上声光介质的两个面要严格平行,平行度要优于λ/5。压电换能器与声光介质焊接成一体。二是驱动源:驱动源是一个正弦波高频功率信号发生器。驱动源提供的正弦高频功率信号(见图3a),通过匹配网络加到压电换能器上,换能器发出的超声波沿x正方向传播,到达对面后,被全反射,反射波沿x负方向传播,声光介质中如同存在两列频率相同、振幅相等且沿相反方向传播的超声波。 图3b所示就是这种波在十个彼此相等的瞬时间隔时的情况。沿正x方向传播的发射波用虚线表示;沿负x方向传播的反射波用实线表示;它们的叠加点划线表示。不难看出,叠加波具有相同的波长,只是在空间不产生位移。这种由两个彼此相对的行波组成的振动称为驻波。在驻波中,彼此相距λ/2的各点完全不振动,这些点称为波节。位于两波节中间的点是波腹,这些点上的振动最大。另外,显而易见的是每隔1/2T秒,振动即完全消失(图1b中从上往下数3,5,7,9行的瞬时),驻波的最大值也位于这些瞬时间隔的中间(2,4,6,8,10),而且每经过这个时间间隔,在波腹处的振动的相位相反。

塞曼效应实验报告

1、前言和实验目的 1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。 2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。 3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。 2、实验原理 处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。 总磁矩为 J μ 的原子体系,在外磁场为B 中具有的附加能为: E ?= -J μ *B 由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。则我们有: E ?= -z μB =B g m B J J μ 其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ= e m eh π4称为玻尔磁子,J g 为朗德因子,其值为 J g =) 1(2) 1()1()1(1++++-++ J J S S L L J J 由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=?j m 。 磁场作用下能级之间的跃迁发出的谱线频率变为: )()(1122' E E E E hv ?+-?+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν?为: ν?=' ν-ν=h B g m g m B /)(1122μ-、 λ?= c ν λ?2 =2λ (1122g m g m -)B μB /hc =2 λ (1122g m g m -)L ~

大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告Word版

【实验名称】霍尔效应 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 【实验仪器】 霍尔效应实验仪 【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。 对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B = e v B (1) 则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。电场的指向取决于试样的导电类型。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有: Is (X)、 B (Z) E H (Y) <0 (N型) E H (Y) >0 (P型) 显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE与 洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有 H eE= B v e(2) 其中 H E为霍尔电场,v是载流子在电流方向上的平均漂移速度。 设试样的宽为b,厚度为d,载流子浓度为n,则 bd v ne Is=(3)由(2)、(3)两式可得 d B I R d B I ne b E V S H S H H = = = 1 (4) 即霍尔电压 H V(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。 比例系数 ne R H 1 =称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, 整理为word格式

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

声光效应实验

声光效应实验 一、 实验目的 1.理解声光效应的原理,了解Ramam -Nath 衍射和Bragg 衍射的分别。 2.测量声光器件的衍射效率和带宽等参数,加深对概念的理解。 3.测量声光偏转的声光调制曲线。 4.模拟激光通讯。 二、 实验原理 (一) 声光效应的物理本质——光弹效应 介质的光学性质通常用折射率椭球方程描述 1ij j j x y η= Pockels 效应:介质中存在声场,介质内部就受到应力,发生声应变,从而引起介质光学性质发生变化,这种变化反映在介质光折射率的或者折射率椭球方程系数的变化上。在一级近似下,有 ij ijkl kl P S η?= 各向同性介质中声纵波的情况,折射率n 和光弹系数P 都可以看作常量,得 2 1( )PS n η?=?= 其中应变 0sin()S S kx t =-Ω 表示在x 方向传播的声应变波,S 0是应变的幅值,/s k v =Ω是介质中的声波数,2f πΩ=为角频率,v s 为介质中声速,/s v f Λ=为声波长。P 表示单位应变所应起的2 (1/)n 的变化,为光弹系数。又得 301sin()sin()2 n n PS kx t kx t μ?=-Ω=-Ω ()sin()n x n n n kx t μ=+?=+-Ω 其中3012 n PS μ=是“声致折射率变化”的幅值。考虑如图1的情况,压电换能器将驱动信号U(t)转换成声信号,入射平面波与声波在介质中(共面)相遇,当光通过线度为l 的声

