文档视界 最新最全的文档下载
当前位置:文档视界 > 高中数学选修统计和概率

高中数学选修统计和概率

概率与统计知识点:

1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.

3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列

高中数学选修统计和概率

4、分布列性质① p i ≥0, i =1,2, … ;② p 1 + p 2 +…+p n = 1.

5、二项分布:如果随机变量X 的分布列为:

高中数学选修统计和概率

其中0

6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,

则它取值为k 时的概率为()(0,1,2,,)k n k M N M

n

N

C C P X k k m C --===,

其中{}min ,m M n =,且*

,,,,n N M N n M N N ∈≤≤

7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 8、公式:

.

0)(,)()

()|(>=A P A P AB P A B P

9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。)()()(B P A P B A P ?=?

10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验

11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独

立重复试验中 )(k P =ξk

n k k n q

p C -=(其中 k=0,1, ……,n ,q=1-p ) 于是可得随机变量ξ的概率分布如下:

高中数学选修统计和概率

这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数 12、数学期望:一般地,若离散型随机变量ξ的概率分布为

高中数学选修统计和概率

则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。

13、两点分布数学期望:E(X)=np 14、超几何分布数学期望:E (X )=M n N

?

. 15、方差:D(ξ)=(x 1-E ξ)2·P 1+(x 2-E ξ)2·P 2 +......+(x n -E ξ)2·P n 叫随机变量ξ的均方差,简称方差。

16、集中分布的期望与方差一览:

高中数学选修统计和概率

若概率密度曲线就是或近似地是函数

)

,(,21

)(2

22)(+∞-∞∈=

--

x e x f x σμσ

π

的图像,其中解析式中的实数0)μσ

σ>、(是参数,分别表示总体的平均数与标准差.

则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线。

18.基本性质:

相关文档
  • 高中数学统计与概率

  • 高中数学概率与统计

  • 小学数学统计与概率

  • 高中数学概率统计

  • 中考数学统计与概率

  • 高考数学统计与概率