光互作用介质时,其相位改变为: 000()()sin() x n x k l k l kx t φφμ?==?+-Ω 其中002/k πλ=为真空中光波数,0λ是真空中的光波长, 00nk l ?Φ=为光通过不存在超声波的介质后的位相滞后,项 ()0sin k l kx t μ-Ω为由于介质中存在超声 波而引起的光的附加位相延迟。它在x 方向 周期性的变化,犹如光栅一般,故称为位相 光栅。这就是得广播阵面由原先的平面变为 周期性的位相绉折,这就改变了光的传播方 向,也就产生了所谓的衍射。与此同时,光 强分布在时间和空间上又做重新分配,也就 是衍射光强受到了声调制。 (二) 声光光偏转和光平移 从量子力学的观点考虑光偏转和光频移 问题十分方便。把入射单色平面光波近似看作光子和声子。声光相互作用可以归结为光子和声子的弹性碰撞,这种碰撞应当遵守动量守恒和能量守恒定律,前者导致光偏转,后者导致光频移。这种碰撞存在着两种可能的情况——即声子的吸收过程和声子的受激发射过程,在声子吸收的情况下,每产生一个衍射光子,需要吸收一个声子。在声子受激发射的情况下,一个入射声子激发一个散射光子和另一个与之具有相同动量和能量的声子的发射。 d i k k k ±=± d i ωω±=±Ω 声光效应可划分为正常声光效应和反常声光效应两种。 1、入射光和衍射光处于相同的偏振状态,相应的折射率相同,成为正常声光效应。

塞曼效应实验报告

塞曼效应实验 实验原理 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(PJ)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能: 由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下:

2、塞曼分裂谱线与原谱线关系: (1) 基本出发点: ∴分裂后谱线与原谱线频率差 由于 定义为洛仑兹单位: 3、谱线的偏振特征: 塞曼跃迁的选择定则为:ΔM=0 时为π成份(π型偏振)是振动方向平行于磁场的线偏振光,只有在垂直于磁场方向才能观察到,平行于磁场方向观察不到;但当ΔJ=0时,M2=0到M1=0的跃迁被禁止。

当ΔM=±1时,为σ成份,σ型偏振垂直于磁场,观察时为振动垂直于磁场的线偏振光。 平行于磁场观察时,其偏振性与磁场方向及观察方向都有关:沿磁场正向观察时(即磁场方向离开观察者:) ΔM= +1为右旋圆偏振光(σ+偏振) ΔM= -1为左旋圆偏振光(σ-偏振) 也即,磁场指向观察者时:⊙ ΔM= +1为左旋圆偏振光 ΔM= -1为右旋圆偏振光 分析的总思路和总原则: 在辐射的过程中,原子和发出的光子作为整体的角动量是守恒的。 原子在磁场方向角动量为 ∴在磁场指向观察者时:⊙B 当ΔM= +1时,光子角动量为,与同向 电磁波电矢量绕逆时针方向转动,在光学上称为左旋圆偏振光。 ΔM= -1时,光子角动量为,与反向 电磁波电矢量绕顺时针方向转动,在光学上称为右旋圆偏振光。

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

大学物理声光效应讲义

声光效应实验 早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。声光效应已广泛应用于声学、光学和光电子学。近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。 一.实验目的 1、了解声光相互作用原理。 2、观察布拉格衍射现象。 3、研究声光调制和声光偏转的特性。 二.实验仪器 声光晶体、功率信号源、频率计、半导体激光器、示波器、CCD。 三.实验原理 若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。这种由于外力作用而引起折射率变化的现象称为弹光效应。弹光效应存在于一切物态。如上所述,当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化。这部分受扰动的介质等效为一个“相位光栅”。其光栅常数就是声波波长λs,这种光栅称为超声光栅。声波在介质中传播时,有行波和驻波两种形式。特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅的栅面是驻立不动的。 当超声波传播到声光晶体时,它由一端传向另一端。到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。由于机械波的压缩和伸长作用,则在声光晶体中形成行波式的疏密相间的构造,也就是行波形式的光栅。 当超声波传播到声光晶体时,它由一端传向另一端。如果遇见反声物质,超声波将被反声物质反射,在返回途中和入射波叠加而在声光晶体中形成驻波。由于机械波压缩伸长作用,在声光晶体中形成驻波形式的疏密相同的构造,也就是驻波形式的光栅。声光效应是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象是光波与介质中声波相互作用的结果。 1、布拉格声光调制 我们设计的这套实验系统主要是用来完成利用布拉格衍射进行声光调制的各项实验,所以下面着重讲一下布拉格声光调制。 如果声波频率较高,且声光作用长度较大,此时的声扰动介质也不再等效于平面位相光栅,而形成了立体位相光栅。这时,相对声波方向以一定角度入射的光波,其衍射光在介质内相互干涉,使高级衍射光相互抵消,只出现0级和 1级的衍射光,这就是布拉格声光衍射,如图1所示,这种衍射形式效率较高,有利于制成各种实用器件。

塞曼效应实验报告完整版

学生姓名: 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ -==--L (3)

学生姓名: 刘惠文 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

相关文档